

T H I R D E D I T I O N

Introduction to
Data Compression

The Morgan Kaufmann Series in Multimedia Information and Systems
Series Editor, Edward A. Fox, Virginia Polytechnic University

Introduction to Data Compression, Third Edition
Khalid Sayood

Understanding Digital Libraries, Second Edition
Michael Lesk

Bioinformatics: Managing Scientific Data
Zoe Lacroix and Terence Critchlow

How to Build a Digital Library
Ian H. Witten and David Bainbridge

Digital Watermarking
Ingemar J. Cox, Matthew L. Miller, and Jeffrey A. Bloom

Readings in Multimedia Computing and Networking
Edited by Kevin Jeffay and HongJiang Zhang

Introduction to Data Compression, Second Edition
Khalid Sayood

Multimedia Servers: Applications, Environments, and Design
Dinkar Sitaram and Asit Dan

Managing Gigabytes: Compressing and Indexing Documents and Images, Second Edition
Ian H. Witten, Alistair Moffat, and Timothy C. Bell

Digital Compression for Multimedia: Principles and Standards
Jerry D. Gibson, Toby Berger, Tom Lookabaugh, Dave Lindbergh, and Richard L. Baker

Readings in Information Retrieval
Edited by Karen Sparck Jones and Peter Willett

T H I R D E D I T I O N

Introduction to
Data Compression

Khalid Sayood
University of Nebraska

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Senior Acquisitions Editor Rick Adams
Publishing Services Manager Simon Crump
Assistant Editor Rachel Roumeliotis
Cover Design Cate Barr
Composition Integra Software Services Pvt. Ltd.
Copyeditor Jessika Bella Mura
Proofreader Jacqui Brownstein
Indexer Northwind Editorial Sevices
Interior printer Maple Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

©2006 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may
also complete your request on-line via the Elsevier homepage (http://elsevier.com) by selecting “Customer
Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Sayood, Khalid.

Introduction to data compression /Khalid Sayood.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-12-620862-7
ISBN-10: 0-12-620862-X
1. Data compression (Telecommunication) 2. Coding theory. I. Title

TK5102.92.S39 2005
005.74′6—dc22

2005052759

ISBN 13: 978-0-12-620862-7
ISBN 10: 0-12-620862-X

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

To Füsun

Contents

Preface xvii

1 Introduction 1
1.1 Compression Techniques 3

1.1.1 Lossless Compression 4
1.1.2 Lossy Compression 5
1.1.3 Measures of Performance 5

1.2 Modeling and Coding 6
1.3 Summary 10
1.4 Projects and Problems 11

2 Mathematical Preliminaries for Lossless Compression 13
2.1 Overview 13
2.2 A Brief Introduction to Information Theory 13

2.2.1 Derivation of Average Information � 18
2.3 Models 23

2.3.1 Physical Models 23
2.3.2 Probability Models 23
2.3.3 Markov Models 24
2.3.4 Composite Source Model 27

2.4 Coding 27
2.4.1 Uniquely Decodable Codes 28
2.4.2 Prefix Codes 31
2.4.3 The Kraft-McMillan Inequality � 32

2.5 Algorithmic Information Theory 35
2.6 Minimum Description Length Principle 36
2.7 Summary 37
2.8 Projects and Problems 38

3 Huffman Coding 41
3.1 Overview 41
3.2 The Huffman Coding Algorithm 41

3.2.1 Minimum Variance Huffman Codes 46
3.2.2 Optimality of Huffman Codes � 48
3.2.3 Length of Huffman Codes � 49
3.2.4 Extended Huffman Codes � 51

viii C O N T E N T S

3.3 Nonbinary Huffman Codes � 55
3.4 Adaptive Huffman Coding 58

3.4.1 Update Procedure 59
3.4.2 Encoding Procedure 62
3.4.3 Decoding Procedure 63

3.5 Golomb Codes 65
3.6 Rice Codes 67

3.6.1 CCSDS Recommendation for Lossless Compression 67
3.7 Tunstall Codes 69
3.8 Applications of Huffman Coding 72

3.8.1 Lossless Image Compression 72
3.8.2 Text Compression 74
3.8.3 Audio Compression 75

3.9 Summary 77
3.10 Projects and Problems 77

4 Arithmetic Coding 81
4.1 Overview 81
4.2 Introduction 81
4.3 Coding a Sequence 83

4.3.1 Generating a Tag 84
4.3.2 Deciphering the Tag 91

4.4 Generating a Binary Code 92
4.4.1 Uniqueness and Efficiency of the Arithmetic Code 93
4.4.2 Algorithm Implementation 96
4.4.3 Integer Implementation 102

4.5 Comparison of Huffman and Arithmetic Coding 109
4.6 Adaptive Arithmetic Coding 112
4.7 Applications 112
4.8 Summary 113
4.9 Projects and Problems 114

5 Dictionary Techniques 117
5.1 Overview 117
5.2 Introduction 117
5.3 Static Dictionary 118

5.3.1 Digram Coding 119
5.4 Adaptive Dictionary 121

5.4.1 The LZ77 Approach 121
5.4.2 The LZ78 Approach 125

5.5 Applications 133
5.5.1 File Compression—UNIX compress 133
5.5.2 Image Compression—The Graphics Interchange Format (GIF) 133
5.5.3 Image Compression—Portable Network Graphics (PNG) 134
5.5.4 Compression over Modems—V.42 bis 136

C O N T E N T S ix

5.6 Summary 138
5.7 Projects and Problems 139

6 Context-Based Compression 141
6.1 Overview 141
6.2 Introduction 141
6.3 Prediction with Partial Match (ppm) 143

6.3.1 The Basic Algorithm 143
6.3.2 The Escape Symbol 149
6.3.3 Length of Context 150
6.3.4 The Exclusion Principle 151

6.4 The Burrows-Wheeler Transform 152
6.4.1 Move-to-Front Coding 156

6.5 Associative Coder of Buyanovsky (ACB) 157
6.6 Dynamic Markov Compression 158
6.7 Summary 160
6.8 Projects and Problems 161

7 Lossless Image Compression 163
7.1 Overview 163
7.2 Introduction 163

7.2.1 The Old JPEG Standard 164
7.3 CALIC 166
7.4 JPEG-LS 170
7.5 Multiresolution Approaches 172

7.5.1 Progressive Image Transmission 173
7.6 Facsimile Encoding 178

7.6.1 Run-Length Coding 179
7.6.2 CCITT Group 3 and 4—Recommendations T.4 and T.6 180
7.6.3 JBIG 183
7.6.4 JBIG2—T.88 189

7.7 MRC—T.44 190
7.8 Summary 193
7.9 Projects and Problems 193

8 Mathematical Preliminaries for Lossy Coding 195
8.1 Overview 195
8.2 Introduction 195
8.3 Distortion Criteria 197

8.3.1 The Human Visual System 199
8.3.2 Auditory Perception 200

8.4 Information Theory Revisited � 201
8.4.1 Conditional Entropy 202
8.4.2 Average Mutual Information 204
8.4.3 Differential Entropy 205

x C O N T E N T S

8.5 Rate Distortion Theory � 208
8.6 Models 215

8.6.1 Probability Models 216
8.6.2 Linear System Models 218
8.6.3 Physical Models 223

8.7 Summary 224
8.8 Projects and Problems 224

9 Scalar Quantization 227
9.1 Overview 227
9.2 Introduction 227
9.3 The Quantization Problem 228
9.4 Uniform Quantizer 233
9.5 Adaptive Quantization 244

9.5.1 Forward Adaptive Quantization 244
9.5.2 Backward Adaptive Quantization 246

9.6 Nonuniform Quantization 253
9.6.1 pdf-Optimized Quantization 253
9.6.2 Companded Quantization 257

9.7 Entropy-Coded Quantization 264
9.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs 265
9.7.2 Entropy-Constrained Quantization � 265
9.7.3 High-Rate Optimum Quantization � 266

9.8 Summary 269
9.9 Projects and Problems 270

10 Vector Quantization 273
10.1 Overview 273
10.2 Introduction 273
10.3 Advantages of Vector Quantization over Scalar Quantization 276
10.4 The Linde-Buzo-Gray Algorithm 282

10.4.1 Initializing the LBG Algorithm 287
10.4.2 The Empty Cell Problem 294
10.4.3 Use of LBG for Image Compression 294

10.5 Tree-Structured Vector Quantizers 299
10.5.1 Design of Tree-Structured Vector Quantizers 302
10.5.2 Pruned Tree-Structured Vector Quantizers 303

10.6 Structured Vector Quantizers 303
10.6.1 Pyramid Vector Quantization 305
10.6.2 Polar and Spherical Vector Quantizers 306
10.6.3 Lattice Vector Quantizers 307

10.7 Variations on the Theme 311
10.7.1 Gain-Shape Vector Quantization 311
10.7.2 Mean-Removed Vector Quantization 312

C O N T E N T S xi

10.7.3 Classified Vector Quantization 313
10.7.4 Multistage Vector Quantization 313
10.7.5 Adaptive Vector Quantization 315

10.8 Trellis-Coded Quantization 316
10.9 Summary 321
10.10 Projects and Problems 322

11 Differential Encoding 325
11.1 Overview 325
11.2 Introduction 325
11.3 The Basic Algorithm 328
11.4 Prediction in DPCM 332
11.5 Adaptive DPCM 337

11.5.1 Adaptive Quantization in DPCM 338
11.5.2 Adaptive Prediction in DPCM 339

11.6 Delta Modulation 342
11.6.1 Constant Factor Adaptive Delta Modulation (CFDM) 343
11.6.2 Continuously Variable Slope Delta Modulation 345

11.7 Speech Coding 345
11.7.1 G.726 347

11.8 Image Coding 349
11.9 Summary 351
11.10 Projects and Problems 352

12 Mathematical Preliminaries for Transforms, Subbands, and Wavelets 355
12.1 Overview 355
12.2 Introduction 355
12.3 Vector Spaces 356

12.3.1 Dot or Inner Product 357
12.3.2 Vector Space 357
12.3.3 Subspace 359
12.3.4 Basis 360
12.3.5 Inner Product—Formal Definition 361
12.3.6 Orthogonal and Orthonormal Sets 361

12.4 Fourier Series 362
12.5 Fourier Transform 365

12.5.1 Parseval’s Theorem 366
12.5.2 Modulation Property 366
12.5.3 Convolution Theorem 367

12.6 Linear Systems 368
12.6.1 Time Invariance 368
12.6.2 Transfer Function 368
12.6.3 Impulse Response 369
12.6.4 Filter 371

xii C O N T E N T S

12.7 Sampling 372
12.7.1 Ideal Sampling—Frequency Domain View 373
12.7.2 Ideal Sampling—Time Domain View 375

12.8 Discrete Fourier Transform 376
12.9 Z-Transform 378

12.9.1 Tabular Method 381
12.9.2 Partial Fraction Expansion 382
12.9.3 Long Division 386
12.9.4 Z-Transform Properties 387
12.9.5 Discrete Convolution 387

12.10 Summary 389
12.11 Projects and Problems 390

13 Transform Coding 391
13.1 Overview 391
13.2 Introduction 391
13.3 The Transform 396
13.4 Transforms of Interest 400

13.4.1 Karhunen-Loéve Transform 401
13.4.2 Discrete Cosine Transform 402
13.4.3 Discrete Sine Transform 404
13.4.4 Discrete Walsh-Hadamard Transform 404

13.5 Quantization and Coding of Transform Coefficients 407
13.6 Application to Image Compression—JPEG 410

13.6.1 The Transform 410
13.6.2 Quantization 411
13.6.3 Coding 413

13.7 Application to Audio Compression—the MDCT 416
13.8 Summary 419
13.9 Projects and Problems 421

14 Subband Coding 423
14.1 Overview 423
14.2 Introduction 423
14.3 Filters 428

14.3.1 Some Filters Used in Subband Coding 432
14.4 The Basic Subband Coding Algorithm 436

14.4.1 Analysis 436
14.4.2 Quantization and Coding 437
14.4.3 Synthesis 437

14.5 Design of Filter Banks � 438
14.5.1 Downsampling � 440
14.5.2 Upsampling � 443

14.6 Perfect Reconstruction Using Two-Channel Filter Banks � 444
14.6.1 Two-Channel PR Quadrature Mirror Filters � 447
14.6.2 Power Symmetric FIR Filters � 449

C O N T E N T S xiii

14.7 M-Band QMF Filter Banks � 451
14.8 The Polyphase Decomposition � 454
14.9 Bit Allocation 459
14.10 Application to Speech Coding—G.722 461
14.11 Application to Audio Coding—MPEG Audio 462
14.12 Application to Image Compression 463

14.12.1 Decomposing an Image 465
14.12.2 Coding the Subbands 467

14.13 Summary 470
14.14 Projects and Problems 471

15 Wavelet-Based Compression 473
15.1 Overview 473
15.2 Introduction 473
15.3 Wavelets 476
15.4 Multiresolution Analysis and the Scaling Function 480
15.5 Implementation Using Filters 486

15.5.1 Scaling and Wavelet Coefficients 488
15.5.2 Families of Wavelets 491

15.6 Image Compression 494
15.7 Embedded Zerotree Coder 497
15.8 Set Partitioning in Hierarchical Trees 505
15.9 JPEG 2000 512
15.10 Summary 513
15.11 Projects and Problems 513

16 Audio Coding 515
16.1 Overview 515
16.2 Introduction 515

16.2.1 Spectral Masking 517
16.2.2 Temporal Masking 517
16.2.3 Psychoacoustic Model 518

16.3 MPEG Audio Coding 519
16.3.1 Layer I Coding 520
16.3.2 Layer II Coding 521
16.3.3 Layer III Coding—mp3 522

16.4 MPEG Advanced Audio Coding 527
16.4.1 MPEG-2 AAC 527
16.4.2 MPEG-4 AAC 532

16.5 Dolby AC3 (Dolby Digital) 533
16.5.1 Bit Allocation 534

16.6 Other Standards 535
16.7 Summary 536

xiv C O N T E N T S

17 Analysis/Synthesis and Analysis by Synthesis Schemes 537
17.1 Overview 537
17.2 Introduction 537
17.3 Speech Compression 539

17.3.1 The Channel Vocoder 539
17.3.2 The Linear Predictive Coder (Government Standard LPC-10) 542
17.3.3 Code Excited Linear Predicton (CELP) 549
17.3.4 Sinusoidal Coders 552
17.3.5 Mixed Excitation Linear Prediction (MELP) 555

17.4 Wideband Speech Compression—ITU-T G.722.2 558
17.5 Image Compression 559

17.5.1 Fractal Compression 560
17.6 Summary 568
17.7 Projects and Problems 569

18 Video Compression 571
18.1 Overview 571
18.2 Introduction 571
18.3 Motion Compensation 573
18.4 Video Signal Representation 576
18.5 ITU-T Recommendation H.261 582

18.5.1 Motion Compensation 583
18.5.2 The Loop Filter 584
18.5.3 The Transform 586
18.5.4 Quantization and Coding 586
18.5.5 Rate Control 588

18.6 Model-Based Coding 588
18.7 Asymmetric Applications 590
18.8 The MPEG-1 Video Standard 591
18.9 The MPEG-2 Video Standard—H.262 594

18.9.1 The Grand Alliance HDTV Proposal 597
18.10 ITU-T Recommendation H.263 598

18.10.1 Unrestricted Motion Vector Mode 600
18.10.2 Syntax-Based Arithmetic Coding Mode 600
18.10.3 Advanced Prediction Mode 600
18.10.4 PB-frames and Improved PB-frames Mode 600
18.10.5 Advanced Intra Coding Mode 600
18.10.6 Deblocking Filter Mode 601
18.10.7 Reference Picture Selection Mode 601
18.10.8 Temporal, SNR, and Spatial Scalability Mode 601
18.10.9 Reference Picture Resampling 601
18.10.10 Reduced-Resolution Update Mode 602
18.10.11 Alternative Inter VLC Mode 602
18.10.12 Modified Quantization Mode 602
18.10.13 Enhanced Reference Picture Selection Mode 603

C O N T E N T S xv

18.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video
Coding 603
18.11.1 Motion-Compensated Prediction 604
18.11.2 The Transform 605
18.11.3 Intra Prediction 605
18.11.4 Quantization 606
18.11.5 Coding 608

18.12 MPEG-4 Part 2 609
18.13 Packet Video 610
18.14 ATM Networks 610

18.14.1 Compression Issues in ATM Networks 611
18.14.2 Compression Algorithms for Packet Video 612

18.15 Summary 613
18.16 Projects and Problems 614

A Probability and Random Processes 615
A.1 Probability 615

A.1.1 Frequency of Occurrence 615
A.1.2 A Measure of Belief 616
A.1.3 The Axiomatic Approach 618

A.2 Random Variables 620
A.3 Distribution Functions 621
A.4 Expectation 623

A.4.1 Mean 624
A.4.2 Second Moment 625
A.4.3 Variance 625

A.5 Types of Distribution 625
A.5.1 Uniform Distribution 625
A.5.2 Gaussian Distribution 626
A.5.3 Laplacian Distribution 626
A.5.4 Gamma Distribution 626

A.6 Stochastic Process 626
A.7 Projects and Problems 629

B A Brief Review of Matrix Concepts 631
B.1 A Matrix 631
B.2 Matrix Operations 632

C The Root Lattices 637

Bibliography 639

Index 655

Preface

Within the last decade the use of data compression has become ubiquitous. From mp3 players
whose headphones seem to adorn the ears of most young (and some not so young) people, to
cell phones, to DVDs, to digital television, data compression is an integral part of almost all
information technology. This incorporation of compression into more and more of our lives
also points to a certain degree of maturation of the technology. This maturity is reflected in
the fact that there are fewer differences between this and the previous edition of this book
than there were between the second and first editions. In the second edition we had added
new techniques that had been developed since the first edition of this book came out. In this
edition our purpose is more to include some important topics, such as audio compression,
that had not been adequately covered in the second edition. During this time the field has
not entirely stood still and we have tried to include information about new developments.
We have added a new chapter on audio compression (including a description of the mp3
algorithm). We have added information on new standards such as the new video coding
standard and the new facsimile standard. We have reorganized some of the material in the
book, collecting together various lossless image compression techniques and standards into
a single chapter, and we have updated a number of chapters, adding information that perhaps
should have been there from the beginning.

All this has yet again enlarged the book. However, the intent remains the same: to provide
an introduction to the art or science of data compression. There is a tutorial description
of most of the popular compression techniques followed by a description of how these
techniques are used for image, speech, text, audio, and video compression.

Given the pace of developments in this area, there are bound to be new ones that are
not reflected in this book. In order to keep you informed of these developments, we will
periodically provide updates at http://www.mkp.com.

Audience

If you are designing hardware or software implementations of compression algorithms, or
need to interact with individuals engaged in such design, or are involved in development
of multimedia applications and have some background in either electrical or computer
engineering, or computer science, this book should be useful to you. We have included a
large number of examples to aid in self-study. We have also included discussion of various
multimedia standards. The intent here is not to provide all the details that may be required
to implement a standard but to provide information that will help you follow and understand
the standards documents.

xviii P R E F A C E

Course Use

The impetus for writing this book came from the need for a self-contained book that could
be used at the senior/graduate level for a course in data compression in either electrical
engineering, computer engineering, or computer science departments. There are problems
and project ideas after most of the chapters. A solutions manual is available from the
publisher. Also at http://sensin.unl.edu/idc/index.html we provide links to various course
homepages, which can be a valuable source of project ideas and support material.

The material in this book is too much for a one semester course. However, with judicious
use of the starred sections, this book can be tailored to fit a number of compression
courses that emphasize various aspects of compression. If the course emphasis is on lossless
compression, the instructor could cover most of the sections in the first seven chapters. Then,
to give a taste of lossy compression, the instructor could cover Sections 1–5 of Chapter 9,
followed by Chapter 13 and its description of JPEG, and Chapter 18, which describes video
compression approaches used in multimedia communications. If the class interest is more
attuned to audio compression, then instead of Chapters 13 and 18, the instructor could cover
Chapters 14 and 16. If the latter option is taken, depending on the background of the students
in the class, Chapter 12 may be assigned as background reading. If the emphasis is to be on
lossy compression, the instructor could cover Chapter 2, the first two sections of Chapter
3, Sections 4 and 6 of Chapter 4 (with a cursory overview of Sections 2 and 3), Chapter 8,
selected parts of Chapter 9, and Chapter 10 through 15. At this point depending on the time
available and the interests of the instructor and the students portions of the remaining three
chapters can be covered. I have always found it useful to assign a term project in which the
students can follow their own interests as a means of covering material that is not covered
in class but is of interest to the student.

Approach

In this book, we cover both lossless and lossy compression techniques with applications to
image, speech, text, audio, and video compression. The various lossless and lossy coding
techniques are introduced with just enough theory to tie things together. The necessary
theory is introduced just before we need it. Therefore, there are three mathematical prelim-
inaries chapters. In each of these chapters, we present the mathematical material needed to
understand and appreciate the techniques that follow.

Although this book is an introductory text, the word introduction may have a different
meaning for different audiences. We have tried to accommodate the needs of different
audiences by taking a dual-track approach. Wherever we felt there was material that could
enhance the understanding of the subject being discussed but could still be skipped without
seriously hindering your understanding of the technique, we marked those sections with a
star (�). If you are primarily interested in understanding how the various techniques function,
especially if you are using this book for self-study, we recommend you skip the starred
sections, at least in a first reading. Readers who require a slightly more theoretical approach
should use the starred sections. Except for the starred sections, we have tried to keep the
mathematics to a minimum.

P R E F A C E xix

Learn ing f rom This Book

I have found that it is easier for me to understand things if I can see examples. Therefore, I
have relied heavily on examples to explain concepts. You may find it useful to spend more
time with the examples if you have difficulty with some of the concepts.

Compression is still largely an art and to gain proficiency in an art we need to get a “feel”
for the process. We have included software implementations for most of the techniques
discussed in this book, along with a large number of data sets. The software and data sets
can be obtained from ftp://ftp.mkp.com/pub/Sayood/. The programs are written in C and have
been tested on a number of platforms. The programs should run under most flavors of UNIX
machines and, with some slight modifications, under other operating systems as well. More
detailed information is contained in the README file in the pub/Sayood directory.

You are strongly encouraged to use and modify these programs to work with your
favorite data in order to understand some of the issues involved in compression. A useful and
achievable goal should be the development of your own compression package by the time
you have worked through this book. This would also be a good way to learn the trade-offs
involved in different approaches. We have tried to give comparisons of techniques wherever
possible; however, different types of data have their own idiosyncrasies. The best way to
know which scheme to use in any given situation is to try them.

Content and Organizat ion

The organization of the chapters is as follows: We introduce the mathematical preliminaries
necessary for understanding lossless compression in Chapter 2; Chapters 3 and 4 are devoted
to coding algorithms, including Huffman coding, arithmetic coding, Golomb-Rice codes,
and Tunstall codes. Chapters 5 and 6 describe many of the popular lossless compression
schemes along with their applications. The schemes include LZW, ppm, BWT, and DMC,
among others. In Chapter 7 we describe a number of lossless image compression algorithms
and their applications in a number of international standards. The standards include the JBIG
standards and various facsimile standards.

Chapter 8 is devoted to providing the mathematical preliminaries for lossy compression.
Quantization is at the heart of most lossy compression schemes. Chapters 9 and 10 are
devoted to the study of quantization. Chapter 9 deals with scalar quantization, and Chapter
10 deals with vector quantization. Chapter 11 deals with differential encoding techniques,
in particular differential pulse code modulation (DPCM) and delta modulation. Included in
this chapter is a discussion of the CCITT G.726 standard.

Chapter 12 is our third mathematical preliminaries chapter. The goal of this chapter is to
provide the mathematical foundation necessary to understand some aspects of the transform,
subband, and wavelet-based techniques that are described in the next three chapters. As in
the case of the previous mathematical preliminaries chapters, not all material covered is
necessary for everyone. We describe the JPEG standard in Chapter 13, the CCITT G.722
international standard in Chapter 14, and EZW, SPIHT, and JPEG 2000 in Chapter 15.

Chapter 16 is devoted to audio compression. We describe the various MPEG audio
compression schemes in this chapter including the scheme popularly known as mp3.

xx P R E F A C E

Chapter 17 covers techniques in which the data to be compressed are analyzed, and a
model for the generation of the data is transmitted to the receiver. The receiver uses this
model to synthesize the data. These analysis/synthesis and analysis by synthesis schemes
include linear predictive schemes used for low-rate speech coding and the fractal compres-
sion technique. We describe the federal government LPC-10 standard. Code-excited linear
prediction (CELP) is a popular example of an analysis by synthesis scheme. We also discuss
three CELP-based standards, the federal standard 1016, the CCITT G.728 international stan-
dard, and the relatively new wideband speech compression standard G.722.2. We have also
included a discussion of the mixed excitation linear prediction (MELP) technique, which is
the new federal standard for speech coding at 2.4 kbps.

Chapter 18 deals with video coding. We describe popular video coding techniques via
description of various international standards, including H.261, H.264, and the various MPEG
standards.

A Personal View

For me, data compression is more than a manipulation of numbers; it is the process of
discovering structures that exist in the data. In the 9th century, the poet Omar Khayyam
wrote

The moving finger writes, and having writ,
moves on; not all thy piety nor wit,
shall lure it back to cancel half a line,
nor all thy tears wash out a word of it.

(The Rubaiyat of Omar Khayyam)

To explain these few lines would take volumes. They tap into a common human expe-
rience so that in our mind’s eye, we can reconstruct what the poet was trying to convey
centuries ago. To understand the words we not only need to know the language, we also
need to have a model of reality that is close to that of the poet. The genius of the poet lies
in identifying a model of reality that is so much a part of our humanity that centuries later
and in widely diverse cultures, these few words can evoke volumes.

Data compression is much more limited in its aspirations, and it may be presumptuous to
mention it in the same breath as poetry. But there is much that is similar to both endeavors.
Data compression involves identifying models for the many different types of structures
that exist in different types of data and then using these models, perhaps along with the
perceptual framework in which these data will be used, to obtain a compact representation
of the data. These structures can be in the form of patterns that we can recognize simply
by plotting the data, or they might be statistical structures that require a more mathematical
approach to comprehend.

In The Long Dark Teatime of the Soul by Douglas Adams, the protagonist finds that he
can enter Valhalla (a rather shoddy one) if he tilts his head in a certain way. Appreciating
the structures that exist in data sometimes require us to tilt our heads in a certain way. There
are an infinite number of ways we can tilt our head and, in order not to get a pain in the
neck (carrying our analogy to absurd limits), it would be nice to know some of the ways that

P R E F A C E xxi

will generally lead to a profitable result. One of the objectives of this book is to provide you
with a frame of reference that can be used for further exploration. I hope this exploration
will provide as much enjoyment for you as it has given to me.

Acknowledgments

It has been a lot of fun writing this book. My task has been made considerably easier and
the end product considerably better because of the help I have received. Acknowledging that
help is itself a pleasure.

The first edition benefitted from the careful and detailed criticism of Roy Hoffman from
IBM, Glen Langdon from the University of California at Santa Cruz, Debra Lelewer from
California Polytechnic State University, Eve Riskin from the University of Washington,
Ibrahim Sezan from Kodak, and Peter Swaszek from the University of Rhode Island. They
provided detailed comments on all or most of the first edition. Nasir Memon from Polytechnic
University, Victor Ramamoorthy then at S3, Grant Davidson at Dolby Corporation, Hakan
Caglar, who was then at TÜBITAK in Istanbul, and Allen Gersho from the University of
California at Santa Barbara reviewed parts of the manuscript.

For the second edition Steve Tate at the University of North Texas, Sheila Horan at
New Mexico State University, Edouard Lamboray at Oerlikon Contraves Group, Steven
Pigeon at the University of Montreal, and Jesse Olvera at Raytheon Systems reviewed the
entire manuscript. Emin Anarım of Boğaziçi University and Hakan Çağlar helped me with
the development of the chapter on wavelets. Mark Fowler provided extensive comments on
Chapters 12–15, correcting mistakes of both commission and omission. Tim James, Devajani
Khataniar, and Lance Pérez also read and critiqued parts of the new material in the second
edition. Chloeann Nelson, along with trying to stop me from splitting infinitives, also tried
to make the first two editions of the book more user-friendly.

Since the appearance of the first edition, various readers have sent me their comments
and critiques. I am grateful to all who sent me comments and suggestions. I am especially
grateful to Roberto Lopez-Hernandez, Dirk vom Stein, Christopher A. Larrieu, Ren Yih
Wu, Humberto D’Ochoa, Roderick Mills, Mark Elston, and Jeerasuda Keesorth for pointing
out errors and suggesting improvements to the book. I am also grateful to the various
instructors who have sent me their critiques. In particular I would like to thank Bruce
Bomar from the University of Tennessee, Mark Fowler from SUNY Binghamton, Paul Amer
from the University of Delaware, K.R. Rao from the University of Texas at Arlington,
Ralph Wilkerson from the University of Missouri–Rolla, Adam Drozdek from Duquesne
University, Ed Hong and Richard Ladner from the University of Washington, Lars Nyland
from the Colorado School of Mines, Mario Kovac from the University of Zagreb, and Pierre
Jouvelet from the Ecole Superieure des Mines de Paris.

Frazer Williams and Mike Hoffman, from my department at the University of Nebraska,
provided reviews for the first edition of the book. Mike read the new chapters in the second
and third edition in their raw form and provided me with critiques that led to major rewrites.
His insights were always helpful and the book carries more of his imprint than he is perhaps
aware of. It is nice to have friends of his intellectual caliber and generosity. Rob Maher
at Montana State University provided me with an extensive critique of the new chapter on

xxii P R E F A C E

audio compression pointing out errors in my thinking and gently suggesting corrections. I
thank him for his expertise, his time, and his courtesy.

Rick Adams, Rachel Roumeliotis, and Simon Crump at Morgan Kaufmann had the task
of actually getting the book out. This included the unenviable task of getting me to meet
deadlines. Vytas Statulevicius helped me with LaTex problems that were driving me up the
wall.

Most of the examples in this book were generated in a lab set up by Andy Hadenfeldt.
James Nau helped me extricate myself out of numerous software puddles giving freely of
his time. In my times of panic, he was always just an email or voice mail away.

I would like to thank the various “models” for the data sets that accompany this book
and were used as examples. The individuals in the images are Sinan Sayood, Sena Sayood,
and Elif Sevuktekin. The female voice belongs to Pat Masek.

This book reflects what I have learned over the years. I have been very fortunate in the
teachers I have had. David Farden, now at North Dakota State University, introduced me
to the area of digital communication. Norm Griswold at Texas A&M University introduced
me to the area of data compression. Jerry Gibson, now at University of California at Santa
Barbara was my Ph.D. advisor and helped me get started on my professional career. The
world may not thank him for that, but I certainly do.

I have also learned a lot from my students at the University of Nebraska and Boğaziçi
University. Their interest and curiosity forced me to learn and kept me in touch with the
broad field that is data compression today. I learned at least as much from them as they
learned from me.

Much of this learning would not have been possible but for the support I received from
NASA. The late Warner Miller and Pen-Shu Yeh at the Goddard Space Flight Center and
Wayne Whyte at the Lewis Research Center were a source of support and ideas. I am truly
grateful for their helpful guidance, trust, and friendship.

Our two boys, Sena and Sinan, graciously forgave my evenings and weekends at work.
They were tiny (witness the images) when I first started writing this book. Soon I will
have to look up when talking to them. “The book” has been their (sometimes unwanted)
companion through all these years. For their graciousness and for always being such perfect
joys, I thank them.

Above all the person most responsible for the existence of this book is my partner and
closest friend Füsun. Her support and her friendship gives me the freedom to do things I
would not otherwise even consider. She centers my universe and, as with every significant
endeavor that I have undertaken since I met her, this book is at least as much hers as it is
mine.

1
Introduction

I
n the last decade we have been witnessing a transformation—some call it
a revolution—in the way we communicate, and the process is still under
way. This transformation includes the ever-present, ever-growing Internet; the
explosive development of mobile communications; and the ever-increasing
importance of video communication. Data compression is one of the enabling

technologies for each of these aspects of the multimedia revolution. It would not be practical
to put images, let alone audio and video, on websites if it were not for data compression
algorithms. Cellular phones would not be able to provide communication with increasing
clarity were it not for compression. The advent of digital TV would not be possible without
compression. Data compression, which for a long time was the domain of a relatively small
group of engineers and scientists, is now ubiquitous. Make a long-distance call and you
are using compression. Use your modem, or your fax machine, and you will benefit from
compression. Listen to music on your mp3 player or watch a DVD and you are being
entertained courtesy of compression.

So, what is data compression, and why do we need it? Most of you have heard of JPEG
and MPEG, which are standards for representing images, video, and audio. Data compression
algorithms are used in these standards to reduce the number of bits required to represent
an image or a video sequence or music. In brief, data compression is the art or science
of representing information in a compact form. We create these compact representations
by identifying and using structures that exist in the data. Data can be characters in a text
file, numbers that are samples of speech or image waveforms, or sequences of numbers
that are generated by other processes. The reason we need data compression is that more
and more of the information that we generate and use is in digital form—in the form
of numbers represented by bytes of data. And the number of bytes required to represent
multimedia data can be huge. For example, in order to digitally represent 1 second of
video without compression (using the CCIR 601 format), we need more than 20 megabytes,
or 160 megabits. If we consider the number of seconds in a movie, we can easily see
why we would need compression. To represent 2 minutes of uncompressed CD-quality

2 1 I N T R O D U C T I O N

music (44,100 samples per second, 16 bits per sample) requires more than 84 million bits.
Downloading music from a website at these rates would take a long time.

As human activity has a greater and greater impact on our environment, there is an ever-
increasing need for more information about our environment, how it functions, and what we
are doing to it. Various space agencies from around the world, including the European Space
Agency (ESA), the National Aeronautics and Space Agency (NASA), the Canadian Space
Agency (CSA), and the Japanese Space Agency (STA), are collaborating on a program to
monitor global change that will generate half a terabyte of data per day when they are fully
operational. Compare this to the 130 terabytes of data currently stored at the EROS data
center in South Dakota, that is the largest archive for land mass data in the world.

Given the explosive growth of data that needs to be transmitted and stored, why not
focus on developing better transmission and storage technologies? This is happening, but it
is not enough. There have been significant advances that permit larger and larger volumes of
information to be stored and transmitted without using compression, including CD-ROMs,
optical fibers, Asymmetric Digital Subscriber Lines (ADSL), and cable modems. However,
while it is true that both storage and transmission capacities are steadily increasing with
new technological innovations, as a corollary to Parkinson’s First Law,1 it seems that the
need for mass storage and transmission increases at least twice as fast as storage and
transmission capacities improve. Then there are situations in which capacity has not increased
significantly. For example, the amount of information we can transmit over the airwaves
will always be limited by the characteristics of the atmosphere.

An early example of data compression is Morse code, developed by Samuel Morse in
the mid-19th century. Letters sent by telegraph are encoded with dots and dashes. Morse
noticed that certain letters occurred more often than others. In order to reduce the average
time required to send a message, he assigned shorter sequences to letters that occur more
frequently, such as e (·) and a (· −), and longer sequences to letters that occur less frequently,
such as q (− − · −) and j (· − − −). This idea of using shorter codes for more frequently
occurring characters is used in Huffman coding, which we will describe in Chapter 3.

Where Morse code uses the frequency of occurrence of single characters, a widely used
form of Braille code, which was also developed in the mid-19th century, uses the frequency
of occurrence of words to provide compression [1]. In Braille coding, 2 × 3 arrays of dots
are used to represent text. Different letters can be represented depending on whether the dots
are raised or flat. In Grade 1 Braille, each array of six dots represents a single character.
However, given six dots with two positions for each dot, we can obtain 26, or 64, different
combinations. If we use 26 of these for the different letters, we have 38 combinations left. In
Grade 2 Braille, some of these leftover combinations are used to represent words that occur
frequently, such as “and” and “for.” One of the combinations is used as a special symbol
indicating that the symbol that follows is a word and not a character, thus allowing a large
number of words to be represented by two arrays of dots. These modifications, along with
contractions of some of the words, result in an average reduction in space, or compression,
of about 20% [1].

1 Parkinson’s First Law: “Work expands so as to fill the time available,” in Parkinson’s Law and Other Studies in
Administration, by Cyril Northcote Parkinson, Ballantine Books, New York, 1957.

1.1 Compression Techniques 3

Statistical structure is being used to provide compression in these examples, but that
is not the only kind of structure that exists in the data. There are many other kinds of
structures existing in data of different types that can be exploited for compression. Consider
speech. When we speak, the physical construction of our voice box dictates the kinds of
sounds that we can produce. That is, the mechanics of speech production impose a structure
on speech. Therefore, instead of transmitting the speech itself, we could send information
about the conformation of the voice box, which could be used by the receiver to synthesize
the speech. An adequate amount of information about the conformation of the voice box
can be represented much more compactly than the numbers that are the sampled values of
speech. Therefore, we get compression. This compression approach is being used currently
in a number of applications, including transmission of speech over mobile radios and the
synthetic voice in toys that speak. An early version of this compression approach, called
the vocoder (voice coder), was developed by Homer Dudley at Bell Laboratories in 1936.
The vocoder was demonstrated at the New York World’s Fair in 1939, where it was a
major attraction. We will revisit the vocoder and this approach to compression of speech in
Chapter 17.

These are only a few of the many different types of structures that can be used to obtain
compression. The structure in the data is not the only thing that can be exploited to obtain
compression. We can also make use of the characteristics of the user of the data. Many times,
for example, when transmitting or storing speech and images, the data are intended to be
perceived by a human, and humans have limited perceptual abilities. For example, we cannot
hear the very high frequency sounds that dogs can hear. If something is represented in the
data that cannot be perceived by the user, is there any point in preserving that information?
The answer often is “no.” Therefore, we can make use of the perceptual limitations of
humans to obtain compression by discarding irrelevant information. This approach is used
in a number of compression schemes that we will visit in Chapters 13, 14, and 16.

Before we embark on our study of data compression techniques, let’s take a general look
at the area and define some of the key terms and concepts we will be using in the rest of
the book.

1.1 Compression Techniques

When we speak of a compression technique or compression algorithm,2 we are actually
referring to two algorithms. There is the compression algorithm that takes an input � and
generates a representation �c that requires fewer bits, and there is a reconstruction algorithm
that operates on the compressed representation �c to generate the reconstruction �. These
operations are shown schematically in Figure 1.1. We will follow convention and refer
to both the compression and reconstruction algorithms together to mean the compression
algorithm.

2 The word algorithm comes from the name of an early 9th-century Arab mathematician, Al-Khwarizmi, who
wrote a treatise entitled The Compendious Book on Calculation by al-jabr and al-muqabala, in which he explored
(among other things) the solution of various linear and quadratic equations via rules or an “algorithm.” This approach
became known as the method of Al-Khwarizmi. The name was changed to algoritni in Latin, from which we get the word
algorithm. The name of the treatise also gave us the word algebra [2].

4 1 I N T R O D U C T I O N

Compress
ion Reconstruction

x y

xc

Original Reconstructed

σιναννοψανσενα

οψτυνκεϖενελιφ
δερινυλασ
φυσυνφυνδαφιγεν
ταηιρυλκερ

σιναννοψανσενα

οψτυνκεϖενελιφ
δερινυλασ
φυσυνφυνδαφιγεν
ταηιρυλκερ

F IGURE 1. 1 Compression and reconstruction.

Based on the requirements of reconstruction, data compression schemes can be divided
into two broad classes: lossless compression schemes, in which � is identical to � , and
lossy compression schemes, which generally provide much higher compression than lossless
compression but allow � to be different from � .

1 . 1 . 1 Loss less Compress ion

Lossless compression techniques, as their name implies, involve no loss of information. If
data have been losslessly compressed, the original data can be recovered exactly from the
compressed data. Lossless compression is generally used for applications that cannot tolerate
any difference between the original and reconstructed data.

Text compression is an important area for lossless compression. It is very important that
the reconstruction is identical to the text original, as very small differences can result in
statements with very different meanings. Consider the sentences “Do not send money” and
“Do now send money.” A similar argument holds for computer files and for certain types of
data such as bank records.

If data of any kind are to be processed or “enhanced” later to yield more information, it is
important that the integrity be preserved. For example, suppose we compressed a radiological
image in a lossy fashion, and the difference between the reconstruction � and the original
� was visually undetectable. If this image was later enhanced, the previously undetectable
differences may cause the appearance of artifacts that could seriously mislead the radiologist.
Because the price for this kind of mishap may be a human life, it makes sense to be very
careful about using a compression scheme that generates a reconstruction that is different
from the original.

Data obtained from satellites often are processed later to obtain different numerical
indicators of vegetation, deforestation, and so on. If the reconstructed data are not identical
to the original data, processing may result in “enhancement” of the differences. It may not

1.1 Compression Techniques 5

be possible to go back and obtain the same data over again. Therefore, it is not advisable to
allow for any differences to appear in the compression process.

There are many situations that require compression where we want the reconstruction to
be identical to the original. There are also a number of situations in which it is possible to
relax this requirement in order to get more compression. In these situations we look to lossy
compression techniques.

1 . 1 . 2 Lossy Compress ion

Lossy compression techniques involve some loss of information, and data that have been
compressed using lossy techniques generally cannot be recovered or reconstructed exactly.
In return for accepting this distortion in the reconstruction, we can generally obtain much
higher compression ratios than is possible with lossless compression.

In many applications, this lack of exact reconstruction is not a problem. For example,
when storing or transmitting speech, the exact value of each sample of speech is not
necessary. Depending on the quality required of the reconstructed speech, varying amounts
of loss of information about the value of each sample can be tolerated. If the quality of
the reconstructed speech is to be similar to that heard on the telephone, a significant loss
of information can be tolerated. However, if the reconstructed speech needs to be of the
quality heard on a compact disc, the amount of information loss that can be tolerated is much
lower.

Similarly, when viewing a reconstruction of a video sequence, the fact that the reconstruc-
tion is different from the original is generally not important as long as the differences do not
result in annoying artifacts. Thus, video is generally compressed using lossy compression.

Once we have developed a data compression scheme, we need to be able to measure its
performance. Because of the number of different areas of application, different terms have
been developed to describe and measure the performance.

1 . 1 . 3 Measures of Per formance

A compression algorithm can be evaluated in a number of different ways. We could measure
the relative complexity of the algorithm, the memory required to implement the algorithm,
how fast the algorithm performs on a given machine, the amount of compression, and how
closely the reconstruction resembles the original. In this book we will mainly be concerned
with the last two criteria. Let us take each one in turn.

A very logical way of measuring how well a compression algorithm compresses a given
set of data is to look at the ratio of the number of bits required to represent the data before
compression to the number of bits required to represent the data after compression. This
ratio is called the compression ratio. Suppose storing an image made up of a square array of
256×256 pixels requires 65,536 bytes. The image is compressed and the compressed version
requires 16,384 bytes. We would say that the compression ratio is 4:1. We can also represent
the compression ratio by expressing the reduction in the amount of data required as a
percentage of the size of the original data. In this particular example the compression ratio
calculated in this manner would be 75%.

6 1 I N T R O D U C T I O N

Another way of reporting compression performance is to provide the average number
of bits required to represent a single sample. This is generally referred to as the rate. For
example, in the case of the compressed image described above, if we assume 8 bits per byte
(or pixel), the average number of bits per pixel in the compressed representation is 2. Thus,
we would say that the rate is 2 bits per pixel.

In lossy compression, the reconstruction differs from the original data. Therefore, in
order to determine the efficiency of a compression algorithm, we have to have some way
of quantifying the difference. The difference between the original and the reconstruction is
often called the distortion. (We will describe several measures of distortion in Chapter 8.)
Lossy techniques are generally used for the compression of data that originate as analog
signals, such as speech and video. In compression of speech and video, the final arbiter of
quality is human. Because human responses are difficult to model mathematically, many
approximate measures of distortion are used to determine the quality of the reconstructed
waveforms. We will discuss this topic in more detail in Chapter 8.

Other terms that are also used when talking about differences between the reconstruction
and the original are fidelity and quality. When we say that the fidelity or quality of a
reconstruction is high, we mean that the difference between the reconstruction and the original
is small. Whether this difference is a mathematical difference or a perceptual difference
should be evident from the context.

1.2 Modeling and Coding

While reconstruction requirements may force the decision of whether a compression scheme
is to be lossy or lossless, the exact compression scheme we use will depend on a number of
different factors. Some of the most important factors are the characteristics of the data that
need to be compressed. A compression technique that will work well for the compression
of text may not work well for compressing images. Each application presents a different set
of challenges.

There is a saying attributed to Bobby Knight, the basketball coach at Texas Tech
University: “If the only tool you have is a hammer, you approach every problem as if it were
a nail.” Our intention in this book is to provide you with a large number of tools that you
can use to solve the particular data compression problem. It should be remembered that data
compression, if it is a science at all, is an experimental science. The approach that works
best for a particular application will depend to a large extent on the redundancies inherent
in the data.

The development of data compression algorithms for a variety of data can be divided
into two phases. The first phase is usually referred to as modeling. In this phase we try to
extract information about any redundancy that exists in the data and describe the redundancy
in the form of a model. The second phase is called coding. A description of the model
and a “description” of how the data differ from the model are encoded, generally using a
binary alphabet. The difference between the data and the model is often referred to as the
residual. In the following three examples we will look at three different ways that data can
be modeled. We will then use the model to obtain compression.

1.2 Modeling and Coding 7

Example 1 . 2 . 1:

Consider the following sequence of numbers �x1� x2� x3� � � � �:

9 11 11 11 14 13 15 17 16 17 20 21

If we were to transmit or store the binary representations of these numbers, we would need
to use 5 bits per sample. However, by exploiting the structure in the data, we can represent
the sequence using fewer bits. If we plot these data as shown in Figure 1.2, we see that the
data seem to fall on a straight line. A model for the data could therefore be a straight line
given by the equation

x̂n = n+8 n = 1, 2, …

5

10

15

20

2 4 6 8 9 10

F IGURE 1. 2 A sequence of data values.

Thus, the structure in the data can be characterized by an equation. To make use of
this structure, let’s examine the difference between the data and the model. The difference
(or residual) is given by the sequence

en = xn − x̂n � 0 1 0 −1 1 −1 0 1 −1 −1 1 1

The residual sequence consists of only three numbers �−1� 0� 1�. If we assign a code of 00
to −1, a code of 01 to 0, and a code of 10 to 1, we need to use 2 bits to represent each
element of the residual sequence. Therefore, we can obtain compression by transmitting or
storing the parameters of the model and the residual sequence. The encoding can be exact
if the required compression is to be lossless, or approximate if the compression can be
lossy. �

8 1 I N T R O D U C T I O N

The type of structure or redundancy that existed in these data follows a simple law. Once
we recognize this law, we can make use of the structure to predict the value of each element
in the sequence and then encode the residual. Structure of this type is only one of many
types of structure. Consider the following example.

Example 1 . 2 . 2:

Consider the following sequence of numbers:

27 28 29 28 26 27 29 28 30 32 34 36 38

The sequence is plotted in Figure 1.3.

10

20

30

40

2 4 6 8 10 12

F IGURE 1. 3 A sequence of data values.

The sequence does not seem to follow a simple law as in the previous case. However,
each value is close to the previous value. Suppose we send the first value, then in place of
subsequent values we send the difference between it and the previous value. The sequence
of transmitted values would be

27 1 1 −1 −2 1 2 −1 2 2 2 2 2

Like the previous example, the number of distinct values has been reduced. Fewer bits are
required to represent each number and compression is achieved. The decoder adds each
received value to the previous decoded value to obtain the reconstruction corresponding

1.2 Modeling and Coding 9

to the received value. Techniques that use the past values of a sequence to predict the
current value and then encode the error in prediction, or residual, are called predictive coding
schemes. We will discuss lossless predictive compression schemes in Chapter 7 and lossy
predictive coding schemes in Chapter 11.

Assuming both encoder and decoder know the model being used, we would still have to
send the value of the first element of the sequence. �

A very different type of redundancy is statistical in nature. Often we will encounter
sources that generate some symbols more often than others. In these situations, it will be
advantageous to assign binary codes of different lengths to different symbols.

Example 1 . 2 . 3:

Suppose we have the following sequence:

a/barayaran/barray/bran/bfar/bfaar/bfaaar/baway

which is typical of all sequences generated by a source. Notice that the sequence is made
up of eight different symbols. In order to represent eight symbols, we need to use 3 bits per
symbol. Suppose instead we used the code shown in Table 1.1. Notice that we have assigned
a codeword with only a single bit to the symbol that occurs most often, and correspondingly
longer codewords to symbols that occur less often. If we substitute the codes for each
symbol, we will use 106 bits to encode the entire sequence. As there are 41 symbols in
the sequence, this works out to approximately 2�58 bits per symbol. This means we have
obtained a compression ratio of 1.16:1. We will study how to use statistical redundancy of
this sort in Chapters 3 and 4.

TAB L E 1 . 1 A code with codewords
of varying length.

a 1
n 001
b 01100
f 0100
n 0111
r 000
w 01101
y 0101

�

When dealing with text, along with statistical redundancy, we also see redundancy in
the form of words that repeat often. We can take advantage of this form of redundancy by
constructing a list of these words and then represent them by their position in the list. This
type of compression scheme is called a dictionary compression scheme. We will study these
schemes in Chapter 5.

10 1 I N T R O D U C T I O N

Often the structure or redundancy in the data becomes more evident when we look at
groups of symbols. We will look at compression schemes that take advantage of this in
Chapters 4 and 10.

Finally, there will be situations in which it is easier to take advantage of the structure if
we decompose the data into a number of components. We can then study each component
separately and use a model appropriate to that component. We will look at such schemes in
Chapters 13, 14, and 15.

There are a number of different ways to characterize data. Different characterizations
will lead to different compression schemes. We will study these compression schemes in
the upcoming chapters, and use a number of examples that should help us understand the
relationship between the characterization and the compression scheme.

With the increasing use of compression, there has also been an increasing need for
standards. Standards allow products developed by different vendors to communicate. Thus,
we can compress something with products from one vendor and reconstruct it using the
products of a different vendor. The different international standards organizations have
responded to this need, and a number of standards for various compression applications have
been approved. We will discuss these standards as applications of the various compression
techniques.

Finally, compression is still largely an art, and to gain proficiency in an art you need to
get a feel for the process. To help, we have developed software implementations of most of
the techniques discussed in this book, and also provided the data sets used for developing the
examples in this book. Details on how to obtain these programs and data sets are provided
in the Preface. You should use these programs on your favorite data or on the data sets
provided in order to understand some of the issues involved in compression. We would also
encourage you to write your own software implementations of some of these techniques,
as very often the best way to understand how an algorithm works is to implement the
algorithm.

1.3 Summary

In this chapter we have introduced the subject of data compression. We have provided
some motivation for why we need data compression and defined some of the terminology
we will need in this book. Additional terminology will be introduced as needed. We have
briefly introduced the two major types of compression algorithms: lossless compression
and lossy compression. Lossless compression is used for applications that require an exact
reconstruction of the original data, while lossy compression is used when the user can
tolerate some differences between the original and reconstructed representations of the data.
An important element in the design of data compression algorithms is the modeling of the
data. We have briefly looked at how modeling can help us in obtaining more compact
representations of the data. We have described some of the different ways we can view the
data in order to model it. The more ways we have of looking at the data, the more successful
we will be in developing compression schemes that take full advantage of the structures in
the data.

1.4 Projects and Problems 11

1.4 Projects and Problems

1. Use the compression utility on your computer to compress different files. Study the
effect of the original file size and file type on the ratio of compressed file size to
original file size.

2. Take a few paragraphs of text from a popular magazine and compress them by remov-
ing all words that are not essential for comprehension. For example, in the sentence
“This is the dog that belongs to my friend,” we can remove the words is, the, that, and
to and still convey the same meaning. Let the ratio of the words removed to the total
number of words in the original text be the measure of redundancy in the text. Repeat
the experiment using paragraphs from a technical journal. Can you make any quanti-
tative statements about the redundancy in the text obtained from different sources?

2
Mathematical Preliminaries for
Lossless Compression

2.1 Overview

T
he treatment of data compression in this book is not very mathematical. (For a
more mathematical treatment of some of the topics covered in this book,
see [3, 4, 5, 6].) However, we do need some mathematical preliminaries to
appreciate the compression techniques we will discuss. Compression schemes
can be divided into two classes, lossy and lossless. Lossy compression schemes

involve the loss of some information, and data that have been compressed using a lossy
scheme generally cannot be recovered exactly. Lossless schemes compress the data without
loss of information, and the original data can be recovered exactly from the compressed data.
In this chapter, some of the ideas in information theory that provide the framework for the
development of lossless data compression schemes are briefly reviewed. We will also look
at some ways to model the data that lead to efficient coding schemes. We have assumed
some knowledge of probability concepts (see Appendix A for a brief review of probability
and random processes).

2.2 A Brief Introduct ion to Information Theory

Although the idea of a quantitative measure of information has been around for a while, the
person who pulled everything together into what is now called information theory was Claude
Elwood Shannon [7], an electrical engineer at Bell Labs. Shannon defined a quantity called
self-information. Suppose we have an event A, which is a set of outcomes of some random

14 2 L O S S L E S S C O M P R E S S I O N

experiment. If P�A� is the probability that the event A will occur, then the self-information
associated with A is given by

i�A� = logb

1
P�A�

= − logb P�A�� (2.1)

Note that we have not specified the base of the log function. We will discuss this in more
detail later in the chapter. The use of the logarithm to obtain a measure of information
was not an arbitrary choice as we shall see later in this chapter. But first let’s see if the
use of a logarithm in this context makes sense from an intuitive point of view. Recall
that log�1� = 0, and − log�x� increases as x decreases from one to zero. Therefore, if the
probability of an event is low, the amount of self-information associated with it is high; if
the probability of an event is high, the information associated with it is low. Even if we
ignore the mathematical definition of information and simply use the definition we use in
everyday language, this makes some intuitive sense. The barking of a dog during a burglary
is a high-probability event and, therefore, does not contain too much information. However,
if the dog did not bark during a burglary, this is a low-probability event and contains a lot of
information. (Obviously, Sherlock Holmes understood information theory!)1 Although this
equivalence of the mathematical and semantic definitions of information holds true most of
the time, it does not hold all of the time. For example, a totally random string of letters
will contain more information (in the mathematical sense) than a well-thought-out treatise
on information theory.

Another property of this mathematical definition of information that makes intuitive
sense is that the information obtained from the occurrence of two independent events is the
sum of the information obtained from the occurrence of the individual events. Suppose A
and B are two independent events. The self-information associated with the occurrence of
both event A and event B is, by Equation (2.1),

i�AB� = logb

1
P�AB�

�

As A and B are independent,

P�AB� = P�A�P�B�

and

i�AB� = logb

1
P�A�P�B�

= logb

1
P�A�

+ logb

1
P�B�

= i�A�+ i�B��

The unit of information depends on the base of the log. If we use log base 2, the unit is bits;
if we use log base e, the unit is nats; and if we use log base 10, the unit is hartleys.

1 Silver Blaze by Arthur Conan Doyle.

2.2 A Brief Introduction to Information Theory 15

Note that to calculate the information in bits, we need to take the logarithm base 2 of
the probabilities. Because this probably does not appear on your calculator, let’s review
logarithms briefly. Recall that

logb x = a

means that

ba = x�

Therefore, if we want to take the log base 2 of x

log2 x = a ⇒ 2a = x�

we want to find the value of a. We can take the natural log (log base e) or log base 10 of
both sides (which do appear on your calculator). Then

ln�2a� = ln x ⇒ a ln 2 = ln x

and

a = ln x

ln 2

Example 2 . 2 . 1:

Let H and T be the outcomes of flipping a coin. If the coin is fair, then

P�H� = P�T� = 1
2

and

i�H� = i�T� = 1 bit�

If the coin is not fair, then we would expect the information associated with each event to
be different. Suppose

P�H� = 1
8 � P�T� = 7

8 �

Then

i�H� = 3 bits� i�T� = 0.193 bits�

At least mathematically, the occurrence of a head conveys much more information than
the occurrence of a tail. As we shall see later, this has certain consequences for how the
information conveyed by these outcomes should be encoded. �

If we have a set of independent events Ai, which are sets of outcomes of some experi-
ment �, such that

⋃
Ai = S

16 2 L O S S L E S S C O M P R E S S I O N

where S is the sample space, then the average self-information associated with the random
experiment is given by

H =∑
P�Ai�i�Ai� = −∑P�Ai� logb P�Ai��

This quantity is called the entropy associated with the experiment. One of the many con-
tributions of Shannon was that he showed that if the experiment is a source that puts out
symbols Ai from a set �, then the entropy is a measure of the average number of binary
symbols needed to code the output of the source. Shannon showed that the best that a lossless
compression scheme can do is to encode the output of a source with an average number of
bits equal to the entropy of the source.

The set of symbols � is often called the alphabet for the source, and the symbols are
referred to as letters. For a general source � with alphabet � = �1� 2� � � � �m� that generates
a sequence �X1�X2� � � � �, the entropy is given by

H��� = lim
n→�

1
n

Gn (2.2)

where

Gn = −
i1=m∑

i1=1

i2=m∑

i2=1

· · ·
in=m∑

in=1

P�X1 = i1�X2 = i2� � � � �Xn = in� log P�X1 = i1�X2 = i2� � � � �Xn = in�

and �X1�X2� � � � �Xn� is a sequence of length n from the source. We will talk more about the
reason for the limit in Equation (2.2) later in the chapter. If each element in the sequence is
independent and identically distributed (iid), then we can show that

Gn = −n
i1=m∑

i1=1

P�X1 = i1� log P�X1 = i1� (2.3)

and the equation for the entropy becomes

H�S� = −∑P�X1� log P�X1�� (2.4)

For most sources Equations (2.2) and (2.4) are not identical. If we need to distinguish
between the two, we will call the quantity computed in (2.4) the first-order entropy of the
source, while the quantity in (2.2) will be referred to as the entropy of the source.

In general, it is not possible to know the entropy for a physical source, so we have to
estimate the entropy. The estimate of the entropy depends on our assumptions about the
structure of the source sequence.

Consider the following sequence:

1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 10

Assuming the frequency of occurrence of each number is reflected accurately in the number
of times it appears in the sequence, we can estimate the probability of occurrence of each
symbol as follows:

P�1� = P�6� = P�7� = P�10� = 1
16

P�2� = P�3� = P�4� = P�5� = P�8� = P�9� = 2
16 �

2.2 A Brief Introduction to Information Theory 17

Assuming the sequence is iid, the entropy for this sequence is the same as the first-order
entropy as defined in (2.4). The entropy can then be calculated as

H = −
10∑

i=1

P�i� log2 P�i��

With our stated assumptions, the entropy for this source is 3�25 bits. This means that the
best scheme we could find for coding this sequence could only code it at 3.25 bits/sample.

However, if we assume that there was sample-to-sample correlation between the samples
and we remove the correlation by taking differences of neighboring sample values, we arrive
at the residual sequence

1 1 1−1 1 1 1 −1 1 1 1 1 1 −1 1 1

This sequence is constructed using only two values with probabilities P�1� = 13
16 and

P�−1� = 3
16 . The entropy in this case is 0.70 bits per symbol. Of course, knowing only this

sequence would not be enough for the receiver to reconstruct the original sequence. The
receiver must also know the process by which this sequence was generated from the original
sequence. The process depends on our assumptions about the structure of the sequence.
These assumptions are called the model for the sequence. In this case, the model for the
sequence is

xn = xn−1 + rn

where xn is the nth element of the original sequence and rn is the nth element of the residual
sequence. This model is called a static model because its parameters do not change with n.
A model whose parameters change or adapt with n to the changing characteristics of the
data is called an adaptive model.

Basically, we see that knowing something about the structure of the data can help to
“reduce the entropy.” We have put “reduce the entropy” in quotes because the entropy of
the source is a measure of the amount of information generated by the source. As long
as the information generated by the source is preserved (in whatever representation), the
entropy remains the same. What we are reducing is our estimate of the entropy. The “actual”
structure of the data in practice is generally unknowable, but anything we can learn about
the data can help us to estimate the actual source entropy. Theoretically, as seen in Equation
(2.2), we accomplish this in our definition of the entropy by picking larger and larger blocks
of data to calculate the probability over, letting the size of the block go to infinity.

Consider the following contrived sequence:

1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2

Obviously, there is some structure to this data. However, if we look at it one symbol at a
time, the structure is difficult to extract. Consider the probabilities: P�1� = P�2� = 1

4 , and
P�3� = 1

2 . The entropy is 1.5 bits/symbol. This particular sequence consists of 20 symbols;
therefore, the total number of bits required to represent this sequence is 30. Now let’s take
the same sequence and look at it in blocks of two. Obviously, there are only two symbols,
1 2, and 3 3. The probabilities are P�1 2� = 1

2 , P�3 3� = 1
2 , and the entropy is 1 bit/symbol.

18 2 L O S S L E S S C O M P R E S S I O N

As there are 10 such symbols in the sequence, we need a total of 10 bits to represent the
entire sequence—a reduction of a factor of three. The theory says we can always extract the
structure of the data by taking larger and larger block sizes; in practice, there are limitations
to this approach. To avoid these limitations, we try to obtain an accurate model for the
data and code the source with respect to the model. In Section 2.3, we describe some of
the models commonly used in lossless compression algorithms. But before we do that, let’s
make a slight detour and see a more rigorous development of the expression for average
information. While the explanation is interesting, it is not really necessary for understanding
much of what we will study in this book and can be skipped.

2 . 2 . 1 Der ivat ion of Average Informat ion �

We start with the properties we want in our measure of average information. We will then
show that requiring these properties in the information measure leads inexorably to the
particular definition of average information, or entropy, that we have provided earlier.

Given a set of independent events A1, A2� � � � , An with probability pi = P�Ai�, we desire
the following properties in the measure of average information H :

1. We want H to be a continuous function of the probabilities pi. That is, a small change
in pi should only cause a small change in the average information.

2. If all events are equally likely, that is, pi = 1/n for all i, then H should be a mono-
tonically increasing function of n. The more possible outcomes there are, the more
information should be contained in the occurrence of any particular outcome.

3. Suppose we divide the possible outcomes into a number of groups. We indicate the
occurrence of a particular event by first indicating the group it belongs to, then indi-
cating which particular member of the group it is. Thus, we get some information first
by knowing which group the event belongs to and then we get additional information
by learning which particular event (from the events in the group) has occurred. The
information associated with indicating the outcome in multiple stages should not be
any different than the information associated with indicating the outcome in a single
stage.

For example, suppose we have an experiment with three outcomes A1, A2, and A3,
with corresponding probabilities p1, p2, and p3. The average information associated
with this experiment is simply a function of the probabilities:

H = H�p1� p2� p3��

Let’s group the three outcomes into two groups

B1 = �A1�� B2 = �A2�A3��

The probabilities of the events Bi are given by

q1 = P�B1� = p1� q2 = P�B2� = p2 +p3�

2.2 A Brief Introduction to Information Theory 19

If we indicate the occurrence of an event Ai by first declaring which group the event
belongs to and then declaring which event occurred, the total amount of average
information would be given by

H = H�q1� q2�+q1H

(
p1

q1

)

+q2H

(
p2

q2

�
p3

q2

)

�

We require that the average information computed either way be the same.

In his classic paper, Shannon showed that the only way all these conditions could be
satisfied was if

H = −K
∑

pi log pi

where K is an arbitrary positive constant. Let’s review his proof as it appears in the appendix
of his paper [7].

Suppose we have an experiment with n = km equally likely outcomes. The average
information H� 1

n
� 1

n
� � � � � 1

n
� associated with this experiment is a function of n. In other

words,

H

(
1
n

�
1
n

� � � � �
1
n

)

= A�n��

We can indicate the occurrence of an event from km events by a series of m choices from
k equally likely possibilities. For example, consider the case of k = 2 and m = 3. There are
eight equally likely events; therefore, H� 1

8 � 1
8 � � � � � 1

8 � = A�8�.
We can indicate occurrence of any particular event as shown in Figure 2.1. In this

case, we have a sequence of three selections. Each selection is between two equally likely
possibilities. Therefore,

H
(

1
8 � 1

8 � � � � � 1
8

) = A�8�

= H� 1
2 � 1

2 �+ 1
2

[
H� 1

2 � 1
2 � + 1

2 H� 1
2 � 1

2 �

+ 1
2 H� 1

2 � 1
2 �
]

+ 1
2

[
H� 1

2 � 1
2 � + 1

2 H� 1
2 � 1

2 �

+ 1
2 H� 1

2 � 1
2 �
]

(2.5)

= 3H� 1
2 � 1

2 �

= 3A�2��

In other words,

A�8� = 3A�2��

(The rather odd way of writing the left-hand side of Equation (2.5) is to show how the terms
correspond to the branches of the tree shown in Figure 2.1.) We can generalize this for the
case of n = km as

A�n� = A�km� = mA�k��

20 2 L O S S L E S S C O M P R E S S I O N

First selection

Second selection

Third selection

Third selection

Third selection

Third selection

Second selection

F IGURE 2. 1 A possible way of identifying the occurrence of an event.

Similarly, for jl choices,

A�jl� = lA�j��

We can pick l arbitrarily large (more on this later) and then choose m so that

km ≤ jl ≤ k�m+1��

Taking logarithms of all terms, we get

m log k ≤ l log j ≤ �m+1� log k�

Now divide through by l log k to get

m

l
≤ log j

log k
≤ m

l
+ 1

l
�

Recall that we picked l arbitrarily large. If l is arbitrarily large, then 1
l

is arbitrarily small.
This means that the upper and lower bounds of log j

log k
can be made arbitrarily close to m

l
by

picking l arbitrarily large. Another way of saying this is
∣
∣
∣
∣
m

l
− log j

log k

∣
∣
∣
∣< 	

2.2 A Brief Introduction to Information Theory 21

where 	 can be made arbitrarily small. We will use this fact to find an expression for A�n�
and hence for H� 1

n
� � � � � 1

n
�.

To do this we use our second requirement that H� 1
n
� � � � � 1

n
� be a monotonically increasing

function of n. As

H

(
1
n

� � � � �
1
n

)

= A�n��

this means that A�n� is a monotonically increasing function of n. If

km ≤ jl ≤ km+1

then in order to satisfy our second requirement

A�km� ≤ A�jl� ≤ A�km+1�

or

mA�k� ≤ lA�j� ≤ �m+1�A�k��

Dividing through by lA�k�, we get

m

l
≤ A�j�

A�k�
≤ m

l
+ 1

l
�

Using the same arguments as before, we get
∣
∣
∣
∣
m

l
− A�j�

A�k�

∣
∣
∣
∣< 	

where 	 can be made arbitrarily small.
Now A�j�

A�k�
is at most a distance of 	 away from m

l
, and log j

log k
is at most a distance of 	

away from m
l
. Therefore, A�j�

A�k�
is at most a distance of 2	 away from log j

log k
.

∣
∣
∣
∣
A�j�

A�k�
− log j

log k

∣
∣
∣
∣< 2	

We can pick 	 to be arbitrarily small, and j and k are arbitrary. The only way this inequality
can be satisfied for arbitrarily small 	 and arbitrary j and k is for A�j� = K log�j�, where K
is an arbitrary constant. In other words,

H = K log�n��

Up to this point we have only looked at equally likely events. We now make the transition
to the more general case of an experiment with outcomes that are not equally likely. We do
that by considering an experiment with

∑
ni equally likely outcomes that are grouped in n

unequal groups of size ni with rational probabilities (if the probabilities are not rational, we
approximate them with rational probabilities and use the continuity requirement):

pi = ni∑n
j=1 nj

�

22 2 L O S S L E S S C O M P R E S S I O N

Given that we have
∑

ni equally likely events, from the development above we have

H = K log
(∑

nj

)
� (2.6)

If we indicate an outcome by first indicating which of the n groups it belongs to, and second
indicating which member of the group it is, then by our earlier development the average
information H is given by

H = H�p1� p2� � � � � pn�+p1H

(
1
n1

� � � � �
1
n1

)

+· · ·+pnH

(
1
nn

� � � � �
1
nn

)

(2.7)

= H�p1� p2� � � � � pn�+p1K log n1 +p2K log n2 +· · ·+pnK log nn (2.8)

= H�p1� p2� � � � � pn�+K
n∑

i=1

pi log ni� (2.9)

Equating the expressions in Equations (2.6) and (2.9), we obtain

K log
(∑

nj

)= H�p1� p2� � � � � pn�+K
n∑

i=1

pi log ni

or

H�p1� p2� � � � � pn� = K log
(∑

nj

)−K
n∑

i=1

pi log ni

= −K

[n∑

i=1

pi log ni − log
(n∑

j=1

nj

)]

= −K

[n∑

i=1

pi log ni − log
(n∑

j=1

nj

) n∑

i=1

pi

]

(2.10)

= −K

[n∑

i=1

pi log ni −
n∑

i=1

pi log
(n∑

j=1

nj

)]

= −K
n∑

i=1

pi

[

log ni − log
(n∑

j=1

nj

)]

= −K
n∑

i=1

pi log
ni∑n

j=1 nj

(2.11)

= −K
∑

pi log pi (2.12)

where, in Equation (2.10) we have used the fact that
∑n

i=1 pi = 1. By convention we pick K
to be 1, and we have the formula

H = −∑pi log pi�

Note that this formula is a natural outcome of the requirements we imposed in the
beginning. It was not artificially forced in any way. Therein lies the beauty of information
theory. Like the laws of physics, its laws are intrinsic in the nature of things. Mathematics
is simply a tool to express these relationships.

2.3 Models 23

2.3 Models

As we saw in Section 2.2, having a good model for the data can be useful in estimating the
entropy of the source. As we will see in later chapters, good models for sources lead to more
efficient compression algorithms. In general, in order to develop techniques that manipulate
data using mathematical operations, we need to have a mathematical model for the data.
Obviously, the better the model (i.e., the closer the model matches the aspects of reality that
are of interest to us), the more likely it is that we will come up with a satisfactory technique.
There are several approaches to building mathematical models.

2 . 3 . 1 Phys i ca l Models

If we know something about the physics of the data generation process, we can use that
information to construct a model. For example, in speech-related applications, knowledge
about the physics of speech production can be used to construct a mathematical model for
the sampled speech process. Sampled speech can then be encoded using this model. We will
discuss speech production models in more detail in Chapter 8.

Models for certain telemetry data can also be obtained through knowledge of the under-
lying process. For example, if residential electrical meter readings at hourly intervals were
to be coded, knowledge about the living habits of the populace could be used to determine
when electricity usage would be high and when the usage would be low. Then instead of
the actual readings, the difference (residual) between the actual readings and those predicted
by the model could be coded.

In general, however, the physics of data generation is simply too complicated to under-
stand, let alone use to develop a model. Where the physics of the problem is too complicated,
we can obtain a model based on empirical observation of the statistics of the data.

2 . 3 . 2 Probabi l i ty Models

The simplest statistical model for the source is to assume that each letter that is generated by
the source is independent of every other letter, and each occurs with the same probability.
We could call this the ignorance model, as it would generally be useful only when we know
nothing about the source. (Of course, that really might be true, in which case we have a rather
unfortunate name for the model!) The next step up in complexity is to keep the indepen-
dence assumption, but remove the equal probability assumption and assign a probability of
occurrence to each letter in the alphabet. For a source that generates letters from an alphabet
� = �a1� a2� � � � � aM�, we can have a probability model � = �P�a1��P�a2�� � � � � P�aM��.

Given a probability model (and the independence assumption), we can compute the
entropy of the source using Equation (2.4). As we will see in the following chapters using
the probability model, we can also construct some very efficient codes to represent the letters
in �. Of course, these codes are only efficient if our mathematical assumptions are in accord
with reality.

If the assumption of independence does not fit with our observation of the data, we can
generally find better compression schemes if we discard this assumption. When we discard

24 2 L O S S L E S S C O M P R E S S I O N

the independence assumption, we have to come up with a way to describe the dependence
of elements of the data sequence on each other.

2 . 3 . 3 Markov Models

One of the most popular ways of representing dependence in the data is through the use of
Markov models, named after the Russian mathematician Andrei Andrevich Markov (1856–
1922). For models used in lossless compression, we use a specific type of Markov process
called a discrete time Markov chain. Let �xn� be a sequence of observations. This sequence
is said to follow a kth-order Markov model if

P�xn�xn−1� � � � � xn−k� = P�xn�xn−1� � � � � xn−k� � � � �� (2.13)

In other words, knowledge of the past k symbols is equivalent to the knowledge of the entire
past history of the process. The values taken on by the set �xn−1� � � � � xn−k� are called the
states of the process. If the size of the source alphabet is l, then the number of states is lk.
The most commonly used Markov model is the first-order Markov model, for which

P�xn�xn−1� = P�xn�xn−1� xn−2� xn−3� � � � �� (2.14)

Equations (2.13) and (2.14) indicate the existence of dependence between samples. However,
they do not describe the form of the dependence. We can develop different first-order Markov
models depending on our assumption about the form of the dependence between samples.

If we assumed that the dependence was introduced in a linear manner, we could view
the data sequence as the output of a linear filter driven by white noise. The output of such
a filter can be given by the difference equation

xn =
xn−1 + 	n (2.15)

where 	n is a white noise process. This model is often used when developing coding
algorithms for speech and images.

The use of the Markov model does not require the assumption of linearity. For example,
consider a binary image. The image has only two types of pixels, white pixels and black
pixels. We know that the appearance of a white pixel as the next observation depends,
to some extent, on whether the current pixel is white or black. Therefore, we can model
the pixel process as a discrete time Markov chain. Define two states Sw and Sb (Sw would
correspond to the case where the current pixel is a white pixel, and Sb corresponds to the
case where the current pixel is a black pixel). We define the transition probabilities P�w/b�
and P�b/w�, and the probability of being in each state P�Sw� and P�Sb�. The Markov model
can then be represented by the state diagram shown in Figure 2.2.

The entropy of a finite state process with states Si is simply the average value of the
entropy at each state:

H =
M∑

i=1

P�Si�H�Si�� (2.16)

2.3 Models 25

Sw P(b|b)

P(b|w)

P(w|b)

P(w|w) Sb

F IGURE 2. 2 A two-state Markov model for binary images.

For our particular example of a binary image

H�Sw� = −P�b/w� log P�b/w�−P�w/w� log P�w/w�

where P�w/w� = 1−P�b/w�. H�Sb� can be calculated in a similar manner.

Example 2 . 3 . 1: Markov model

To see the effect of modeling on the estimate of entropy, let us calculate the entropy for a
binary image, first using a simple probability model and then using the finite state model
described above. Let us assume the following values for the various probabilities:

P�Sw� = 30/31 P�Sb� = 1/31

P�w�w� = 0�99 P�b�w� = 0�01 P�b�b� = 0�7 P�w�b� = 0�3�

Then the entropy using a probability model and the iid assumption is

H = −0�8 log 0�8−0�2 log 0�2 = 0.206 bits�

Now using the Markov model

H�Sb� = −0�3 log 0�3−0�7 log 0�7 = 0.881 bits

and

H�Sw� = −0�01 log 0�01−0�99 log 0�99 = 0.081 bits

which, using Equation (2.16), results in an entropy for the Markov model of 0.107 bits,
about a half of the entropy obtained using the iid assumption. �

Markov Mode l s i n Tex t Compre s s i on

As expected, Markov models are particularly useful in text compression, where the prob-
ability of the next letter is heavily influenced by the preceding letters. In fact, the use
of Markov models for written English appears in the original work of Shannon [7]. In
current text compression literature, the kth-order Markov models are more widely known

26 2 L O S S L E S S C O M P R E S S I O N

as finite context models, with the word context being used for what we have earlier defined
as state.

Consider the word preceding. Suppose we have already processed precedin and are going
to encode the next letter. If we take no account of the context and treat each letter as a
surprise, the probability of the letter g occurring is relatively low. If we use a first-order
Markov model or single-letter context (that is, we look at the probability model given n),
we can see that the probability of g would increase substantially. As we increase the context
size (go from n to in to din and so on), the probability of the alphabet becomes more and
more skewed, which results in lower entropy.

Shannon used a second-order model for English text consisting of the 26 letters and one
space to obtain an entropy of 3�1 bits/letter [8]. Using a model where the output symbols
were words rather than letters brought down the entropy to 2�4 bits/letter. Shannon then used
predictions generated by people (rather than statistical models) to estimate the upper and
lower bounds on the entropy of the second order model. For the case where the subjects knew
the 100 previous letters, he estimated these bounds to be 1�3 and 0�6 bits/letter, respectively.

The longer the context, the better its predictive value. However, if we were to store the
probability model with respect to all contexts of a given length, the number of contexts
would grow exponentially with the length of context. Furthermore, given that the source
imposes some structure on its output, many of these contexts may correspond to strings
that would never occur in practice. Consider a context model of order four (the context is
determined by the last four symbols). If we take an alphabet size of 95, the possible number
of contexts is 954—more than 81 million!

This problem is further exacerbated by the fact that different realizations of the source
output may vary considerably in terms of repeating patterns. Therefore, context modeling
in text compression schemes tends to be an adaptive strategy in which the probabilities for
different symbols in the different contexts are updated as they are encountered. However,
this means that we will often encounter symbols that have not been encountered before for
any of the given contexts (this is known as the zero frequency problem). The larger the
context, the more often this will happen. This problem could be resolved by sending a code
to indicate that the following symbol was being encountered for the first time, followed by
a prearranged code for that symbol. This would significantly increase the length of the code
for the symbol on its first occurrence (in the given context). However, if this situation did not
occur too often, the overhead associated with such occurrences would be small compared to
the total number of bits used to encode the output of the source. Unfortunately, in context-
based encoding, the zero frequency problem is encountered often enough for overhead to be
a problem, especially for longer contexts. Solutions to this problem are presented by the ppm
(prediction with partial match) algorithm and its variants (described in detail in Chapter 6).

Briefly, the ppm algorithms first attempt to find if the symbol to be encoded has a
nonzero probability with respect to the maximum context length. If this is so, the symbol is
encoded and transmitted. If not, an escape symbol is transmitted, the context size is reduced
by one, and the process is repeated. This procedure is repeated until a context is found
with respect to which the symbol has a nonzero probability. To guarantee that this process
converges, a null context is always included with respect to which all symbols have equal
probability. Initially, only the shorter contexts are likely to be used. However, as more and
more of the source output is processed, the longer contexts, which offer better prediction,

2.4 Coding 27

Source 1

Source 2

Source n

Switch

F IGURE 2. 3 A composite source.

will be used more often. The probability of the escape symbol can be computed in a number
of different ways leading to different implementations [1].

The use of Markov models in text compression is a rich and active area of research. We
describe some of these approaches in Chapter 6 (for more details, see [1]).

2 . 3 . 4 Compos i te Source Model

In many applications, it is not easy to use a single model to describe the source. In such cases,
we can define a composite source, which can be viewed as a combination or composition of
several sources, with only one source being active at any given time. A composite source
can be represented as a number of individual sources �i, each with its own model �i, and
a switch that selects a source �i with probability Pi (as shown in Figure 2.3). This is an
exceptionally rich model and can be used to describe some very complicated processes. We
will describe this model in more detail when we need it.

2.4 Coding

When we talk about coding in this chapter (and through most of this book), we mean the
assignment of binary sequences to elements of an alphabet. The set of binary sequences is
called a code, and the individual members of the set are called codewords. An alphabet is a
collection of symbols called letters. For example, the alphabet used in writing most books
consists of the 26 lowercase letters, 26 uppercase letters, and a variety of punctuation marks.
In the terminology used in this book, a comma is a letter. The ASCII code for the letter a
is 1000011, the letter A is coded as 1000001, and the letter “,” is coded as 0011010. Notice
that the ASCII code uses the same number of bits to represent each symbol. Such a code
is called a fixed-length code. If we want to reduce the number of bits required to represent
different messages, we need to use a different number of bits to represent different symbols.
If we use fewer bits to represent symbols that occur more often, on the average we would
use fewer bits per symbol. The average number of bits per symbol is often called the rate
of the code. The idea of using fewer bits to represent symbols that occur more often is the

28 2 L O S S L E S S C O M P R E S S I O N

same idea that is used in Morse code: the codewords for letters that occur more frequently
are shorter than for letters that occur less frequently. For example, the codeword for E is ·,
while the codeword for Z is − − · · [9].

2 . 4 . 1 Uniquely Decodable Codes

The average length of the code is not the only important point in designing a “good”
code. Consider the following example adapted from [10]. Suppose our source alphabet
consists of four letters a1, a2, a3, and a4, with probabilities P�a1� = 1

2 , P�a2� = 1
4 , and

P�a3� = P�a4� = 1
8 . The entropy for this source is 1.75 bits/symbol. Consider the codes for

this source in Table 2.1.
The average length l for for each code is given by

l =
4∑

i=1

P�ai�n�ai�

where n�ai� is the number of bits in the codeword for letter ai and the average length is given
in bits/symbol. Based on the average length, Code 1 appears to be the best code. However,
to be useful, a code should have the ability to transfer information in an unambiguous
manner. This is obviously not the case with Code 1. Both a1 and a2 have been assigned the
codeword 0. When a 0 is received, there is no way to know whether an a1 was transmitted
or an a2. We would like each symbol to be assigned a unique codeword.

At first glance Code 2 does not seem to have the problem of ambiguity; each symbol is
assigned a distinct codeword. However, suppose we want to encode the sequence a2 a1 a1.
Using Code 2, we would encode this with the binary string 100. However, when the string
100 is received at the decoder, there are several ways in which the decoder can decode this
string. The string 100 can be decoded as a2 a1 a1, or as a2 a3. This means that once a
sequence is encoded with Code 2, the original sequence cannot be recovered with certainty.
In general, this is not a desirable property for a code. We would like unique decodability from
the code; that is, any given sequence of codewords can be decoded in one, and only one, way.

We have already seen that Code 1 and Code 2 are not uniquely decodable. How about
Code 3? Notice that the first three codewords all end in a 0. In fact, a 0 always denotes the
termination of a codeword. The final codeword contains no 0s and is 3 bits long. Because
all other codewords have fewer than three 1s and terminate in a 0, the only way we can get
three 1s in a row is as a code for a4. The decoding rule is simple. Accumulate bits until you
get a 0 or until you have three 1s. There is no ambiguity in this rule, and it is reasonably

TAB L E 2 . 1 Four different codes for a four-letter alphabet.

Letters Probability Code 1 Code 2 Code 3 Code 4

a1 0�5 0 0 0 0
a2 0�25 0 1 10 01
a3 0�125 1 00 110 011
a4 0�125 10 11 111 0111

Average length 1.125 1.25 1.75 1.875

2.4 Coding 29

easy to see that this code is uniquely decodable. With Code 4 we have an even simpler
condition. Each codeword starts with a 0, and the only time we see a 0 is in the beginning
of a codeword. Therefore, the decoding rule is accumulate bits until you see a 0. The bit
before the 0 is the last bit of the previous codeword.

There is a slight difference between Code 3 and Code 4. In the case of Code 3, the
decoder knows the moment a code is complete. In Code 4, we have to wait till the beginning
of the next codeword before we know that the current codeword is complete. Because of this
property, Code 3 is called an instantaneous code. Although Code 4 is not an instantaneous
code, it is almost that.

While this property of instantaneous or near-instantaneous decoding is a nice property to
have, it is not a requirement for unique decodability. Consider the code shown in Table 2.2.
Let’s decode the string 011111111111111111. In this string, the first codeword is either 0
corresponding to a1 or 01 corresponding to a2. We cannot tell which one until we have
decoded the whole string. Starting with the assumption that the first codeword corresponds
to a1, the next eight pairs of bits are decoded as a3. However, after decoding eight a3s, we
are left with a single (dangling) 1 that does not correspond to any codeword. On the other
hand, if we assume the first codeword corresponds to a2, we can decode the next 16 bits as
a sequence of eight a3s, and we do not have any bits left over. The string can be uniquely
decoded. In fact, Code 5, while it is certainly not instantaneous, is uniquely decodable.

We have been looking at small codes with four letters or less. Even with these, it is not
immediately evident whether the code is uniquely decodable or not. In deciding whether
larger codes are uniquely decodable, a systematic procedure would be useful. Actually, we
should include a caveat with that last statement. Later in this chapter we will include a class
of variable-length codes that are always uniquely decodable, so a test for unique decodability
may not be that necessary. You might wish to skip the following discussion for now, and
come back to it when you find it necessary.

Before we describe the procedure for deciding whether a code is uniquely decodable, let’s
take another look at our last example. We found that we had an incorrect decoding because
we were left with a binary string (1) that was not a codeword. If this had not happened, we
would have had two valid decodings. For example, consider the code shown in Table 2.3. Let’s

TAB L E 2 . 2 Code 5.

Letter Codeword

a1 0
a2 01
a3 11

TAB L E 2 . 3 Code 6.

Letter Codeword

a1 0
a2 01
a3 10

30 2 L O S S L E S S C O M P R E S S I O N

encode the sequence a1 followed by eight a3s using this code. The coded sequence is
01010101010101010. The first bit is the codeword for a1. However, we can also decode it
as the first bit of the codeword for a2. If we use this (incorrect) decoding, we decode the
next seven pairs of bits as the codewords for a2. After decoding seven a2s, we are left with
a single 0 that we decode as a1. Thus, the incorrect decoding is also a valid decoding, and
this code is not uniquely decodable.

A Te s t f o r Un ique De codab i l i t y �

In the previous examples, in the case of the uniquely decodable code, the binary string left
over after we had gone through an incorrect decoding was not a codeword. In the case of the
code that was not uniquely decodable, in the incorrect decoding what was left was a valid
codeword. Based on whether the dangling suffix is a codeword or not, we get the following
test [11, 12].

We start with some definitions. Suppose we have two binary codewords a and b, where
a is k bits long, b is n bits long, and k < n. If the first k bits of b are identical to a, then a is
called a prefix of b. The last n−k bits of b are called the dangling suffix [11]. For example,
if a = 010 and b = 01011, then a is a prefix of b and the dangling suffix is 11.

Construct a list of all the codewords. Examine all pairs of codewords to see if any
codeword is a prefix of another codeword. Whenever you find such a pair, add the dangling
suffix to the list unless you have added the same dangling suffix to the list in a previous
iteration. Now repeat the procedure using this larger list. Continue in this fashion until one
of the following two things happens:

1. You get a dangling suffix that is a codeword.

2. There are no more unique dangling suffixes.

If you get the first outcome, the code is not uniquely decodable. However, if you get the
second outcome, the code is uniquely decodable.

Let’s see how this procedure works with a couple of examples.

Example 2 . 4 . 1:

Consider Code 5. First list the codewords

�0� 01� 11�

The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no
other pairs for which one element of the pair is the prefix of the other. Let us augment the
codeword list with the dangling suffix.

�0� 01� 11� 1�

Comparing the elements of this list, we find 0 is a prefix of 01 with a dangling suffix of 1. But
we have already included 1 in our list. Also, 1 is a prefix of 11. This gives us a dangling suffix
of 1, which is already in the list. There are no other pairs that would generate a dangling suffix,
so we cannot augment the list any further. Therefore, Code 5 is uniquely decodable. �

2.4 Coding 31

Example 2 . 4 . 2:

Consider Code 6. First list the codewords

�0� 01� 10�

The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no other
pairs for which one element of the pair is the prefix of the other. Augmenting the codeword
list with 1, we obtain the list

�0� 01� 10� 1�

In this list, 1 is a prefix for 10. The dangling suffix for this pair is 0, which is the codeword
for a1. Therefore, Code 6 is not uniquely decodable. �

2 . 4 . 2 Pref ix Codes

The test for unique decodability requires examining the dangling suffixes initially generated
by codeword pairs in which one codeword is the prefix of the other. If the dangling suffix
is itself a codeword, then the code is not uniquely decodable. One type of code in which we
will never face the possibility of a dangling suffix being a codeword is a code in which no
codeword is a prefix of the other. In this case, the set of dangling suffixes is the null set, and
we do not have to worry about finding a dangling suffix that is identical to a codeword. A
code in which no codeword is a prefix to another codeword is called a prefix code. A simple
way to check if a code is a prefix code is to draw the rooted binary tree corresponding to
the code. Draw a tree that starts from a single node (the root node) and has a maximum of
two possible branches at each node. One of these branches corresponds to a 1 and the other
branch corresponds to a 0. In this book, we will adopt the convention that when we draw
a tree with the root node at the top, the left branch corresponds to a 0 and the right branch
corresponds to a 1. Using this convention, we can draw the binary tree for Code 2, Code 3,
and Code 4 as shown in Figure 2.4.

Note that apart from the root node, the trees have two kinds of nodes—nodes that give
rise to other nodes and nodes that do not. The first kind of nodes are called internal nodes,
and the second kind are called external nodes or leaves. In a prefix code, the codewords are
only associated with the external nodes. A code that is not a prefix code, such as Code 4, will
have codewords associated with internal nodes. The code for any symbol can be obtained

a1

a3

a2

a4

a1

a2

a3 a4

a1

a2

a3

a4

Code 2 Code 3 Code 4

F IGURE 2. 4 Binary trees for three different codes.

32 2 L O S S L E S S C O M P R E S S I O N

by traversing the tree from the root to the external node corresponding to that symbol. Each
branch on the way contributes a bit to the codeword: a 0 for each left branch and a 1 for
each right branch.

It is nice to have a class of codes, whose members are so clearly uniquely decodable.
However, are we losing something if we restrict ourselves to prefix codes? Could it be that
if we do not restrict ourselves to prefix codes, we can find shorter codes? Fortunately for us
the answer is no. For any nonprefix uniquely decodable code, we can always find a prefix
code with the same codeword lengths. We prove this in the next section.

2 . 4 . 3 The Kraf t -McMi l lan Inequal i ty �

The particular result we look at in this section consists of two parts. The first part provides
a necessary condition on the codeword lengths of uniquely decodable codes. The second
part shows that we can always find a prefix code that satisfies this necessary condition.
Therefore, if we have a uniquely decodable code that is not a prefix code, we can always
find a prefix code with the same codeword lengths.

Theorem Let � be a code with N codewords with lengths l1� l2� � � � � lN . If � is uniquely
decodable, then

K��� =
N∑

i=1

2−li ≤ 1�

This inequality is known as the Kraft-McMillan inequality.

Proof The proof works by looking at the nth power of K���. If K��� is greater than
one, then K���n should grow exponentially with n. If it does not grow exponentially with
n, then this is proof that

∑N
i=1 2−li ≤ 1.

Let n be an arbitrary integer. Then
[N∑

i=1

2−li

]n

=
(N∑

i1=1

2−li1

)(N∑

i2=1

2−li2

)

· · ·
(N∑

in=1

2−lin

)

(2.17)

=
N∑

i1=1

N∑

i2=1

· · ·
N∑

in=1

2−�li1 +li2 +···+lin �� (2.18)

The exponent li1
+ li2

+· · ·+ lin
is simply the length of n codewords from the code � . The

smallest value that this exponent can take is greater than or equal to n, which would be the
case if all codewords were 1 bit long. If

l = max�l1� l2� � � � � lN �

then the largest value that the exponent can take is less than or equal to nl. Therefore, we
can write this summation as

K���n =
nl∑

k=n

Ak2−k

2.4 Coding 33

where Ak is the number of combinations of n codewords that have a combined length of
k. Let’s take a look at the size of this coefficient. The number of possible distinct binary
sequences of length k is 2k. If this code is uniquely decodable, then each sequence can
represent one and only one sequence of codewords. Therefore, the number of possible
combinations of codewords whose combined length is k cannot be greater than 2k. In other
words,

Ak ≤ 2k�

This means that

K���n =
nl∑

k=n

Ak2−k ≤
nl∑

k=n

2k2−k = nl−n+1� (2.19)

But if K��� is greater than one, it will grow exponentially with n, while n�l− 1�+ 1 can
only grow linearly. So if K��� is greater than one, we can always find an n large enough
that the inequality (2.19) is violated. Therefore, for a uniquely decodable code � , K��� is
less than or equal to one.

This part of the Kraft-McMillan inequality provides a necessary condition for uniquely
decodable codes. That is, if a code is uniquely decodable, the codeword lengths have to
satisfy the inequality. The second part of this result is that if we have a set of codeword
lengths that satisfy the inequality, we can always find a prefix code with those codeword
lengths. The proof of this assertion presented here is adapted from [6].

Theorem Given a set of integers l1� l2� � � � � lN that satisfy the inequality

N∑

i=1

2−li ≤ 1

we can always find a prefix code with codeword lengths l1� l2� � � � � lN .

Proof We will prove this assertion by developing a procedure for constructing a prefix
code with codeword lengths l1� l2� � � � � lN that satisfy the given inequality.

Without loss of generality, we can assume that

l1 ≤ l2 ≤ · · · ≤ lN �

Define a sequence of numbers w1�w2� � � � �wN as follows:

w1 = 0

wj =
j−1∑

i=1

2lj−li j > 1�

34 2 L O S S L E S S C O M P R E S S I O N

The binary representation of wj for j > 1 would take up �log2�wj + 1�� bits. We will use
this binary representation to construct a prefix code. We first note that the number of bits
in the binary representation of wj is less than or equal to lj . This is obviously true for w1.
For j > 1,

log2�wj +1� = log2

[j−1∑

i=1

2lj−li +1
]

= log2

[

2lj

j−1∑

i=1

2−li +2−lj

]

= lj + log2

[j∑

i=1

2−li

]

≤ lj�

The last inequality results from the hypothesis of the theorem that
∑N

i=1 2−li ≤ 1, which
implies that

∑j
i=1 2−li ≤ 1. As the logarithm of a number less than one is negative, lj +

log2

[∑j
i=1 2−li

]
has to be less than lj .

Using the binary representation of wj , we can devise a binary code in the following manner:
If �log2�wj +1�� = lj , then the jth codeword cj is the binary representation of wj . If �log2�wj +
1�� < lj , then cj is the binary representation of wj , with lj − �log2�wj + 1�� zeros appended
to the right. This is certainly a code, but is it a prefix code? If we can show that the code � =
�c1� c2� � � � � cN � is a prefix code, then we will have proved the theorem by construction.

Suppose that our claim is not true. Then for some j < k, cj is a prefix of ck. This means
that the lj most significant bits of wk form the binary representation of wj . Therefore if
we right-shift the binary representation of wk by lk − lj bits, we should get the binary
representation for wj . We can write this as

wj =
⌊ wk

2lk−lj

⌋
�

However,

wk =
k−1∑

i=1

2lk−li �

Therefore,

wk

2lk−lj
=

k−1∑

i=0

2lj−li

= wj +
k−1∑

i=j

2lj−li

= wj +20 +
k−1∑

i=j+1

2lj−li

≥ wj +1� (2.20)

2.5 Algorithmic Information Theory 35

That is, the smallest value for wk

2lk−lj
is wj +1. This contradicts the requirement for cj being the

prefix of ck. Therefore, cj cannot be the prefix for ck. As j and k were arbitrary, this means
that no codeword is a prefix of another codeword, and the code � is a prefix code.

Therefore, if we have a uniquely decodable code, the codeword lengths have to satisfy
the Kraft-McMillan inequality. And, given codeword lengths that satisfy the Kraft-McMillan
inequality, we can always find a prefix code with those codeword lengths. Thus, by restricting
ourselves to prefix codes, we are not in danger of overlooking nonprefix uniquely decodable
codes that have a shorter average length.

2.5 Algori thmic Information Theory

The theory of information described in the previous sections is intuitively satisfying and
has useful applications. However, when dealing with real world data, it does have some
theoretical difficulties. Suppose you were given the task of developing a compression scheme
for use with a specific set of documentations. We can view the entire set as a single long
string. You could develop models for the data. Based on these models you could calculate
probabilities using the relative frequency approach. These probabilities could then be used
to obtain an estimate of the entropy and thus an estimate of the amount of compression
available. All is well except for a fly in the “ointment.” The string you have been given is
fixed. There is nothing probabilistic about it. There is no abstract source that will generate
different sets of documentation at different times. So how can we talk about the entropies
without pretending that reality is somehow different from what it actually is? Unfortunately,
it is not clear that we can. Our definition of entropy requires the existence of an abstract
source. Our estimate of the entropy is still useful. It will give us a very good idea of how
much compression we can get. So, practically speaking, information theory comes through.
However, theoretically it seems there is some pretending involved. Algorithmic information
theory is a different way of looking at information that has not been as useful in practice
(and therefore we will not be looking at it a whole lot) but it gets around this theoretical
problem. At the heart of algorithmic information theory is a measure called Kolmogorov
complexity. This measure, while it bears the name of one person, was actually discovered
independently by three people: R. Solomonoff, who was exploring machine learning; the
Russian mathematician A.N. Kolmogorov; and G. Chaitin, who was in high school when he
came up with this idea.

The Kolmogorov complexity K�x� of a sequence x is the size of the program needed
to generate x. In this size we include all inputs that might be needed by the program.
We do not specify the programming language because it is always possible to translate
a program in one language to a program in another language at fixed cost. If x was a
sequence of all ones, a highly compressible sequence, the program would simply be a print
statement in a loop. On the other extreme, if x were a random sequence with no structure
then the only program that could generate it would contain the sequence itself. The size
of the program, would be slightly larger than the sequence itself. Thus, there is a clear
correspondence between the size of the smallest program that can generate a sequence and
the amount of compression that can be obtained. Kolmogorov complexity seems to be the

36 2 L O S S L E S S C O M P R E S S I O N

ideal measure to use in data compression. The problem is we do not know of any systematic
way of computing or closely approximating Kolmogorov complexity. Clearly, any program
that can generate a particular sequence is an upper bound for the Kolmogorov complexity
of the sequence. However, we have no way of determining a lower bound. Thus, while
the notion of Kolmogorov complexity is more satisfying theoretically than the notion of
entropy when compressing sequences, in practice it is not yet as helpful. However, given
the active interest in these ideas it is quite possible that they will result in more practical
applications.

2.6 Minimum Descript ion Length Principle

One of the more practical offshoots of Kolmogorov complexity is the minimum description
length (MDL) principle. The first discoverer of Kolmogorov complexity, Ray Solomonoff,
viewed the concept of a program that would generate a sequence as a way of modeling the
data. Independent from Solomonoff but inspired nonetheless by the ideas of Kolmogorov
complexity, Jorma Risannen in 1978 [13] developed the modeling approach commonly
known as MDL.

1

2

3

4

5

6

7

8

9

10

1 2 3

F IGURE 2. 5 An example to illustrate the MDL principle.

2.7 Summary 37

Let Mj be a model from a set of models � that attempt to characterize the structure in a
sequence x. Let DMj

be the number of bits required to describe the model Mj . For example,
if the set of models � can be represented by a (possibly variable) number of coefficients,
then the description of Mj would include the number of coefficients and the value of each
coefficient. Let RMj

�x� be the number of bits required to represent x with respect to the
model Mj . The minimum description length would be given by

min
j

�DMj
+RMj

�x��

Consider the example shown as Figure 2. 5, where the X’s represent data values. Suppose
the set of models � is the set of kth order polynomials. We have also sketched two
polynomials that could be used to model the data. Clearly, the higher-order polynomial does
a much “better” job of modeling the data in the sense that the model exactly describes
the data. To describe the higher order polynomial, we need to specify the value of each
coefficient. The coefficients have to be exact if the polynomial is to exactly model the data
requiring a large number of bits. The quadratic model, on the other hand, does not fit any
of the data values. However, its description is very simple and the data values are either
+1 or −1 away from the quadratic. So we could exactly represent the data by sending the
coefficients of the quadratic (1, 0) and 1 bit per data value to indicate whether each data
value is +1 or −1 away from the quadratic. In this case, from a compression point of view,
using the worse model actually gives better compression.

2.7 Summary

In this chapter we learned some of the basic definitions of information theory. This was
a rather brief visit, and we will revisit the subject in Chapter 8. However, the coverage
in this chapter will be sufficient to take us through the next four chapters. The concepts
introduced in this chapter allow us to estimate the number of bits we need to represent the
output of a source given the probability model for the source. The process of assigning a
binary representation to the output of a source is called coding. We have introduced the
concepts of unique decodability and prefix codes, which we will use in the next two chapters
when we describe various coding algorithms. We also looked, rather briefly, at different
approaches to modeling. If we need to understand a model in more depth later in the book,
we will devote more attention to it at that time. However, for the most part, the coverage of
modeling in this chapter will be sufficient to understand methods described in the next four
chapters.

Fu r t he r Read ing

1. A very readable book on information theory and its applications in a number of
fields is Symbols, Signals, and Noise—The Nature and Process of Communications,
by J.R. Pierce [14].

2. Another good introductory source for the material in this chapter is Chapter 6 of
Coding and Information Theory, by R.W. Hamming [9].

38 2 L O S S L E S S C O M P R E S S I O N

3. Various models for text compression are described very nicely and in more detail in
Text Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1].

4. For a more thorough and detailed account of information theory, the following books
are especially recommended (the first two are my personal favorites): Information The-
ory, by R.B. Ash [15]; Transmission of Information, by R.M. Fano [16]; Information
Theory and Reliable Communication, by R.G. Gallagher [11]; Entropy and Informa-
tion Theory, by R.M. Gray [17]; Elements of Information Theory, by T.M. Cover and
J.A. Thomas [3]; and The Theory of Information and Coding, by R.J. McEliece [6].

5. Kolmogorov complexity is addressed in detail in An Introduction to Kolmogorov
Complexity and Its Applications, by M. Li and P. Vitanyi [18].

6. A very readable overview of Kolmogorov complexity in the context of lossless
compression can be found in the chapter Complexity Measures, by S.R. Tate [19].

7. Various aspects of the minimum description length principle are discussed in
Advances in Minimum Description Length edited by P. Grunwald, I.J. Myung, and
M.A. Pitt [20]. Included in this book is a very nice introduction to the minimum
description length principle by Peter Grunwald [21].

2.8 Projects and Problems

1. Suppose X is a random variable that takes on values from an M-letter alphabet. Show
that 0 ≤ H�X� ≤ log2 M .

2. Show that for the case where the elements of an observed sequence are iid, the entropy
is equal to the first-order entropy.

3. Given an alphabet � = �a1� a2� a3� a4�, find the first-order entropy in the following
cases:

(a) P�a1� = P�a2� = P�a3� = P�a4� = 1
4 .

(b) P�a1� = 1
2 , P�a2� = 1

4 , P�a3� = P�a4� = 1
8 .

(c) P�a1� = 0�505, P�a2� = 1
4 , P�a3� = 1

8 , and P�a4� = 0�12.

4. Suppose we have a source with a probability model P = �p0� p1� � � � � pm� and entropy
HP . Suppose we have another source with probability model Q = �q0� q1� � � � � qm� and
entropy HQ, where

qi = pi i = 0� 1� � � � � j −2� j +1� � � � �m

and

qj = qj−1 = pj +pj−1

2
�

How is HQ related to HP (greater, equal, or less)? Prove your answer.

2.8 Projects and Problems 39

5. There are several image and speech files among the accompanying data sets.

(a) Write a program to compute the first-order entropy of some of the image and
speech files.

(b) Pick one of the image files and compute its second-order entropy. Comment on
the difference between the first- and second-order entropies.

(c) Compute the entropy of the differences between neighboring pixels for the image
you used in part (b). Comment on what you discover.

6. Conduct an experiment to see how well a model can describe a source.

(a) Write a program that randomly selects letters from the 26-letter alphabet
�a� b� � � � � z� and forms four-letter words. Form 100 such words and see how
many of these words make sense.

(b) Among the accompanying data sets is a file called 4letter.words, which
contains a list of four-letter words. Using this file, obtain a probability model
for the alphabet. Now repeat part (a) generating the words using the probability
model. To pick letters according to a probability model, construct the cumulative
density function (cdf) FX�x� (see Appendix A for the definition of cdf). Using a
uniform pseudorandom number generator to generate a value r, where 0 ≤ r < 1,
pick the letter xk if FX�xk −1� ≤ r < FX�xk�. Compare your results with those of
part (a).

(c) Repeat (b) using a single-letter context.

(d) Repeat (b) using a two-letter context.

7. Determine whether the following codes are uniquely decodable:

(a) �0� 01� 11� 111�

(b) �0� 01� 110� 111�

(c) �0� 10� 110� 111�

(d) �1� 10� 110� 111�

8. Using a text file compute the probabilities of each letter pi.

(a) Assume that we need a codeword of length �log2
1
pi

� to encode the letter i. Determine
the number of bits needed to encode the file.

(b) Compute the conditional probabilities P�i/j� of a letter i given that the previous
letter is j. Assume that we need �log2

1
P�i/j�

� to represent a letter i that follows a
letter j. Determine the number of bits needed to encode the file.

3
Huffman Coding

3.1 Overview

I
n this chapter we describe a very popular coding algorithm called the Huffman
coding algorithm. We first present a procedure for building Huffman codes
when the probability model for the source is known, then a procedure for
building codes when the source statistics are unknown. We also describe a
few techniques for code design that are in some sense similar to the Huffman

coding approach. Finally, we give some examples of using the Huffman code for image
compression, audio compression, and text compression.

3.2 The Huffman Coding Algori thm

This technique was developed by David Huffman as part of a class assignment; the class was
the first ever in the area of information theory and was taught by Robert Fano at MIT [22].
The codes generated using this technique or procedure are called Huffman codes. These
codes are prefix codes and are optimum for a given model (set of probabilities).

The Huffman procedure is based on two observations regarding optimum prefix codes.

1. In an optimum code, symbols that occur more frequently (have a higher probability
of occurrence) will have shorter codewords than symbols that occur less frequently.

2. In an optimum code, the two symbols that occur least frequently will have the same length.

It is easy to see that the first observation is correct. If symbols that occur more often had
codewords that were longer than the codewords for symbols that occurred less often, the
average number of bits per symbol would be larger than if the conditions were reversed.
Therefore, a code that assigns longer codewords to symbols that occur more frequently
cannot be optimum.

42 3 H U F F M A N C O D I N G

To see why the second observation holds true, consider the following situation. Suppose
an optimum code � exists in which the two codewords corresponding to the two least
probable symbols do not have the same length. Suppose the longer codeword is k bits longer
than the shorter codeword. Because this is a prefix code, the shorter codeword cannot be
a prefix of the longer codeword. This means that even if we drop the last k bits of the
longer codeword, the two codewords would still be distinct. As these codewords correspond
to the least probable symbols in the alphabet, no other codeword can be longer than these
codewords; therefore, there is no danger that the shortened codeword would become the
prefix of some other codeword. Furthermore, by dropping these k bits we obtain a new code
that has a shorter average length than � . But this violates our initial contention that � is an
optimal code. Therefore, for an optimal code the second observation also holds true.

The Huffman procedure is obtained by adding a simple requirement to these two obser-
vations. This requirement is that the codewords corresponding to the two lowest probability
symbols differ only in the last bit. That is, if � and � are the two least probable symbols in
an alphabet, if the codeword for � was m ∗ 0, the codeword for � would be m ∗ 1. Here m
is a string of 1s and 0s, and ∗ denotes concatenation.

This requirement does not violate our two observations and leads to a very simple
encoding procedure. We describe this procedure with the help of the following example.

Example 3 . 2 . 1: Des ign of a Huf fman code

Let us design a Huffman code for a source that puts out letters from an alphabet � =
�a1� a2� a3� a4� a5� with P�a1� = P�a3� = 0	2, P�a2� = 0	4, and P�a4� = P�a5� = 0	1. The
entropy for this source is 2.122 bits/symbol. To design the Huffman code, we first sort
the letters in a descending probability order as shown in Table 3.1. Here c�ai� denotes the
codeword for ai.

TAB L E 3 . 1 The initial five-letter alphabet.

Letter Probability Codeword

a2 0	4 c�a2�
a1 0	2 c�a1�
a3 0	2 c�a3�
a4 0	1 c�a4�
a5 0	1 c�a5�

The two symbols with the lowest probability are a4 and a5. Therefore, we can assign
their codewords as

c�a4� =
1 ∗0

c�a5� =
1 ∗1

where
1 is a binary string, and ∗ denotes concatenation.

3.2 The Huffman Coding Algorithm 43

We now define a new alphabet A′ with a four-letter alphabet a1, a2, a3, a′
4, where a′

4

is composed of a4 and a5 and has a probability P�a′
4� = P�a4�+P�a5� = 0	2. We sort this

new alphabet in descending order to obtain Table 3.2.

TAB L E 3 . 2 The reduced four-letter alphabet.

Letter Probability Codeword

a2 0.4 c�a2�
a1 0.2 c�a1�
a3 0.2 c�a3�
a′

4 0.2
1

In this alphabet, a3 and a′
4 are the two letters at the bottom of the sorted list. We assign

their codewords as

c�a3� =
2 ∗0

c�a′
4� =
2 ∗1

but c�a′
4� =
1. Therefore,

1 =
2 ∗1

which means that

c�a4� =
2 ∗10

c�a5� =
2 ∗11	

At this stage, we again define a new alphabet A′′ that consists of three letters a1, a2, a′
3,

where a′
3 is composed of a3 and a′

4 and has a probability P�a′
3� = P�a3�+P�a′

4� = 0	4. We
sort this new alphabet in descending order to obtain Table 3.3.

TAB L E 3 . 3 The reduced three-letter alphabet.

Letter Probability Codeword

a2 0.4 c�a2�
a′

3 0.4
2

a1 0.2 c�a1�

In this case, the two least probable symbols are a1 and a′
3. Therefore,

c�a′
3� =
3 ∗0

c�a1� =
3 ∗1	

44 3 H U F F M A N C O D I N G

But c�a′
3� =
2. Therefore,

2 =
3 ∗0

which means that

c�a3� =
3 ∗00

c�a4� =
3 ∗010

c�a5� =
3 ∗011	

Again we define a new alphabet, this time with only two letters a′′
3 , a2. Here a′′

3 is
composed of the letters a′

3 and a1 and has probability P�a′′
3� = P�a′

3�+P�a1� = 0	6. We now
have Table 3.4.

TAB L E 3 . 4 The reduced two-letter alphabet.

Letter Probability Codeword

a′′
3 0.6
3

a2 0.4 c�a2�

As we have only two letters, the codeword assignment is straightforward:

c�a′′
3� = 0

c�a2� = 1

which means that
3 = 0, which in turn means that

c�a1� = 01

c�a3� = 000

c�a4� = 0010

c�a5� = 0011

TAB L E 3 . 5 Huffman code for the original
five-letter alphabet.

Letter Probability Codeword

a2 0.4 1
a1 0.2 01
a3 0.2 000
a4 0.1 0010
a5 0.1 0011

3.2 The Huffman Coding Algorithm 45

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.1) 0

1

0

1

0

1

a5(0.1)

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.2)

a2(0.4)

a3(0.4)

a1(0.2)

a3 (0.6)

a2(0.4)

'

'

"

F IGURE 3. 1 The Huffman encoding procedure. The symbol probabilities are listed
in parentheses.

and the Huffman code is given by Table 3.5. The procedure can be summarized as shown
in Figure 3.1. �

The average length for this code is

l = 	4×1+ 	2×2+ 	2×3+ 	1×4+ 	1×4 = 2	2 bits/symbol	

A measure of the efficiency of this code is its redundancy—the difference between the
entropy and the average length. In this case, the redundancy is 0.078 bits/symbol. The
redundancy is zero when the probabilities are negative powers of two.

An alternative way of building a Huffman code is to use the fact that the Huffman
code, by virtue of being a prefix code, can be represented as a binary tree in which the
external nodes or leaves correspond to the symbols. The Huffman code for any symbol can
be obtained by traversing the tree from the root node to the leaf corresponding to the symbol,
adding a 0 to the codeword every time the traversal takes us over an upper branch and a
1 every time the traversal takes us over a lower branch.

We build the binary tree starting at the leaf nodes. We know that the codewords for the
two symbols with smallest probabilities are identical except for the last bit. This means that
the traversal from the root to the leaves corresponding to these two symbols must be the same
except for the last step. This in turn means that the leaves corresponding to the two symbols
with the lowest probabilities are offspring of the same node. Once we have connected the
leaves corresponding to the symbols with the lowest probabilities to a single node, we treat
this node as a symbol of a reduced alphabet. The probability of this symbol is the sum of
the probabilities of its offspring. We can now sort the nodes corresponding to the reduced
alphabet and apply the same rule to generate a parent node for the nodes corresponding to the
two symbols in the reduced alphabet with lowest probabilities. Continuing in this manner,
we end up with a single node, which is the root node. To obtain the code for each symbol,
we traverse the tree from the root to each leaf node, assigning a 0 to the upper branch and a
1 to the lower branch. This procedure as applied to the alphabet of Example 3.2.1 is shown
in Figure 3.2. Notice the similarity between Figures 3.1 and 3.2. This is not surprising, as
they are a result of viewing the same procedure in two different ways.

46 3 H U F F M A N C O D I N G

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.1) 0

1a5(0.1)

(0.4)

(0.2)

(0.2) 0

(0.2) 1

(0.4)

(0.4) 0

(0.2) 1

(0.6) 0

(0.4) 1
(1.0)

F IGURE 3. 2 Building the binary Huffman tree.

3 . 2 . 1 Minimum Var iance Huf fman Codes

By performing the sorting procedure in a slightly different manner, we could have found a
different Huffman code. In the first re-sort, we could place a′

4 higher in the list, as shown in
Table 3.6.

Now combine a1 and a3 into a′
1, which has a probability of 0	4. Sorting the alphabet a2,

a′
4, a′

1 and putting a′
1 as far up the list as possible, we get Table 3.7. Finally, by combining

a2 and a′
4 and re-sorting, we get Table 3.8. If we go through the unbundling procedure, we

get the codewords in Table 3.9. The procedure is summarized in Figure 3.3. The average
length of the code is

l = 	4×2+ 	2×2+ 	2×2+ 	1×3+ 	1×3 = 2	2 bits/symbol	

The two codes are identical in terms of their redundancy. However, the variance of the
length of the codewords is significantly different. This can be clearly seen from Figure 3.4.

TAB L E 3 . 6 Reduced four-letter alphabet.

Letter Probability Codeword

a2 0.4 c�a2�
a′

4 0.2
1

a1 0.2 c�a1�
a3 0.2 c�a3�

TAB L E 3 . 7 Reduced three-letter alphabet.

Letter Probability Codeword

a′
1 0.4
2

a2 0.4 c�a2�
a′

4 0.2
1

3.2 The Huffman Coding Algorithm 47

TAB L E 3 . 8 Reduced two-letter alphabet.

Letter Probability Codeword

a′
2 0.6
3

a′
1 0.4
2

TAB L E 3 . 9 Minimum variance Huffman code.

Letter Probability Codeword

a1 0.2 10
a2 0.4 00
a3 0.2 11
a4 0.1 010
a5 0.1 011

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.1)

a5(0.1)

a2(0.4)

a4(0.2)

a1(0.2) 0

1

0

1

0

1

0

1

a3(0.2)

a1(0.4)

a2(0.4)

a4(0.2)

a2(0.6)

a1(0.4)′

′

′ ′ ′

F IGURE 3. 3 The minimum variance Huffman encoding procedure.

a3

a4
a5

a1

0

0

1

1

a2

a2

a4
a5

a3a1

0

1

1

F IGURE 3. 4 Two Huffman trees corresponding to the same probabilities.

Remember that in many applications, although you might be using a variable-length code,
the available transmission rate is generally fixed. For example, if we were going to transmit
symbols from the alphabet we have been using at 10,000 symbols per second, we might ask
for transmission capacity of 22,000 bits per second. This means that during each second the
channel expects to receive 22,000 bits, no more and no less. As the bit generation rate will

48 3 H U F F M A N C O D I N G

vary around 22,000 bits per second, the output of the source coder is generally fed into a
buffer. The purpose of the buffer is to smooth out the variations in the bit generation rate.
However, the buffer has to be of finite size, and the greater the variance in the codewords, the
more difficult the buffer design problem becomes. Suppose that the source we are discussing
generates a string of a4s and a5s for several seconds. If we are using the first code, this
means that we will be generating bits at a rate of 40,000 bits per second. For each second,
the buffer has to store 18,000 bits. On the other hand, if we use the second code, we would
be generating 30,000 bits per second, and the buffer would have to store 8000 bits for every
second this condition persisted. If we have a string of a2s instead of a string of a4s and a5s,
the first code would result in the generation of 10,000 bits per second. Remember that the
channel will still be expecting 22,000 bits every second, so somehow we will have to make
up a deficit of 12,000 bits per second. The same situation using the second code would lead
to a deficit of 2000 bits per second. Thus, it seems reasonable to elect to use the second
code instead of the first. To obtain the Huffman code with minimum variance, we always
put the combined letter as high in the list as possible.

3 . 2 . 2 Opt imal i ty of Huf f man Codes �

The optimality of Huffman codes can be proven rather simply by first writing down the
necessary conditions that an optimal code has to satisfy and then showing that satisfying
these conditions necessarily leads to designing a Huffman code. The proof we present here
is based on the proof shown in [16] and is obtained for the binary case (for a more general
proof, see [16]).

The necessary conditions for an optimal variable-length binary code are as follows:

� Condition 1: Given any two letters aj and ak, if P�aj� ≥ P�ak�, then lj ≤ lk, where lj

is the number of bits in the codeword for aj .

� Condition 2: The two least probable letters have codewords with the same maximum
length lm.

We have provided the justification for these two conditions in the opening sections of this
chapter.

� Condition 3: In the tree corresponding to the optimum code, there must be two
branches stemming from each intermediate node.

If there were any intermediate node with only one branch coming from that node, we could
remove it without affecting the decipherability of the code while reducing its average length.

� Condition 4: Suppose we change an intermediate node into a leaf node by combining
all the leaves descending from it into a composite word of a reduced alphabet. Then,
if the original tree was optimal for the original alphabet, the reduced tree is optimal
for the reduced alphabet.

If this condition were not satisfied, we could find a code with smaller average code length
for the reduced alphabet and then simply expand the composite word again to get a new

3.2 The Huffman Coding Algorithm 49

code tree that would have a shorter average length than our original “optimum” tree. This
would contradict our statement about the optimality of the original tree.

In order to satisfy conditions 1, 2, and 3, the two least probable letters would have to be
assigned codewords of maximum length lm. Furthermore, the leaves corresponding to these
letters arise from the same intermediate node. This is the same as saying that the codewords
for these letters are identical except for the last bit. Consider the common prefix as the
codeword for the composite letter of a reduced alphabet. Since the code for the reduced
alphabet needs to be optimum for the code of the original alphabet to be optimum, we
follow the same procedure again. To satisfy the necessary conditions, the procedure needs
to be iterated until we have a reduced alphabet of size one. But this is exactly the Huffman
procedure. Therefore, the necessary conditions above, which are all satisfied by the Huffman
procedure, are also sufficient conditions.

3 . 2 . 3 Length of Huf fman Codes �

We have said that the Huffman coding procedure generates an optimum code, but we have
not said what the average length of an optimum code is. The length of any code will depend
on a number of things, including the size of the alphabet and the probabilities of individual
letters. In this section we will show that the optimal code for a source �, hence the Huffman
code for the source �, has an average code length l bounded below by the entropy and
bounded above by the entropy plus 1 bit. In other words,

H��� ≤ l < H���+1	 (3.1)

In order for us to do this, we will need to use the Kraft-McMillan inequality introduced
in Chapter 2. Recall that the first part of this result, due to McMillan, states that if we have a
uniquely decodable code � with K codewords of length �li�

K
i=1, then the following inequality

holds:
K∑

i=1

2−li ≤ 1	 (3.2)

Example 3 . 2 . 2:

Examining the code generated in Example 3.2.1 (Table 3.5), the lengths of the codewords
are �1� 2� 3� 4� 4�. Substituting these values into the left-hand side of Equation (3.2), we get

2−1 +2−2 +2−3 +2−4 +2−4 = 1

which satisfies the Kraft-McMillan inequality.
If we use the minimum variance code (Table 3.9), the lengths of the codewords are

�2� 2� 2� 3� 3�. Substituting these values into the left-hand side of Equation (3.2), we get

2−2 +2−2 +2−2 +2−3 +2−3 = 1

which again satisfies the inequality. �

50 3 H U F F M A N C O D I N G

The second part of this result, due to Kraft, states that if we have a sequence of positive
integers �li�

K
i=1, which satisfies (3.2), then there exists a uniquely decodable code whose

codeword lengths are given by the sequence �li�
K
i=1.

Using this result, we will now show the following:

1. The average codeword length l of an optimal code for a source � is greater than or
equal to H���.

2. The average codeword length l of an optimal code for a source � is strictly less than
H���+1.

For a source � with alphabet � = �a1� a2� 	 	 	 aK�, and probability model
�P�a1��P�a2�� 	 	 	 � P�aK��, the average codeword length is given by

l =
K∑

i=1

P�ai�li	

Therefore, we can write the difference between the entropy of the source H��� and the
average length as

H���− l = −
K∑

i=1

P�ai� log2 P�ai�−
K∑

i=1

P�ai�li

=
K∑

i=1

P�ai�

(

log2

[
1

P�ai�

]

− li

)

=
K∑

i=1

P�ai�

(

log2

[
1

P�ai�

]

− log2�2
li �

)

=
K∑

i=1

P�ai� log2

[
2−li

P�ai�

]

≤ log2

[K∑

i=1

2−li

]

	

The last inequality is obtained using Jensen’s inequality, which states that if f�x� is a concave
(convex cap, convex ∩) function, then E�f�X�� ≤ f�E�X��. The log function is a concave
function.

As the code is an optimal code
∑K

i=1 2−li ≤ 1, therefore

H���− l ≤ 0	 (3.3)

We will prove the upper bound by showing that there exists a uniquely decodable code with
average codeword length H���+ 1. Therefore, if we have an optimal code, this code must
have an average length that is less than or equal to H���+1.

Given a source, alphabet, and probability model as before, define

li =
⌈

log2

1
P�ai�

⌉

3.2 The Huffman Coding Algorithm 51

where �x� is the smallest integer greater than or equal to x. For example, �3	3� = 4 and
�5� = 5. Therefore,

�x� = x+ where 0 ≤ < 1	

Therefore,

log2

1
P�ai�

≤ li < log2

1
P�ai�

+1	 (3.4)

From the left inequality of (3.4) we can see that

2−li ≤ P�ai�	

Therefore,
K∑

i=1

2−li ≤
K∑

i=1

P�ai� = 1

and by the Kraft-McMillan inequality there exists a uniquely decodable code with codeword
lengths �li�. The average length of this code can be upper-bounded by using the right
inequality of (3.4):

l =
K∑

i=1

P�ai�li <
K∑

i=1

P�ai�

[

log2

1
P�ai�

+1
]

or

l < H���+1	

We can see from the way the upper bound was derived that this is a rather loose upper
bound. In fact, it can be shown that if pmax is the largest probability in the probability
model, then for pmax ≥ 0	5, the upper bound for the Huffman code is H���+pmax, while for
pmax < 0	5, the upper bound is H���+pmax +0	086. Obviously, this is a much tighter bound
than the one we derived above. The derivation of this bound takes some time (see [23] for
details).

3 . 2 . 4 Extended Huf f man Codes �

In applications where the alphabet size is large, pmax is generally quite small, and the amount
of deviation from the entropy, especially in terms of a percentage of the rate, is quite small.
However, in cases where the alphabet is small and the probability of occurrence of the
different letters is skewed, the value of pmax can be quite large and the Huffman code can
become rather inefficient when compared to the entropy.

Example 3 . 2 . 3:

Consider a source that puts out iid letters from the alphabet � = �a1� a2� a3� with the
probability model P�a1� = 0	8, P�a2� = 0	02, and P�a3� = 0	18. The entropy for this source
is 0.816 bits/symbol. A Huffman code for this source is shown in Table 3.10.

52 3 H U F F M A N C O D I N G

TAB L E 3 . 10 Huffman code for
the alphabet �.

Letter Codeword

a1 0
a2 11
a3 10

The average length for this code is 1	2 bits/symbol. The difference between the average
code length and the entropy, or the redundancy, for this code is 0.384 bits/symbol, which is
47% of the entropy. This means that to code this sequence we would need 47% more bits
than the minimum required. �

We can sometimes reduce the coding rate by blocking more than one symbol together.
To see how this can happen, consider a source S that emits a sequence of letters from an
alphabet � = �a1� a2� 	 	 	 � am�. Each element of the sequence is generated independently of
the other elements in the sequence. The entropy for this source is given by

H�S� = −
m∑

i=1

P�ai� log2 P�ai�	

We know that we can generate a Huffman code for this source with rate R such that

H�S� ≤ R < H�S�+1	 (3.5)

We have used the looser bound here; the same argument can be made with the tighter
bound. Notice that we have used “rate R” to denote the number of bits per symbol. This is
a standard convention in the data compression literature. However, in the communication
literature, the word “rate” often refers to the number of bits per second.

Suppose we now encode the sequence by generating one codeword for every n symbols.
As there are mn combinations of n symbols, we will need mn codewords in our Huffman
code. We could generate this code by viewing the mn symbols as letters of an extended
alphabet

��n� = �

n times
︷ ︸︸ ︷
a1a1� � � a1� a1a1� � � a2� 	 	 	 � a1a1� � � am�a1a1� � � a2a1� 	 	 	 � amam� � � am�

from a source S�n�. Let us denote the rate for the new source as R�n�. Then we know that

H�S�n�� ≤ R�n� < H�S�n��+1	 (3.6)

R�n� is the number of bits required to code n symbols. Therefore, the number of bits required
per symbol, R, is given by

R = 1
n

R�n�	

3.2 The Huffman Coding Algorithm 53

The number of bits per symbol can be bounded as

H�S�n��

n
≤ R <

H�S�n��

n
+ 1

n
	

In order to compare this to (3.5), and see the advantage we get from encoding symbols
in blocks instead of one at a time, we need to express H�S�n�� in terms of H�S�. This turns
out to be a relatively easy (although somewhat messy) thing to do.

H�S�n�� = −
m∑

i1=1

m∑

i2=1

� � �
m∑

in=1

P�ai1
� ai2

� 	 	 	 ain
� log�P�ai1

� ai2
� 	 	 	 ain

��

= −
m∑

i1=1

m∑

i2=1

� � �
m∑

in=1

P�ai1
�P�ai2

�� � � P�ain
� log�P�ai1

�P�ai2
�� � � P�ain

��

= −
m∑

i1=1

m∑

i2=1

� � �
m∑

in=1

P�ai1
�P�ai2

�� � � P�ain
�

n∑

j=1

log�P�aij
��

= −
m∑

i1=1

P�ai1
� log�P�ai1

��

{ m∑

i2=1

� � �
m∑

in=1

P�ai2
�� � � P�ain

�

}

−
m∑

i2=1

P�ai2
� log�P�ai2

��

{ m∑

i1=1

m∑

i3=1

� � �
m∑

in=1

P�ai1
�P�ai3

�� � � P�ain
�

}

	
	
	

−
m∑

in=1

P�ain
� log�P�ain

��

{ m∑

i1=1

m∑

i2=1

� � �
m∑

in−1=1

P�ai1
�P�ai2

�� � � P�ain−1
�

}

The n−1 summations in braces in each term sum to one. Therefore,

H�S�n�� = −
m∑

i1=1

P�ai1
� log�P�ai1

��−
m∑

i2=1

P�ai2
� log�P�ai2

��−· · ·−
m∑

in=1

P�ain
� log�P�ain

��

= nH�S�

and we can write (3.6) as

H�S� ≤ R ≤ H�S�+ 1
n

	 (3.7)

Comparing this to (3.5), we can see that by encoding the output of the source in longer
blocks of symbols we are guaranteed a rate closer to the entropy. Note that all we are talking
about here is a bound or guarantee about the rate. As we have seen in the previous chapter,
there are a number of situations in which we can achieve a rate equal to the entropy with a
block length of one!

54 3 H U F F M A N C O D I N G

Example 3 . 2 . 4:

For the source described in the previous example, instead of generating a codeword for
every symbol, we will generate a codeword for every two symbols. If we look at the source
sequence two at a time, the number of possible symbol pairs, or size of the extended alphabet,
is 32 = 9. The extended alphabet, probability model, and Huffman code for this example are
shown in Table 3.11.

TAB L E 3 . 11 The extended alphabet and
corresponding Huffman code.

Letter Probability Code

a1a1 0	64 0
a1a2 0	016 10101
a1a3 0	144 11
a2a1 0	016 101000
a2a2 0	0004 10100101
a2a3 0	0036 1010011
a3a1 0	1440 100
a3a2 0	0036 10100100
a3a3 0	0324 1011

The average codeword length for this extended code is 1.7228 bits/symbol. However,
each symbol in the extended alphabet corresponds to two symbols from the original alphabet.
Therefore, in terms of the original alphabet, the average codeword length is 1	7228/2 =
0	8614 bits/symbol. This redundancy is about 0.045 bits/symbol, which is only about 5.5%
of the entropy. �

We see that by coding blocks of symbols together we can reduce the redundancy of
Huffman codes. In the previous example, two symbols were blocked together to obtain a
rate reasonably close to the entropy. Blocking two symbols together means the alphabet
size goes from m to m2, where m was the size of the initial alphabet. In this case, m was
three, so the size of the extended alphabet was nine. This size is not an excessive burden
for most applications. However, if the probabilities of the symbols were more unbalanced,
then it would require blocking many more symbols together before the redundancy lowered
to acceptable levels. As we block more and more symbols together, the size of the alphabet
grows exponentially, and the Huffman coding scheme becomes impractical. Under these
conditions, we need to look at techniques other than Huffman coding. One approach that is
very useful in these conditions is arithmetic coding. We will discuss this technique in some
detail in the next chapter.

3.3 Nonbinary Huffman Codes � 55

3.3 Nonbinary Huffman Codes �

The binary Huffman coding procedure can be easily extended to the nonbinary case where the
code elements come from an m-ary alphabet, and m is not equal to two. Recall that we obtained
the Huffman algorithm based on the observations that in an optimum binary prefix code

1. symbols that occur more frequently (have a higher probability of occurrence) will
have shorter codewords than symbols that occur less frequently, and

2. the two symbols that occur least frequently will have the same length,

and the requirement that the two symbols with the lowest probability differ only in the last
position.

We can obtain a nonbinary Huffman code in almost exactly the same way. The obvious
thing to do would be to modify the second observation to read: “The m symbols that occur
least frequently will have the same length,” and also modify the additional requirement to
read “The m symbols with the lowest probability differ only in the last position.”

However, we run into a small problem with this approach. Consider the design of a
ternary Huffman code for a source with a six-letter alphabet. Using the rules described
above, we would first combine the three letters with the lowest probability into a composite
letter. This would give us a reduced alphabet with four letters. However, combining the three
letters with lowest probability from this alphabet would result in a further reduced alphabet
consisting of only two letters. We have three values to assign and only two letters. Instead
of combining three letters at the beginning, we could have combined two letters. This would
result in a reduced alphabet of size five. If we combined three letters from this alphabet, we
would end up with a final reduced alphabet size of three. Finally, we could combine two
letters in the second step, which would again result in a final reduced alphabet of size three.
Which alternative should we choose?

Recall that the symbols with lowest probability will have the longest codeword. Fur-
thermore, all the symbols that we combine together into a composite symbol will have
codewords of the same length. This means that all letters we combine together at the very
first stage will have codewords that have the same length, and these codewords will be the
longest of all the codewords. This being the case, if at some stage we are allowed to combine
less than m symbols, the logical place to do this would be in the very first stage.

In the general case of an m-ary code and an M-letter alphabet, how many letters should
we combine in the first phase? Let m′ be the number of letters that are combined in the first
phase. Then m′ is the number between two and m, which is equal to M modulo �m−1�.

Example 3 . 3 . 1:

Generate a ternary Huffman code for a source with a six-letter alphabet and a probability
model P�a1� = P�a3� = P�a4� = 0	2, P�a5� = 0	25, P�a6� = 0	1, and P�a2� = 0	05. In this
case m = 3, therefore m′ is either 2 or 3.

6 �mod 2� = 0� 2 �mod 2� = 0� 3 �mod 2� = 1

56 3 H U F F M A N C O D I N G

Since 6 �mod 2� = 2 �mod 2�, m′ = 2. Sorting the symbols in probability order results in
Table 3.12.

TAB L E 3 . 12 Sorted six-letter alphabet.

Letter Probability Codeword

a5 0	25 c�a5�
a1 0	20 c�a1�
a3 0	20 c�a3�
a4 0	20 c�a4�
a6 0	10 c�a6�
a2 0	05 c�a2�

As m′ is 2, we can assign the codewords of the two symbols with lowest probability as

c�a6� =
1 ∗0

c�a2� =
1 ∗1

where
1 is a ternary string and * denotes concatenation. The reduced alphabet is shown in
Table 3.13.

TAB L E 3 . 13 Reduced five-letter alphabet.

Letter Probability Codeword

a5 0	25 c�a5�
a1 0	20 c�a1�
a3 0	20 c�a3�
a4 0	20 c�a4�
a′

6 0	15
1

Now we combine the three letters with the lowest probability into a composite letter a′
3

and assign their codewords as

c�a3� =
2 ∗0

c�a4� =
2 ∗1

c�a′
6� =
2 ∗2	

But c�a′
6� =
1. Therefore,

1 =
2 ∗2

3.3 Nonbinary Huffman Codes � 57

which means that

c�a6� =
2 ∗20

c�a2� =
2 ∗21	

Sorting the reduced alphabet, we have Table 3.14. Thus,
2 = 0, c�a5� = 1, and c�a1� = 2.
Substituting for
2, we get the codeword assignments in Table 3.15.

TAB L E 3 . 14 Reduced three-letter alphabet.

Letter Probability Codeword

a′
3 0	45
2

a5 0	25 c�a5�
a1 0	20 c�a1�

TAB L E 3 . 15 Ternary code for six-letter alphabet.

Letter Probability Codeword

a1 0	20 2
a2 0	05 021
a3 0	20 00
a4 0	20 01
a5 0	25 1
a6 0	10 020

The tree corresponding to this code is shown in Figure 3.5. Notice that at the lowest
level of the tree we have only two codewords. If we had combined three letters at the first
step, and combined two letters at a later step, the lowest level would have contained three
codewords and a longer average code length would result (see Problem 7).

1 20

a1a5

1 20

a4a3

10

a2a6

F IGURE 3. 5 Code tree for the nonbinary Huffman code. �

58 3 H U F F M A N C O D I N G

3.4 Adaptive Huffman Coding

Huffman coding requires knowledge of the probabilities of the source sequence. If this
knowledge is not available, Huffman coding becomes a two-pass procedure: the statistics are
collected in the first pass, and the source is encoded in the second pass. In order to convert
this algorithm into a one-pass procedure, Faller [24] and Gallagher [23] independently
developed adaptive algorithms to construct the Huffman code based on the statistics of the
symbols already encountered. These were later improved by Knuth [25] and Vitter [26].

Theoretically, if we wanted to encode the (k+1)-th symbol using the statistics of the first
k symbols, we could recompute the code using the Huffman coding procedure each time a
symbol is transmitted. However, this would not be a very practical approach due to the large
amount of computation involved—hence, the adaptive Huffman coding procedures.

The Huffman code can be described in terms of a binary tree similar to the ones shown
in Figure 3.4. The squares denote the external nodes or leaves and correspond to the symbols
in the source alphabet. The codeword for a symbol can be obtained by traversing the tree
from the root to the leaf corresponding to the symbol, where 0 corresponds to a left branch
and 1 corresponds to a right branch. In order to describe how the adaptive Huffman code
works, we add two other parameters to the binary tree: the weight of each leaf, which is
written as a number inside the node, and a node number. The weight of each external node is
simply the number of times the symbol corresponding to the leaf has been encountered. The
weight of each internal node is the sum of the weights of its offspring. The node number yi

is a unique number assigned to each internal and external node. If we have an alphabet of
size n, then the 2n− 1 internal and external nodes can be numbered as y1� � � � � y2n−1 such
that if xj is the weight of node yj , we have x1 ≤ x2 ≤ · · · ≤ x2n−1. Furthermore, the nodes
y2j−1 and y2j are offspring of the same parent node, or siblings, for 1 ≤ j < n, and the node
number for the parent node is greater than y2j−1 and y2j . These last two characteristics are
called the sibling property, and any tree that possesses this property is a Huffman tree [23].

In the adaptive Huffman coding procedure, neither transmitter nor receiver knows any-
thing about the statistics of the source sequence at the start of transmission. The tree at both
the transmitter and the receiver consists of a single node that corresponds to all symbols not
yet transmitted (NYT) and has a weight of zero. As transmission progresses, nodes corre-
sponding to symbols transmitted will be added to the tree, and the tree is reconfigured using
an update procedure. Before the beginning of transmission, a fixed code for each symbol is
agreed upon between transmitter and receiver. A simple (short) code is as follows:

If the source has an alphabet �a1� a2� � � � � am� of size m, then pick e and r such that
m = 2e + r and 0 ≤ r < 2e. The letter ak is encoded as the �e+1�-bit binary representation
of k− 1, if 1 ≤ k ≤ 2r; else, ak is encoded as the e-bit binary representation of k− r − 1.
For example, suppose m = 26, then e = 4, and r = 10. The symbol a1 is encoded as 00000,
the symbol a2 is encoded as 00001, and the symbol a22 is encoded as 1011.

When a symbol is encountered for the first time, the code for the NYT node is transmitted,
followed by the fixed code for the symbol. A node for the symbol is then created, and the
symbol is taken out of the NYT list.

Both transmitter and receiver start with the same tree structure. The updating procedure
used by both transmitter and receiver is identical. Therefore, the encoding and decoding
processes remain synchronized.

3.4 Adaptive Huffman Coding 59

3 . 4 . 1 Update Procedure

The update procedure requires that the nodes be in a fixed order. This ordering is preserved
by numbering the nodes. The largest node number is given to the root of the tree, and the
smallest number is assigned to the NYT node. The numbers from the NYT node to the root
of the tree are assigned in increasing order from left to right, and from lower level to upper
level. The set of nodes with the same weight makes up a block. Figure 3.6 is a flowchart of
the updating procedure.

START

Go to symbol
external node

Node
number max

in block?

Increment
node weight

Is this
the root
node?

STOP

First
appearance
for symbol?

NYT gives birth
to new NYT and

external node

Increment weight
of external node

and old NYT node

Go to old
NYT node

No

Yes

Yes

Yes

Switch node with
highest numbered

node in block

No

Go to
parent node

No

F IGURE 3. 6 Update procedure for the adaptive Huffman coding algorithm.

60 3 H U F F M A N C O D I N G

The function of the update procedure is to preserve the sibling property. In order that the
update procedures at the transmitter and receiver both operate with the same information, the
tree at the transmitter is updated after each symbol is encoded, and the tree at the receiver
is updated after each symbol is decoded. The procedure operates as follows:

After a symbol has been encoded or decoded, the external node corresponding to the
symbol is examined to see if it has the largest node number in its block. If the external
node does not have the largest node number, it is exchanged with the node that has the
largest node number in the block, as long as the node with the higher number is not the
parent of the node being updated. The weight of the external node is then incremented. If
we did not exchange the nodes before the weight of the node is incremented, it is very
likely that the ordering required by the sibling property would be destroyed. Once we have
incremented the weight of the node, we have adapted the Huffman tree at that level. We
then turn our attention to the next level by examining the parent node of the node whose
weight was incremented to see if it has the largest number in its block. If it does not, it is
exchanged with the node with the largest number in the block. Again, an exception to this is
when the node with the higher node number is the parent of the node under consideration.
Once an exchange has taken place (or it has been determined that there is no need for
an exchange), the weight of the parent node is incremented. We then proceed to a new
parent node and the process is repeated. This process continues until the root of the tree is
reached.

If the symbol to be encoded or decoded has occurred for the first time, a new external
node is assigned to the symbol and a new NYT node is appended to the tree. Both the new
external node and the new NYT node are offsprings of the old NYT node. We increment
the weight of the new external node by one. As the old NYT node is the parent of the new
external node, we increment its weight by one and then go on to update all the other nodes
until we reach the root of the tree.

Example 3 . 4 . 1: Update procedure

Assume we are encoding the message [a a r d v a r k], where our alphabet consists of the
26 lowercase letters of the English alphabet.

The updating process is shown in Figure 3.7. We begin with only the NYT node. The
total number of nodes in this tree will be 2×26−1 = 51, so we start numbering backwards
from 51 with the number of the root node being 51. The first letter to be transmitted is a.
As a does not yet exist in the tree, we send a binary code 00000 for a and then add a to
the tree. The NYT node gives birth to a new NYT node and a terminal node corresponding
to a. The weight of the terminal node will be higher than the NYT node, so we assign
the number 49 to the NYT node and 50 to the terminal node corresponding to the letter
a. The second letter to be transmitted is also a. This time the transmitted code is 1. The
node corresponding to a has the highest number (if we do not consider its parent), so we
do not need to swap nodes. The next letter to be transmitted is r. This letter does not have
a corresponding node on the tree, so we send the codeword for the NYT node, which is 0
followed by the index of r, which is 10001. The NYT node gives birth to a new NYT node
and an external node corresponding to r. Again, no update is required. The next letter to
be transmitted is d, which is also being sent for the first time. We again send the code for

3.4 Adaptive Huffman Coding 61

0 1

1

2

d

r

a

45

(aard)
46

48

50

4

2

2

1

0

1 r

1 v

1 d

2 a

51

49

48

45

43
(aardv)

47

44

46

50

0NYT 1

1

1

2

v

d

r

a

43
(aardv)

44

46

48

50

47

45

51

49

1

0 a
49

(a) (aa)
50

51 51 51

49 50

47
(aar)

48

50

NYT

NYT

0
51

NYT 1 0NYT 2 a 2

1

a

r0NYT

2

1

49

3

2

4
51

1
49

47

1

1 v0

(aardv)

NYT
NYT

1r

2a

5
51

3

2

1 d

1

1

4

2

F IGURE 3. 7 Adaptive Huffman tree after [a a r d v] is processed.

the NYT node, which is now 00 followed by the index for d, which is 00011. The NYT
node again gives birth to two new nodes. However, an update is still not required. This
changes with the transmission of the next letter, v, which has also not yet been encountered.
Nodes 43 and 44 are added to the tree, with 44 as the terminal node corresponding to v. We
examine the grandparent node of v (node 47) to see if it has the largest number in its block.
As it does not, we swap it with node 48, which has the largest number in its block. We then
increment node 48 and move to its parent, which is node 49. In the block containing node
49, the largest number belongs to node 50. Therefore, we swap nodes 49 and 50 and then
increment node 50. We then move to the parent node of node 50, which is node 51. As this
is the root node, all we do is increment node 51. �

62 3 H U F F M A N C O D I N G

3 . 4 . 2 Encoding Procedure

The flowchart for the encoding procedure is shown in Figure 3.8. Initially, the tree at both
the encoder and decoder consists of a single node, the NYT node. Therefore, the codeword
for the very first symbol that appears is a previously agreed-upon fixed code. After the very
first symbol, whenever we have to encode a symbol that is being encountered for the first
time, we send the code for the NYT node, followed by the previously agreed-upon fixed
code for the symbol. The code for the NYT node is obtained by traversing the Huffman tree
from the root to the NYT node. This alerts the receiver to the fact that the symbol whose
code follows does not as yet have a node in the Huffman tree. If a symbol to be encoded
has a corresponding node in the tree, then the code for the symbol is generated by traversing
the tree from the root to the external node corresponding to the symbol.

START

Read in symbol

Is this
the first

appearance
of the

symbol?

Call update
procedure

Is this the
last symbol?

STOP

Send code for NYT
node followed by

index in the NYT list

Code is the path from
the root node to the
corresponding node

Yes

Yes

No

No

F IGURE 3. 8 Flowchart of the encoding procedure.

3.4 Adaptive Huffman Coding 63

To see how the coding operation functions, we use the same example that was used to
demonstrate the update procedure.

Example 3 . 4 . 2: Encoding procedure

In Example 3.4.1 we used an alphabet consisting of 26 letters. In order to obtain our
prearranged code, we have to find m and e such that 2e + r = 26, where 0 ≤ r < 2e. It is
easy to see that the values of e = 4 and r = 10 satisfy this requirement.

The first symbol encoded is the letter a. As a is the first letter of the alphabet, k = 1.
As 1 is less than 20, a is encoded as the 5-bit binary representation of k− 1, or 0, which
is 00000. The Huffman tree is then updated as shown in the figure. The NYT node gives
birth to an external node corresponding to the element a and a new NYT node. As a has
occurred once, the external node corresponding to a has a weight of one. The weight of
the NYT node is zero. The internal node also has a weight of one, as its weight is the sum
of the weights of its offspring. The next symbol is again a. As we have an external node
corresponding to symbol a, we simply traverse the tree from the root node to the external
node corresponding to a in order to find the codeword. This traversal consists of a single
right branch. Therefore, the Huffman code for the symbol a is 1.

After the code for a has been transmitted, the weight of the external node corresponding
to a is incremented, as is the weight of its parent. The third symbol to be transmitted is r.
As this is the first appearance of this symbol, we send the code for the NYT node followed
by the previously arranged binary representation for r. If we traverse the tree from the root
to the NYT node, we get a code of 0 for the NYT node. The letter r is the 18th letter of
the alphabet; therefore, the binary representation of r is 10001. The code for the symbol r
becomes 010001. The tree is again updated as shown in the figure, and the coding process
continues with symbol d. Using the same procedure for d, the code for the NYT node,
which is now 00, is sent, followed by the index for d, resulting in the codeword 0000011.
The next symbol v is the 22nd symbol in the alphabet. As this is greater than 20, we send
the code for the NYT node followed by the 4-bit binary representation of 22−10−1 = 11.
The code for the NYT node at this stage is 000, and the 4-bit binary representation of 11
is 1011; therefore, v is encoded as 0001011. The next symbol is a, for which the code is 0,
and the encoding proceeds. �

3 . 4 . 3 Decoding Procedure

The flowchart for the decoding procedure is shown in Figure 3.9. As we read in the received
binary string, we traverse the tree in a manner identical to that used in the encoding procedure.
Once a leaf is encountered, the symbol corresponding to that leaf is decoded. If the leaf
is the NYT node, then we check the next e bits to see if the resulting number is less than
r. If it is less than r, we read in another bit to complete the code for the symbol. The
index for the symbol is obtained by adding one to the decimal number corresponding to
the e- or e + 1-bit binary string. Once the symbol has been decoded, the tree is updated
and the next received bit is used to start another traversal down the tree. To see how this
procedure works, let us decode the binary string generated in the previous example.

64 3 H U F F M A N C O D I N G

Call update
procedure

Decode the (p + 1)
element in NYT list

Read one more bit

START

Read bit and go to
corresponding node

Is the node
the NYT

node?

Is the
e-bit number p

less than r?
Decode element
corresponding

to node

Is this
the last bit?

STOP

Is the
node an external

node?

Go to root
of the tree

Yes

No

Yes

No

No

Read e bits
Yes

Add r to p
No

Yes

F IGURE 3. 9 Flowchart of the decoding procedure.

3.5 Golomb Codes 65

Example 3 . 4 . 3: Decoding procedure

The binary string generated by the encoding procedure is

000001010001000001100010110

Initially, the decoder tree consists only of the NYT node. Therefore, the first symbol to be
decoded must be obtained from the NYT list. We read in the first 4 bits, 0000, as the value
of e is four. The 4 bits 0000 correspond to the decimal value of 0. As this is less than the
value of r, which is 10, we read in one more bit for the entire code of 00000. Adding one
to the decimal value corresponding to this binary string, we get the index of the received
symbol as 1. This is the index for a; therefore, the first letter is decoded as a. The tree is
now updated as shown in Figure 3.7. The next bit in the string is 1. This traces a path from
the root node to the external node corresponding to a. We decode the symbol a and update
the tree. In this case, the update consists only of incrementing the weight of the external
node corresponding to a. The next bit is a 0, which traces a path from the root to the NYT
node. The next 4 bits, 1000, correspond to the decimal number 8, which is less than 10, so
we read in one more bit to get the 5-bit word 10001. The decimal equivalent of this 5-bit
word plus one is 18, which is the index for r. We decode the symbol r and then update the
tree. The next 2 bits, 00, again trace a path to the NYT node. We read the next 4 bits, 0001.
Since this corresponds to the decimal number 1, which is less than 10, we read another bit
to get the 5-bit word 00011. To get the index of the received symbol in the NYT list, we add
one to the decimal value of this 5-bit word. The value of the index is 4, which corresponds
to the symbol d. Continuing in this fashion, we decode the sequence aardva. �

Although the Huffman coding algorithm is one of the best-known variable-length coding
algorithms, there are some other lesser-known algorithms that can be very useful in cer-
tain situations. In particular, the Golomb-Rice codes and the Tunstall codes are becoming
increasingly popular. We describe these codes in the following sections.

3.5 Golomb Codes

The Golomb-Rice codes belong to a family of codes designed to encode integers with the
assumption that the larger an integer, the lower its probability of occurrence. The simplest
code for this situation is the unary code. The unary code for a positive integer n is simply
n 1s followed by a 0. Thus, the code for 4 is 11110, and the code for 7 is 11111110. The
unary code is the same as the Huffman code for the semi-infinite alphabet �1� 2� 3� 	 	 	 � with
probability model

P�k� = 1
2k

	

Because the Huffman code is optimal, the unary code is also optimal for this probability model.
Although the unary code is optimal in very restricted conditions, we can see that it is

certainly very simple to implement. One step higher in complexity are a number of coding
schemes that split the integer into two parts, representing one part with a unary code and

66 3 H U F F M A N C O D I N G

the other part with a different code. An example of such a code is the Golomb code. Other
examples can be found in [27].

The Golomb code is described in a succinct paper [28] by Solomon Golomb, which
begins “Secret Agent 00111 is back at the Casino again, playing a game of chance, while
the fate of mankind hangs in the balance.” Agent 00111 requires a code to represent runs of
success in a roulette game, and Golomb provides it! The Golomb code is actually a family
of codes parameterized by an integer m > 0. In the Golomb code with parameter m, we
represent an integer n > 0 using two numbers q and r, where

q =
⌊ n

m

⌋

and

r = n−qm	

	x
 is the integer part of x. In other words, q is the quotient and r is the remainder when
n is divided by m. The quotient q can take on values 0� 1� 2� 	 	 	 and is represented by the
unary code of q. The remainder r can take on the values 0� 1� 2� 	 	 	 �m−1	 If m is a power
of two, we use the log2 m-bit binary representation of r. If m is not a power of two, we
could still use �log2 m� bits, where �x� is the smallest integer greater than or equal to x. We
can reduce the number of bits required if we use the 	log2 m
-bit binary representation of r
for the first 2�log2 m� −m values, and the �log2 m�-bit binary representation of r +2�log2 m� −m
for the rest of the values.

Example 3 . 5 . 1: Golomb code

Let’s design a Golomb code for m = 5. As

�log2 5� = 3� and 	log2 5
 = 2

the first 8 − 5 = 3 values of r (that is, r = 0, 1, 2) will be represented by the 2-bit binary
representation of r, and the next two values (that is, r = 3, 4) will be represented by the
3-bit representation of r +3. The quotient q is always represented by the unary code for q.
Thus, the codeword for 3 is 0110, and the codeword for 21 is 1111001. The codewords for
n = 0, …, 15 are shown in Table 3.16.

TAB L E 3 . 16 Golomb code for m = 5.

n q r Codeword n q r Codeword

0 0 0 000 8 1 3 10110
1 0 1 001 9 1 4 10111
2 0 2 010 10 2 0 11000
3 0 3 0110 11 2 1 11001
4 0 4 0111 12 2 2 11010
5 1 0 1000 13 2 3 110110
6 1 1 1001 14 2 4 110111
7 1 2 1010 15 3 0 111000

�

3.6 Rice Codes 67

It can be shown that the Golomb code is optimal for the probability model

P�n� = pn−1q� q = 1−p

when

m =
⌈

− 1

log2 p

⌉

	

3.6 Rice Codes

The Rice code was originally developed by Robert F. Rice (he called it the Rice machine)
[29, 30] and later extended by Pen-Shu Yeh and Warner Miller [31]. The Rice code can be
viewed as an adaptive Golomb code. In the Rice code, a sequence of nonnegative integers
(which might have been obtained from the preprocessing of other data) is divided into blocks
of J integers apiece. Each block is then coded using one of several options, most of which
are a form of Golomb codes. Each block is encoded with each of these options, and the
option resulting in the least number of coded bits is selected. The particular option used is
indicated by an identifier attached to the code for each block.

The easiest way to understand the Rice code is to examine one of its implementations.
We will study the implementation of the Rice code in the recommendation for lossless
compression from the Consultative Committee on Space Data Standards (CCSDS).

3 . 6 . 1 CCSDS Recommendat ion for Loss less
Compress ion

As an application of the Rice algorithm, let’s briefly look at the algorithm for lossless data
compression recommended by CCSDS. The algorithm consists of a preprocessor (the mod-
eling step) and a binary coder (coding step). The preprocessor removes correlation from the
input and generates a sequence of nonnegative integers. This sequence has the property that
smaller values are more probable than larger values. The binary coder generates a bitstream
to represent the integer sequence. The binary coder is our main focus at this point.

The preprocessor functions as follows: Given a sequence �yi�, for each yi we generate a
prediction ŷi. A simple way to generate a prediction would be to take the previous value of
the sequence to be a prediction of the current value of the sequence:

ŷi = yi−1	

We will look at more sophisticated ways of generating a prediction in Chapter 7. We then
generate a sequence whose elements are the difference between yi and its predicted value ŷi:

di = yi − ŷi	

The di value will have a small magnitude when our prediction is good and a large value
when it is not. Assuming an accurate modeling of the data, the former situation is more
likely than the latter. Let ymax and ymin be the largest and smallest values that the sequence

68 3 H U F F M A N C O D I N G

�yi� takes on. It is reasonable to assume that the value of ŷ will be confined to the range
�ymin� ymax�. Define

Ti = min�ymax − ŷ� ŷ −ymin�	 (3.8)

The sequence �di� can be converted into a sequence of nonnegative integers �xi� using
the following mapping:

xi =

⎧
⎪⎨

⎪⎩

2di 0 ≤ di ≤ Ti

2 �di�−1 −Ti ≤ di < 0

Ti +�di� otherwise.

(3.9)

The value of xi will be small whenever the magnitude of di is small. Therefore, the value
of xi will be small with higher probability. The sequence �xi� is divided into segments with
each segment being further divided into blocks of size J . It is recommended by CCSDS that
J have a value of 16. Each block is then coded using one of the following options. The
coded block is transmitted along with an identifier that indicates which particular option was
used.

� Fundamental sequence: This is a unary code. A number n is represented by a
sequence of n 0s followed by a 1 (or a sequence of n 1s followed by a 0).

� Split sample options: These options consist of a set of codes indexed by a parameter
m. The code for a k-bit number n using the mth split sample option consists of the
m least significant bits of k followed by a unary code representing the k − m most
significant bits. For example, suppose we wanted to encode the 8-bit number 23 using
the third split sample option. The 8-bit representation of 23 is 00010111. The three
least significant bits are 111. The remaining bits (00010) correspond to the number 2,
which has a unary code 001. Therefore, the code for 23 using the third split sample
option is 111011. Notice that different values of m will be preferable for different
values of xi, with higher values of m used for higher-entropy sequences.

� Second extension option: The second extension option is useful for sequences with
low entropy—when, in general, many of the values of xi will be zero. In the second
extension option the sequence is divided into consecutive pairs of samples. Each pair
is used to obtain an index � using the following transformation:

� = 1
2

�xi +xi+1��xi +xi+1 +1�+xi+1 (3.10)

and the value of � is encoded using a unary code. The value of � is an index to a
lookup table with each value of � corresponding to a pair of values xi� xi+1.

� Zero block option: The zero block option is used when one or more of the blocks of
xi are zero—generally when we have long sequences of yi that have the same value. In
this case the number of zero blocks are transmitted using the code shown in Table 3.17.
The ROS code is used when the last five or more blocks in a segment are all zero.

The Rice code has been used in several space applications, and variations of the Rice
code have been proposed for a number of different applications.

3.7 Tunstall Codes 69

TAB L E 3 . 17 Code used for zero block option.

Number of All-Zero Blocks Codeword

1 1
2 01
3 001
4 0001
5 000001
6 0000001
			

			

63

63 0s
︷ ︸︸ ︷
000 · · ·0 1

ROS 00001

3.7 Tunstal l Codes

Most of the variable-length codes that we look at in this book encode letters from the source
alphabet using codewords with varying numbers of bits: codewords with fewer bits for
letters that occur more frequently and codewords with more bits for letters that occur less
frequently. The Tunstall code is an important exception. In the Tunstall code, all codewords
are of equal length. However, each codeword represents a different number of letters. An
example of a 2-bit Tunstall code for an alphabet � = �A�B� is shown in Table 3.18. The
main advantage of a Tunstall code is that errors in codewords do not propagate, unlike other
variable-length codes, such as Huffman codes, in which an error in one codeword will cause
a series of errors to occur.

Example 3 . 7 . 1:

Let’s encode the sequence AAABAABAABAABAAA using the code in Table 3.18. Starting
at the left, we can see that the string AAA occurs in our codebook and has a code of
00. We then code B as 11, AAB as 01, and so on. We finally end up with coded string
001101010100. �

TAB L E 3 . 18 A 2-bit Tunstall code.

Sequence Codeword

AAA 00
AAB 01
AB 10
B 11

70 3 H U F F M A N C O D I N G

TAB L E 3 . 19 A 2-bit (non-Tunstall) code.

Sequence Codeword

AAA 00
ABA 01
AB 10
B 11

The design of a code that has a fixed codeword length but a variable number of symbols
per codeword should satisfy the following conditions:

1. We should be able to parse a source output sequence into sequences of symbols that
appear in the codebook.

2. We should maximize the average number of source symbols represented by each
codeword.

In order to understand what we mean by the first condition, consider the code shown in
Table 3.19. Let’s encode the same sequence AAABAABAABAABAAA as in the previous
example using the code in Table 3.19. We first encode AAA with the code 00. We then
encode B with 11. The next three symbols are AAB. However, there are no codewords
corresponding to this sequence of symbols. Thus, this sequence is unencodable using this
particular code—not a desirable situation.

Tunstall [32] gives a simple algorithm that fulfills these conditions. The algorithm is as
follows:

Suppose we want an n-bit Tunstall code for a source that generates iid letters from an
alphabet of size N . The number of codewords is 2n. We start with the N letters of the
source alphabet in our codebook. Remove the entry in the codebook that has the highest
probability and add the N strings obtained by concatenating this letter with every letter
in the alphabet (including itself). This will increase the size of the codebook from N to
N + �N −1�. The probabilities of the new entries will be the product of the probabilities of
the letters concatenated to form the new entry. Now look through the N + �N − 1� entries
in the codebook and find the entry that has the highest probability, keeping in mind that the
entry with the highest probability may be a concatenation of symbols. Each time we perform
this operation we increase the size of the codebook by N −1. Therefore, this operation can
be performed K times, where

N +K�N −1� ≤ 2n	

Example 3 . 7 . 2: Tuns ta l l codes

Let us design a 3-bit Tunstall code for a memoryless source with the following alphabet:

� = �A�B�C�

P�A� = 0	6� P�B� = 0	3� P�C� = 0	1

3.7 Tunstall Codes 71

TAB L E 3 . 20 Source alphabet and
associated probabilities.

Letter Probability

A 0.60
B 0.30
C 0.10

TAB L E 3 . 21 The codebook after
one iteration.

Sequence Probability

B 0.30
C 0.10
AA 0.36
AB 0.18
AC 0.06

TAB L E 3 . 22 A 3-bit Tunstall code.

Sequence Probability

B 000
C 001
AB 010
AC 011
AAA 100
AAB 101
AAC 110

We start out with the codebook and associated probabilities shown in Table 3.20. Since
the letter A has the highest probability, we remove it from the list and add all two-letter
strings beginning with A as shown in Table 3.21. After one iteration we have 5 entries in
our codebook. Going through one more iteration will increase the size of the codebook by 2,
and we will have 7 entries, which is still less than the final codebook size. Going through
another iteration after that would bring the codebook size to 10, which is greater than the
maximum size of 8. Therefore, we will go through just one more iteration. Looking through
the entries in Table 3.22, the entry with the highest probability is AA. Therefore, at the next
step we remove AA and add all extensions of AA as shown in Table 3.22. The final 3-bit
Tunstall code is shown in Table 3.22. �

72 3 H U F F M A N C O D I N G

3.8 Applicat ions of Huffman Coding

In this section we describe some applications of Huffman coding. As we progress through the
book, we will describe more applications, since Huffman coding is often used in conjunction
with other coding techniques.

3 . 8 . 1 Loss less Image Compress ion

A simple application of Huffman coding to image compression would be to generate a
Huffman code for the set of values that any pixel may take. For monochrome images, this
set usually consists of integers from 0 to 255. Examples of such images are contained in the
accompanying data sets. The four that we will use in the examples in this book are shown
in Figure 3.10.

F IGURE 3. 10 Test images.

3.8 Applications of Huffman Coding 73

TAB L E 3 . 23 Compression using Huffman codes on pixel values.

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 7.01 57,504 1.14
Sensin 7.49 61,430 1.07
Earth 4.94 40,534 1.62
Omaha 7.12 58,374 1.12

We will make use of one of the programs from the accompanying software (see Preface)
to generate a Huffman code for each image, and then encode the image using the Huffman
code. The results for the four images in Figure 3.10 are shown in Table 3.23. The Huffman
code is stored along with the compressed image as the code will be required by the decoder
to reconstruct the image.

The original (uncompressed) image representation uses 8 bits/pixel. The image consists
of 256 rows of 256 pixels, so the uncompressed representation uses 65,536 bytes. The
compression ratio is simply the ratio of the number of bytes in the uncompressed represen-
tation to the number of bytes in the compressed representation. The number of bytes in the
compressed representation includes the number of bytes needed to store the Huffman code.
Notice that the compression ratio is different for different images. This can cause some
problems in certain applications where it is necessary to know in advance how many bytes
will be needed to represent a particular data set.

The results in Table 3.23 are somewhat disappointing because we get a reduction of only
about 1

2 to 1 bit/pixel after compression. For some applications this reduction is acceptable.
For example, if we were storing thousands of images in an archive, a reduction of 1 bit/pixel
saves many megabytes in disk space. However, we can do better. Recall that when we first
talked about compression, we said that the first step for any compression algorithm was to
model the data so as to make use of the structure in the data. In this case, we have made
absolutely no use of the structure in the data.

From a visual inspection of the test images, we can clearly see that the pixels in an
image are heavily correlated with their neighbors. We could represent this structure with the
crude model x̂n = xn−1. The residual would be the difference between neighboring pixels.
If we carry out this differencing operation and use the Huffman coder on the residuals, the
results are as shown in Table 3.24. As we can see, using the structure in the data resulted in
substantial improvement.

TAB L E 3 . 24 Compression using Huffman codes on pixel difference values.

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 4.02 32,968 1.99
Sensin 4.70 38,541 1.70
Earth 4.13 33,880 1.93
Omaha 6.42 52,643 1.24

74 3 H U F F M A N C O D I N G

TAB L E 3 . 25 Compression using adaptive Huffman codes on pixel difference
values.

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 3.93 32,261 2.03
Sensin 4.63 37,896 1.73
Earth 4.82 39,504 1.66
Omaha 6.39 52,321 1.25

The results in Tables 3.23 and 3.24 were obtained using a two-pass system, in which
the statistics were collected in the first pass and a Huffman table was generated. Instead
of using a two-pass system, we could have used a one-pass adaptive Huffman coder. The
results for this are given in Table 3.25.

Notice that there is little difference between the performance of the adaptive Huffman
code and the two-pass Huffman coder. In addition, the fact that the adaptive Huffman
coder can be used as an on-line or real-time coder makes the adaptive Huffman coder a
more attractive option in many applications. However, the adaptive Huffman coder is more
vulnerable to errors and may also be more difficult to implement. In the end, the particular
application will determine which approach is more suitable.

3 . 8 . 2 Text Compress ion

Text compression seems natural for Huffman coding. In text, we have a discrete alphabet
that, in a given class, has relatively stationary probabilities. For example, the probability
model for a particular novel will not differ significantly from the probability model for
another novel. Similarly, the probability model for a set of FORTRAN programs is not going
to be much different than the probability model for a different set of FORTRAN programs.
The probabilities in Table 3.26 are the probabilities of the 26 letters (upper- and lowercase)
obtained for the U.S. Constitution and are representative of English text. The probabilities
in Table 3.27 were obtained by counting the frequency of occurrences of letters in an earlier
version of this chapter. While the two documents are substantially different, the two sets of
probabilities are very much alike.

We encoded the earlier version of this chapter using Huffman codes that were created
using the probabilities of occurrence obtained from the chapter. The file size dropped from
about 70,000 bytes to about 43,000 bytes with Huffman coding.

While this reduction in file size is useful, we could have obtained better compression if
we first removed the structure existing in the form of correlation between the symbols in
the file. Obviously, there is a substantial amount of correlation in this text. For example,
Huf is always followed by fman! Unfortunately, this correlation is not amenable to simple
numerical models, as was the case for the image files. However, there are other somewhat
more complex techniques that can be used to remove the correlation in text files. We will
look more closely at these in Chapters 5 and 6.

3.8 Applications of Huffman Coding 75

TAB L E 3 . 26 Probabilities of occurrence of the
letters in the English alphabet in the
U.S. Constitution.

Letter Probability Letter Probability

A 0	057305 N 0.056035
B 0	014876 O 0.058215
C 0	025775 P 0.021034
D 0	026811 Q 0.000973
E 0	112578 R 0.048819
F 0	022875 S 0.060289
G 0	009523 T 0.078085
H 0	042915 U 0.018474
I 0	053475 V 0.009882
J 0	002031 W 0.007576
K 0	001016 X 0.002264
L 0	031403 Y 0.011702
M 0	015892 Z 0.001502

TAB L E 3 . 27 Probabilities of occurrence of the letters
in the English alphabet in this chapter.

Letter Probability Letter Probability

A 0	049855 N 0.048039
B 0	016100 O 0.050642
C 0	025835 P 0.015007
D 0	030232 Q 0.001509
E 0	097434 R 0.040492
F 0	019754 S 0.042657
G 0	012053 T 0.061142
H 0	035723 U 0.015794
I 0	048783 V 0.004988
J 0	000394 W 0.012207
K 0	002450 X 0.003413
L 0	025835 Y 0.008466
M 0	016494 Z 0.001050

3 . 8 . 3 Audio Compress ion

Another class of data that is very suitable for compression is CD-quality audio data. The
audio signal for each stereo channel is sampled at 44.1 kHz, and each sample is represented
by 16 bits. This means that the amount of data stored on one CD is enormous. If we
want to transmit this data, the amount of channel capacity required would be significant.
Compression is definitely useful in this case. In Table 3.28 we show for a variety of audio
material the file size, the entropy, the estimated compressed file size if a Huffman coder is
used, and the resulting compression ratio.

76 3 H U F F M A N C O D I N G

TAB L E 3 . 28 Huffman coding of 16-bit CD-quality audio.

Original Entropy Estimated Compressed Compression
File Name File Size (bytes) (bits) File Size (bytes) Ratio

Mozart 939,862 12.8 725,420 1.30
Cohn 402,442 13.8 349,300 1.15
Mir 884,020 13.7 759,540 1.16

The three segments used in this example represent a wide variety of audio material, from
a symphonic piece by Mozart to a folk rock piece by Cohn. Even though the material is
varied, Huffman coding can lead to some reduction in the capacity required to transmit this
material.

Note that we have only provided the estimated compressed file sizes. The estimated
file size in bits was obtained by multiplying the entropy by the number of samples in the
file. We used this approach because the samples of 16-bit audio can take on 65,536 distinct
values, and therefore the Huffman coder would require 65,536 distinct (variable-length)
codewords. In most applications, a codebook of this size would not be practical. There
is a way of handling large alphabets, called recursive indexing, that we will describe in
Chapter 9. There is also some recent work [14] on using a Huffman tree in which leaves
represent sets of symbols with the same probability. The codeword consists of a prefix that
specifies the set followed by a suffix that specifies the symbol within the set. This approach
can accommodate relatively large alphabets.

As with the other applications, we can obtain an increase in compression if we first
remove the structure from the data. Audio data can be modeled numerically. In later chapters
we will examine more sophisticated modeling approaches. For now, let us use the very
simple model that was used in the image-coding example; that is, each sample has the
same value as the previous sample. Using this model we obtain the difference sequence.
The entropy of the difference sequence is shown in Table 3.29.

Note that there is a further reduction in the file size: the compressed file sizes are about
60% of the original files. Further reductions can be obtained by using more sophisticated
models.

Many of the lossless audio compression schemes, including FLAC (Free Lossless
Audio Codec), Apple’s ALAC or ALE, Shorten [33], Monkey’s Audio, and the proposed
(as of now) MPEG-4 ALS [34] algorithms, use a linear predictive model to remove some of

TAB L E 3 . 29 Huffman coding of differences of 16-bit CD-quality audio.

Original Entropy Estimated Compressed Compression
File Name File Size (bytes) of Differences (bits) File Size (bytes) Ratio

Mozart 939,862 9.7 569,792 1.65
Cohn 402,442 10.4 261,590 1.54
Mir 884,020 10.9 602,240 1.47

3.10 Projects and Problems 77

the structure from the audio sequence and then use Rice coding to encode the residuals. Most
others, such as AudioPak [35] and OggSquish, use Huffman coding to encode the residuals.

3.9 Summary

In this chapter we began our exploration of data compression techniques with a description
of the Huffman coding technique and several other related techniques. The Huffman coding
technique and its variants are some of the most commonly used coding approaches. We will
encounter modified versions of Huffman codes when we look at compression techniques
for text, image, and video. In this chapter we described how to design Huffman codes and
discussed some of the issues related to Huffman codes. We also described how adaptive
Huffman codes work and looked briefly at some of the places where Huffman codes are
used. We will see more of these in future chapters.

To explore further applications of Huffman coding, you can use the programs
huff_enc, huff_dec, and adap_huff to generate your own Huffman codes for your
favorite applications.

Fu r t he r Read ing

1. A detailed and very accessible overview of Huffman codes is provided in “Huffman
Codes,” by S. Pigeon [36], in Lossless Compression Handbook.

2. Details about nonbinary Huffman codes and a much more theoretical and rigor-
ous description of variable-length codes can be found in The Theory of Informa-
tion and Coding, volume 3 of Encyclopedia of Mathematic and Its Application, by
R.J. McEliece [6].

3. The tutorial article “Data Compression” in the September 1987 issue of ACM Com-
puting Surveys, by D.A. Lelewer and D.S. Hirschberg [37], along with other material,
provides a very nice brief coverage of the material in this chapter.

4. A somewhat different approach to describing Huffman codes can be found in Data
Compression—Methods and Theory, by J.A. Storer [38].

5. A more theoretical but very readable account of variable-length coding can be found
in Elements of Information Theory, by T.M. Cover and J.A. Thomas [3].

6. Although the book Coding and Information Theory, by R.W. Hamming [9], is mostly
about channel coding, Huffman codes are described in some detail in Chapter 4.

3.10 Projects and Problems

1. The probabilities in Tables 3.27 and 3.27 were obtained using the program
countalpha from the accompanying software. Use this program to compare prob-
abilities for different types of text, C programs, messages on Usenet, and so on.

78 3 H U F F M A N C O D I N G

Comment on any differences you might see and describe how you would tailor your
compression strategy for each type of text.

2. Use the programs huff_enc and huff_dec to do the following (in each case use
the codebook generated by the image being compressed):

(a) Code the Sena, Sinan, and Omaha images.

(b) Write a program to take the difference between adjoining pixels, and then use
huffman to code the difference images.

(c) Repeat (a) and (b) using adap_huff.

Report the resulting file sizes for each of these experiments and comment on the
differences.

3. Using the programs huff_enc and huff_dec, code the Bookshelf1 and Sena
images using the codebook generated by the Sinan image. Compare the results with
the case where the codebook was generated by the image being compressed.

4. A source emits letters from an alphabet � = �a1� a2� a3� a4� a5� with probabilities
P�a1� = 0	15, P�a2� = 0	04, P�a3� = 0	26, P�a4� = 0	05, and P�a5� = 0	50.

(a) Calculate the entropy of this source.

(b) Find a Huffman code for this source.

(c) Find the average length of the code in (b) and its redundancy.

5. For an alphabet � = �a1� a2� a3� a4� with probabilities P�a1� = 0	1, P�a2� = 0	3,
P�a3� = 0	25, and P�a4� = 0	35, find a Huffman code

(a) using the first procedure outlined in this chapter, and

(b) using the minimum variance procedure.

Comment on the difference in the Huffman codes.

6. In many communication applications, it is desirable that the number of 1s and 0s
transmitted over the channel are about the same. However, if we look at Huffman
codes, many of them seem to have many more 1s than 0s or vice versa. Does this
mean that Huffman coding will lead to inefficient channel usage? For the Huffman
code obtained in Problem 3, find the probability that a 0 will be transmitted over the
channel. What does this probability say about the question posed above?

7. For the source in Example 3.3.1, generate a ternary code by combining three letters in
the first and second steps and two letters in the third step. Compare with the ternary
code obtained in the example.

8. In Example 3.4.1 we have shown how the tree develops when the sequence a a r d v
is transmitted. Continue this example with the next letters in the sequence, a r k.

9. The Monte Carlo approach is often used for studying problems that are difficult to
solve analytically. Let’s use this approach to study the problem of buffering when

3.10 Projects and Problems 79

using variable-length codes. We will simulate the situation in Example 3.2.1, and
study the time to overflow and underflow as a function of the buffer size. In our
program, we will need a random number generator, a set of seeds to initialize the
random number generator, a counter B to simulate the buffer occupancy, a counter T
to keep track of the time, and a value N , which is the size of the buffer. Input to the
buffer is simulated by using the random number generator to select a letter from our
alphabet. The counter B is then incremented by the length of the codeword for the
letter. The output to the buffer is simulated by decrementing B by 2 except when T is
divisible by 5. For values of T divisible by 5, decrement B by 3 instead of 2 (why?).
Keep incrementing T , each time simulating an input and an output, until either B ≥ N ,
corresponding to a buffer overflow, or B < 0, corresponding to a buffer underflow.
When either of these events happens, record what happened and when, and restart the
simulation with a new seed. Do this with at least 100 seeds.

Perform this simulation for a number of buffer sizes (N = 100� 1000� 10�000), and the
two Huffman codes obtained for the source in Example 3.2.1. Describe your results
in a report.

10. While the variance of lengths is an important consideration when choosing between
two Huffman codes that have the same average lengths, it is not the only consideration.
Another consideration is the ability to recover from errors in the channel. In this
problem we will explore the effect of error on two equivalent Huffman codes.

(a) For the source and Huffman code of Example 3.2.1 (Table 3.5), encode the
sequence

a2 a1 a3 a2 a1 a2

Suppose there was an error in the channel and the first bit was received as a 0
instead of a 1. Decode the received sequence of bits. How many characters are
received in error before the first correctly decoded character?

(b) Repeat using the code in Table 3.9.

(c) Repeat parts (a) and (b) with the error in the third bit.

11. (This problem was suggested by P.F. Swaszek.)

(a) For a binary source with probabilities P�0� = 0	9, P�1� = 0	1, design a Huffman
code for the source obtained by blocking m bits together, m = 1, 2, � � � , 8. Plot
the average lengths versus m. Comment on your result.

(b) Repeat for P�0� = 0	99, P�1� = 0	01.

You can use the program huff_enc to generate the Huffman codes.

12. Encode the following sequence of 16 values using the Rice code with J = 8 and one
split sample option.

32� 33� 35� 39� 37� 38� 39� 40� 40� 40� 40� 39� 40� 40� 41� 40

80 3 H U F F M A N C O D I N G

For prediction use the previous value in the sequence

ŷi = yi−1

and assume a prediction of zero for the first element of the sequence.

13. For an alphabet �= �a1� a2� a3� with probabilities P�a1� = 0	7, P�a2� = 0	2, P�a3� =
0	1, design a 3-bit Tunstall code.

14. Write a program for encoding images using the Rice algorithm. Use eight options,
including the fundamental sequence, five split sample options, and the two low-entropy
options. Use J = 16. For prediction use either the pixel to the left or the pixel above.
Encode the Sena image using your program. Compare your results with the results
obtained by Huffman coding the differences between pixels.

4
Arithmetic Coding

4.1 Overview

I
n the previous chapter we saw one approach to generating variable-length
codes. In this chapter we see another, increasingly popular, method of gen-
erating variable-length codes called arithmetic coding. Arithmetic coding is
especially useful when dealing with sources with small alphabets, such as
binary sources, and alphabets with highly skewed probabilities. It is also a very

useful approach when, for various reasons, the modeling and coding aspects of lossless com-
pression are to be kept separate. In this chapter, we look at the basic ideas behind arithmetic
coding, study some of the properties of arithmetic codes, and describe an implementation.

4.2 Introduct ion

In the last chapter we studied the Huffman coding method, which guarantees a coding rate
R within 1 bit of the entropy H . Recall that the coding rate is the average number of bits
used to represent a symbol from a source and, for a given probability model, the entropy is
the lowest rate at which the source can be coded. We can tighten this bound somewhat. It
has been shown [23] that the Huffman algorithm will generate a code whose rate is within
pmax +0�086 of the entropy, where pmax is the probability of the most frequently occurring
symbol. We noted in the last chapter that, in applications where the alphabet size is large,
pmax is generally quite small, and the amount of deviation from the entropy, especially in
terms of a percentage of the rate, is quite small. However, in cases where the alphabet is
small and the probability of occurrence of the different letters is skewed, the value of pmax

can be quite large and the Huffman code can become rather inefficient when compared to
the entropy. One way to avoid this problem is to block more than one symbol together and
generate an extended Huffman code. Unfortunately, this approach does not always work.

82 4 A R I T H M E T I C C O D I N G

Example 4 . 2 . 1:

Consider a source that puts out independent, identically distributed (iid) letters from the
alphabet � = �a1� a2� a3� with the probability model P�a1� = 0�95, P�a2� = 0�02, and
P�a3� = 0�03. The entropy for this source is 0.335 bits/symbol. A Huffman code for this
source is given in Table 4.1.

TAB L E 4 . 1 Huffman code for
three-letter alphabet.

Letter Codeword

a1 0
a2 11
a3 10

The average length for this code is 1.05 bits/symbol. The difference between the average
code length and the entropy, or the redundancy, for this code is 0.715 bits/symbol, which is
213% of the entropy. This means that to code this sequence we would need more than twice
the number of bits promised by the entropy.

Recall Example 3.2.4. Here also we can group the symbols in blocks of two. The extended
alphabet, probability model, and code can be obtained as shown in Table 4.2. The average
rate for the extended alphabet is 1.222 bits/symbol, which in terms of the original alphabet is
0.611 bits/symbol. As the entropy of the source is 0.335 bits/symbol, the additional rate over
the entropy is still about 72% of the entropy! By continuing to block symbols together, we
find that the redundancy drops to acceptable values when we block eight symbols together.
The corresponding alphabet size for this level of blocking is 6561! A code of this size
is impractical for a number of reasons. Storage of a code like this requires memory that
may not be available for many applications. While it may be possible to design reasonably
efficient encoders, decoding a Huffman code of this size would be a highly inefficient and
time-consuming procedure. Finally, if there were some perturbation in the statistics, and
some of the assumed probabilities changed slightly, this would have a major impact on the
efficiency of the code.

TAB L E 4 . 2 Huffman code for extended alphabet.

Letter Probability Code

a1a1 0.9025 0
a1a2 0.0190 111
a1a3 0.0285 100
a2a1 0.0190 1101
a2a2 0.0004 110011
a2a3 0.0006 110001
a3a1 0.0285 101
a3a2 0.0006 110010
a3a3 0.0009 110000

�

4.3 Coding a Sequence 83

We can see that it is more efficient to generate codewords for groups or sequences of
symbols rather than generating a separate codeword for each symbol in a sequence. However,
this approach becomes impractical when we try to obtain Huffman codes for long sequences
of symbols. In order to find the Huffman codeword for a particular sequence of length m,
we need codewords for all possible sequences of length m. This fact causes an exponential
growth in the size of the codebook. We need a way of assigning codewords to particular
sequences without having to generate codes for all sequences of that length. The arithmetic
coding technique fulfills this requirement.

In arithmetic coding a unique identifier or tag is generated for the sequence to be
encoded. This tag corresponds to a binary fraction, which becomes the binary code for the
sequence. In practice the generation of the tag and the binary code are the same process.
However, the arithmetic coding approach is easier to understand if we conceptually divide
the approach into two phases. In the first phase a unique identifier or tag is generated for a
given sequence of symbols. This tag is then given a unique binary code. A unique arithmetic
code can be generated for a sequence of length m without the need for generating codewords
for all sequences of length m. This is unlike the situation for Huffman codes. In order to
generate a Huffman code for a sequence of length m, where the code is not a concatenation
of the codewords for the individual symbols, we need to obtain the Huffman codes for all
sequences of length m.

4.3 Coding a Sequence

In order to distinguish a sequence of symbols from another sequence of symbols we need
to tag it with a unique identifier. One possible set of tags for representing sequences of
symbols are the numbers in the unit interval �0� 1�. Because the number of numbers in the
unit interval is infinite, it should be possible to assign a unique tag to each distinct sequence
of symbols. In order to do this we need a function that will map sequences of symbols into
the unit interval. A function that maps random variables, and sequences of random variables,
into the unit interval is the cumulative distribution function (cdf) of the random variable
associated with the source. This is the function we will use in developing the arithmetic
code. (If you are not familiar with random variables and cumulative distribution functions,
or need to refresh your memory, you may wish to look at Appendix A.)

The use of the cumulative distribution function to generate a binary code for a sequence
has a rather interesting history. Shannon, in his original 1948 paper [7], mentioned an
approach using the cumulative distribution function when describing what is now known as
the Shannon-Fano code. Peter Elias, another member of Fano’s first information theory class
at MIT (this class also included Huffman), came up with a recursive implementation for this
idea. However, he never published it, and we only know about it through a mention in a 1963
book on information theory by Abramson [39]. Abramson described this coding approach in
a note to a chapter. In another book on information theory by Jelinek [40] in 1968, the idea of
arithmetic coding is further developed, this time in an appendix, as an example of variable-
length coding. Modern arithmetic coding owes its birth to the independent discoveries in
1976 of Pasco [41] and Rissanen [42] that the problem of finite precision could be resolved.

84 4 A R I T H M E T I C C O D I N G

Finally, several papers appeared that provided practical arithmetic coding algorithms, the
most well known of which is the paper by Rissanen and Langdon [43].

Before we begin our development of the arithmetic code, we need to establish some
notation. Recall that a random variable maps the outcomes, or sets of outcomes, of an
experiment to values on the real number line. For example, in a coin-tossing experiment, the
random variable could map a head to zero and a tail to one (or it could map a head to 2367�5
and a tail to −192). To use this technique, we need to map the source symbols or letters to
numbers. For convenience, in the discussion in this chapter we will use the mapping

X�ai� = i ai ∈ � (4.1)

where �= �a1� a2� � � � � am� is the alphabet for a discrete source and X is a random variable.
This mapping means that given a probability model � for the source, we also have a
probability density function for the random variable

P�X = i� = P�ai�

and the cumulative density function can be defined as

FX�i� =
i∑

k=1

P�X = k��

Notice that for each symbol ai with a nonzero probability we have a distinct value of FX�i�.
We will use this fact in what follows to develop the arithmetic code. Our development may
be more detailed than what you are looking for, at least on the first reading. If so, skip or
skim Sections 4.3.1–4.4.1 and go directly to Section 4.4.2.

4 . 3 . 1 Generat ing a Tag

The procedure for generating the tag works by reducing the size of the interval in which the
tag resides as more and more elements of the sequence are received.

We start out by first dividing the unit interval into subintervals of the form
�FX�i−1��FX�i��, i = 1, . . . , m. Because the minimum value of the cdf is zero and the
maximum value is one, this exactly partitions the unit interval. We associate the subin-
terval �FX�i − 1��FX�i�� with the symbol ai. The appearance of the first symbol in the
sequence restricts the interval containing the tag to one of these subintervals. Suppose the
first symbol was ak. Then the interval containing the tag value will be the subinterval
�FX�k−1��FX�k��. This subinterval is now partitioned in exactly the same proportions as
the original interval. That is, the jth interval corresponding to the symbol aj is given by
�FX�k−1�+FX�j −1�/�FX�k�−FX�k−1���FX�k−1�+FX�j�/�FX�k�−FX�k−1���. So if
the second symbol in the sequence is aj , then the interval containing the tag value becomes
�FX�k−1�+FX�j −1�/�FX�k�−FX�k−1���FX�k−1�+FX�j�/�FX�k�−FX�k−1���. Each
succeeding symbol causes the tag to be restricted to a subinterval that is further partitioned
in the same proportions. This process can be more clearly understood through an example.

4.3 Coding a Sequence 85

Example 4 . 3 . 1:

Consider a three-letter alphabet �= �a1� a2� a3� with P�a1� = 0�7, P�a2� = 0�1, and P�a3� =
0�2. Using the mapping of Equation (4.1), FX�1� = 0�7, FX�2� = 0�8, and FX�3� = 1. This
partitions the unit interval as shown in Figure 4.1.

1.0

0.8
a2

a3

a1

0.7

0.0

0.70

0.56
a2

a3

a1

0.49

0.00

0.560

0.546
a2

a3

a1

0.539

0.490

0.5600

0.5572
a2

a3

a1

0.5558

0.5460

F IGURE 4. 1 Restricting the interval containing the tag for the input sequence
�a1�a2�a3� � � ��.

The partition in which the tag resides depends on the first symbol of the sequence being
encoded. For example, if the first symbol is a1, the tag lies in the interval �0�0� 0�7�; if the
first symbol is a2, the tag lies in the interval �0�7� 0�8�; and if the first symbol is a3, the
tag lies in the interval �0�8� 1�0�. Once the interval containing the tag has been determined,
the rest of the unit interval is discarded, and this restricted interval is again divided in the
same proportions as the original interval. Suppose the first symbol was a1. The tag would be
contained in the subinterval �0�0� 0�7�. This subinterval is then subdivided in exactly the same
proportions as the original interval, yielding the subintervals �0�0� 0�49�, �0�49� 0�56�, and
�0�56� 0�7�. The first partition as before corresponds to the symbol a1, the second partition
corresponds to the symbol a2, and the third partition �0�56� 0�7� corresponds to the symbol
a3. Suppose the second symbol in the sequence is a2. The tag value is then restricted to
lie in the interval �0�49� 0�56�. We now partition this interval in the same proportion as
the original interval to obtain the subintervals �0�49� 0�539� corresponding to the symbol
a1, �0�539� 0�546� corresponding to the symbol a2, and �0�546� 0�56� corresponding to the
symbol a3. If the third symbol is a3, the tag will be restricted to the interval �0�546� 0�56�,
which can then be subdivided further. This process is described graphically in Figure 4.1.

Notice that the appearance of each new symbol restricts the tag to a subinterval that is
disjoint from any other subinterval that may have been generated using this process. For

86 4 A R I T H M E T I C C O D I N G

the sequence beginning with �a1� a2� a3� � � � �, by the time the third symbol a3 is received,
the tag has been restricted to the subinterval �0�546� 0�56�. If the third symbol had been a1

instead of a3, the tag would have resided in the subinterval �0�49� 0�539�, which is disjoint
from the subinterval �0�546� 0�56�. Even if the two sequences are identical from this point
on (one starting with a1� a2� a3 and the other beginning with a1� a2� a1), the tag interval for
the two sequences will always be disjoint. �

As we can see, the interval in which the tag for a particular sequence resides is disjoint
from all intervals in which the tag for any other sequence may reside. As such, any member
of this interval can be used as a tag. One popular choice is the lower limit of the interval;
another possibility is the midpoint of the interval. For the moment, let’s use the midpoint of
the interval as the tag.

In order to see how the tag generation procedure works mathematically, we start with
sequences of length one. Suppose we have a source that puts out symbols from some
alphabet � = �a1� a2� � � � � am�. We can map the symbols �ai� to real numbers �i�. Define
T̄X�ai� as

T̄X�ai� =
i−1∑

k=1

P�X = k�+ 1
2

P�X = i� (4.2)

= FX�i−1�+ 1
2

P�X = i�� (4.3)

For each ai, T̄X�ai� will have a unique value. This value can be used as a unique tag for ai.

Example 4 . 3 . 2:

Consider a simple dice-throwing experiment with a fair die. The outcomes of a roll of the
die can be mapped into the numbers �1� 2� � � � � 6�. For a fair die

P�X = k� = 1
6

for k = 1, 2, …, 6.

Therefore, using (4.3) we can find the tag for X = 2 as

T̄X�2� = P�X = 1�+ 1
2

P�X = 2� = 1
6

+ 1
12

= 0�25

and the tag for X = 5 as

T̄X�5� =
4∑

k=1

P�X = k�+ 1
2

P�X = 5� = 0�75�

The tags for all other outcomes are shown in Table 4.3.

4.3 Coding a Sequence 87

TAB L E 4 . 3 Toss for outcomes in a
dice-throwing experment.

Outcome Tag

1 0�0833
3 0�4166
4 0�5833
6 0�9166

�

As we can see from the example above, giving a unique tag to a sequence of length one
is an easy task. This approach can be extended to longer sequences by imposing an order
on the sequences. We need an ordering on the sequences because we will assign a tag to a
particular sequence xi as

T̄
�m�
X �xi� = ∑

y<xi

P�y�+ 1
2

P�xi� (4.4)

where y < x means that y precedes x in the ordering, and the superscript denotes the length
of the sequence.

An easy ordering to use is lexicographic ordering. In lexicographic ordering, the ordering
of letters in an alphabet induces an ordering on the words constructed from this alphabet. The
ordering of words in a dictionary is a good (maybe the original) example of lexicographic
ordering. Dictionary order is sometimes used as a synonym for lexicographic order.

Example 4 . 3 . 3:

We can extend Example 4.3.1 so that the sequence consists of two rolls of a die. Using the
ordering scheme described above, the outcomes (in order) would be 11 12 13 	 	 	 66. The
tags can then be generated using Equation (4.4). For example, the tag for the sequence 13
would be

T̄X�13� = P�x = 11�+P�x = 12�+1/2P�x = 13� (4.5)

= 1/36+1/36+1/2�1/36� (4.6)

= 5/72� (4.7)

�

Notice that to generate the tag for 13 we did not have to generate a tag for every other
possible message. However, based on Equation (4.4) and Example 4.3.3, we need to know
the probability of every sequence that is “less than” the sequence for which the tag is being
generated. The requirement that the probability of all sequences of a given length be explicitly
calculated can be as prohibitive as the requirement that we have codewords for all sequences
of a given length. Fortunately, we shall see that to compute a tag for a given sequence of
symbols, all we need is the probability of individual symbols, or the probability model.

88 4 A R I T H M E T I C C O D I N G

Recall that, given our construction, the interval containing the tag value for a given
sequence is disjoint from the intervals containing the tag values of all other sequences. This
means that any value in this interval would be a unique identifier for xi. Therefore, to fulfill
our initial objective of uniquely identifying each sequence, it would be sufficient to compute
the upper and lower limits of the interval containing the tag and select any value in that
interval. The upper and lower limits can be computed recursively as shown in the following
example.

Example 4 . 3 . 4:

We will use the alphabet of Example 4.3.2 and find the upper and lower limits of the
interval containing the tag for the sequence 322. Assume that we are observing 3 2 2 in a
sequential manner; that is, first we see 3, then 2, and then 2 again. After each observation we
will compute the upper and lower limits of the interval containing the tag of the sequence
observed to that point. We will denote the upper limit by u�n� and the lower limit by l�n�,
where n denotes the length of the sequence.

We first observe 3. Therefore,

u�1� = FX�3�� l�1� = FX�2��

We then observe 2 and the sequence is x = 32. Therefore,

u�2� = F
�2�
X �32�� l�2� = F

�2�
X �31��

We can compute these values as follows:

F
�2�
X �32� = P�x = 11�+P�x = 12�+· · ·+P�x = 16�

+P�x = 21�+P�x = 22�+· · ·+P�x = 26�

+P�x = 31�+P�x = 32��

But,

i=6∑

i=1

P�x = ki� =
i=6∑

i=1

P�x1 = k�x2 = i� = P�x1 = k�

where x = x1x2. Therefore,

F
�2�
X �32� = P�x1 = 1�+P�x1 = 2�+P�x = 31�+P�x = 32�

= FX�2�+P�x = 31�+P�x = 32��

However, assuming each roll of the dice is independent of the others,

P�x = 31� = P�x1 = 3�P�x2 = 1�

and

P�x = 32� = P�x1 = 3�P�x2 = 2��

4.3 Coding a Sequence 89

Therefore,

P�x = 31�+P�x = 32� = P�x1 = 3��P�x2 = 1�+P�x2 = 2��

= P�x1 = 3�FX�2��

Noting that

P�x1 = 3� = FX�3�−FX�2�

we can write

P�x = 31�+P�x = 32� = �FX�3�−FX�2��FX�2�

and

F
�2�
X �32� = FX�2�+ �FX�3�−FX�2��FX�2��

We can also write this as

u�2� = l�1� + �u�1� − l�1��FX�2��

We can similarly show that

F
�2�
X �31� = FX�2�+ �FX�3�−FX�2��FX�1�

or

l�2� = l�1� + �u�1� − l�1��FX�1��

The third element of the observed sequence is 2, and the sequence is x = 322. The upper
and lower limits of the interval containing the tag for this sequence are

u�3� = F
�3�
X �322�� l�3� = F

�3�
X �321��

Using the same approach as above we find that

F
�3�
X �322� = F

�2�
X �31�+ �F

�2�
X �32�−F

�2�
X �31��FX�2� (4.8)

F
�3�
X �321� = F

�2�
X �31�+ �F

�2�
X �32�−F

�2�
X �31��FX�1�

or

u�3� = l�2� + �u�2� − l�2��FX�2�

l�3� = l�2� + �u�2� − l�2��FX�1�� �

In general, we can show that for any sequence x = �x1x2 	 	 	 xn�

l�n� = l�n−1� + �u�n−1� − l�n−1��FX�xn −1� (4.9)

u�n� = l�n−1� + �u�n−1� − l�n−1��FX�xn�� (4.10)

90 4 A R I T H M E T I C C O D I N G

Notice that throughout this process we did not explicitly need to compute any joint
probabilities.

If we are using the midpoint of the interval for the tag, then

T̄X�x� = u�n� + l�n�

2
�

Therefore, the tag for any sequence can be computed in a sequential fashion. The only
information required by the tag generation procedure is the cdf of the source, which can be
obtained directly from the probability model.

Example 4 . 3 . 5: Generat ing a tag

Consider the source in Example 3.2.4. Define the random variable X�ai� = i. Suppose we
wish to encode the sequence 1 3 2 1. From the probability model we know that

FX�k� = 0� k ≤ 0� FX�1� = 0�8� FX�2� = 0�82� FX�3� = 1� FX�k� = 1� k > 3�

We can use Equations (4.9) and (4.10) sequentially to determine the lower and upper limits
of the interval containing the tag. Initializing u�0� to 1, and l�0� to 0, the first element of the
sequence 1 results in the following update:

l�1� = 0+ �1−0�0 = 0

u�1� = 0+ �1−0��0�8� = 0�8�

That is, the tag is contained in the interval �0� 0�8�. The second element of the sequence is 3.
Using the update equations we get

l�2� = 0+ �0�8−0�FX�2� = 0�8×0�82 = 0�656

u�2� = 0+ �0�8−0�FX�3� = 0�8×1�0 = 0�8�

Therefore, the interval containing the tag for the sequence 1 3 is �0�656� 0�8�. The third
element, 2, results in the following update equations:

l�3� = 0�656+ �0�8−0�656�FX�1� = 0�656+0�144×0�8 = 0�7712

u�3� = 0�656+ �0�8−0�656�FX�2� = 0�656+0�144×0�82 = 0�77408

and the interval for the tag is �0�7712� 0�77408�. Continuing with the last element, the upper
and lower limits of the interval containing the tag are

l�4� = 0�7712+ �0�77408−0�7712�FX�0� = 0�7712+0�00288×0�0 = 0�7712

u�4� = 0�7712+ �0�77408−0�1152�FX�1� = 0�7712+0�00288×0�8 = 0�773504

and the tag for the sequence 1 3 2 1 can be generated as

T̄X�1321� = 0�7712+0�773504
2

= 0�772352�
�

4.3 Coding a Sequence 91

Notice that each succeeding interval is contained in the preceding interval. If we examine
the equations used to generate the intervals, we see that this will always be the case. This
property will be used to decipher the tag. An undesirable consequence of this process is
that the intervals get smaller and smaller and require higher precision as the sequence gets
longer. To combat this problem, a rescaling strategy needs to be adopted. In Section 4.4.2,
we will describe a simple rescaling approach that takes care of this problem.

4 . 3 . 2 Dec ipher ing the Tag

We have spent a considerable amount of time showing how a sequence can be assigned a
unique tag, given a minimal amount of information. However, the tag is useless unless we
can also decipher it with minimal computational cost. Fortunately, deciphering the tag is as
simple as generating it. We can see this most easily through an example.

Example 4 . 3 . 6: Dec ipher ing a tag

Given the tag obtained in Example 4.3.5, let’s try to obtain the sequence represented by
the tag. We will try to mimic the encoder in order to do the decoding. The tag value is
0�772352. The interval containing this tag value is a subset of every interval obtained in the
encoding process. Our decoding strategy will be to decode the elements in the sequence in
such a way that the upper and lower limits u�k� and l�k� will always contain the tag value for
each k. We start with l�0� = 0 and u�0� = 1. After decoding the first element of the sequence
x1, the upper and lower limits become

l�1� = 0+ �1−0�FX�x1 −1� = FX�x1 −1�

u�1� = 0+ �1−0�FX�x1� = FX�x1��

In other words, the interval containing the tag is �FX�x1 −1��FX�x1��. We need to find the
value of x1 for which 0�772352 lies in the interval �FX�x1 −1��FX�x1��. If we pick x1 = 1,
the interval is �0� 0�8�. If we pick x1 = 2, the interval is �0�8� 0�82�, and if we pick x1 = 3,
the interval is �0�82� 1�0�. As 0�772352 lies in the interval �0�0� 0�8
, we choose x1 = 1. We
now repeat this procedure for the second element x2, using the updated values of l�1� and
u�1�:

l�2� = 0+ �0�8−0�FX�x2 −1� = 0�8FX�x2 −1�

u�2� = 0+ �0�8−0�FX�x2� = 0�8FX�x2��

If we pick x2 = 1, the updated interval is �0� 0�64�, which does not contain the tag. Therefore,
x2 cannot be 1. If we pick x2 = 2, the updated interval is �0�64� 0�656�, which also does not
contain the tag. If we pick x2 = 3, the updated interval is �0�656� 0�8�, which does contain
the tag value of 0�772352. Therefore, the second element in the sequence is 3. Knowing
the second element of the sequence, we can update the values of l�2� and u�2� and find the
element x3, which will give us an interval containing the tag:

l�3� = 0�656+ �0�8−0�656�FX�x3 −1� = 0�656+0�144×FX�x3 −1�

u�3� = 0�656+ �0�8−0�656�FX�x3� = 0�656+0�144×FX�x3��

92 4 A R I T H M E T I C C O D I N G

However, the expressions for l�3� and u�3� are cumbersome in this form. To make the
comparisons more easily, we could subtract the value of l�2� from both the limits and the tag.
That is, we find the value of x3 for which the interval �0�144×FX�x3 −1�, 0�144×FX�x3��
contains 0�772352−0�656 = 0�116352. Or, we could make this even simpler and divide the
residual tag value of 0�116352 by 0�144 to get 0�808, and find the value of x3 for which
0�808 falls in the interval �FX�x3 − 1��FX�x3��. We can see that the only value of x3 for
which this is possible is 2. Substituting 2 for x3 in the update equations, we can update the
values of l�3� and u�3�. We can now find the element x4 by computing the upper and lower
limits as

l�4� = 0�7712+ �0�77408−0�7712�FX�x4 −1� = 0�7712+0�00288×FX�x4 −1�

u�4� = 0�7712+ �0�77408−0�1152�FX�x4� = 0�7712+0�00288×FX�x4��

Again we can subtract l�3� from the tag to get 0�772352 − 0�7712 = 0�001152 and find
the value of x4 for which the interval �0�00288 × FX�x4 − 1�, 0�00288 × FX�x4�� contains
0�001152. To make the comparisons simpler, we can divide the residual value of the tag by
0�00288 to get 0�4, and find the value of x4 for which 0�4 is contained in �FX�x4 −1��FX�x4��.
We can see that the value is x4 = 1, and we have decoded the entire sequence. Note that we
knew the length of the sequence beforehand and, therefore, we knew when to stop. �

From the example above, we can deduce an algorithm that can decipher the tag.

1. Initialize l�0� = 0 and u�0� = 1.

2. For each k find t∗ = �tag − l�k−1��/�u�k−1� − l�k−1��.

3. Find the value of xk for which FX�xk −1� ≤ t∗ < FX�xk�.

4. Update u�k� and l�k�.

5. Continue until the entire sequence has been decoded.

There are two ways to know when the entire sequence has been decoded. The decoder may
know the length of the sequence, in which case the deciphering process is stopped when
that many symbols have been obtained. The second way to know if the entire sequence has
been decoded is that a particular symbol is denoted as an end-of-transmission symbol. The
decoding of this symbol would bring the decoding process to a close.

4.4 Generating a Binary Code

Using the algorithm described in the previous section, we can obtain a tag for a given
sequence x. However, the binary code for the sequence is what we really want to know. We
want to find a binary code that will represent the sequence x in a unique and efficient manner.

We have said that the tag forms a unique representation for the sequence. This means that
the binary representation of the tag forms a unique binary code for the sequence. However,
we have placed no restrictions on what values in the unit interval the tag can take. The binary

4.4 Generating a Binary Code 93

representation of some of these values would be infinitely long, in which case, although the
code is unique, it may not be efficient. To make the code efficient, the binary representation
has to be truncated. But if we truncate the representation, is the resulting code still unique?
Finally, is the resulting code efficient? How far or how close is the average number of bits
per symbol from the entropy? We will examine all these questions in the next section.

Even if we show the code to be unique and efficient, the method described to this
point is highly impractical. In Section 4.4.2, we will describe a more practical algorithm for
generating the arithmetic code for a sequence. We will give an integer implementation of
this algorithm in Section 4.4.3.

4 . 4 . 1 Uniqueness and Ef f i c iency of the Ar i thmet i c
Code

T̄X�x� is a number in the interval �0� 1�. A binary code for T̄X�x� can be obtained by taking
the binary representation of this number and truncating it to l�x� = �log 1

P�x�
�+1 bits.

Example 4 . 4 . 1:

Consider a source � that generates letters from an alphabet of size four,

� = �a1� a2� a3� a4�

with probabilities

P�a1� = 1
2

� P�a2� = 1
4

� P�a3� = 1
8

� P�a4� = 1
8

�

A binary code for this source can be generated as shown in Table 4.4. The quantity T̄x is
obtained using Equation (4.3). The binary representation of T̄x is truncated to �log 1

P�x�
�+1

bits to obtain the binary code.

TAB L E 4 . 4 A binary code for a four-letter alphabet.

Symbol FX T̄X In Binary �log 1
P�x�

�+1 Code

1 .5 .25 .010 2 01
2 .75 .625 .101 3 101
3 .875 .8125 .1101 4 1101
4 1.0 .9375 .1111 4 1111

�

We will show that a code obtained in this fashion is a uniquely decodable code. We first
show that this code is unique, and then we will show that it is uniquely decodable.

Recall that while we have been using T̄X�x� as the tag for a sequence x, any number
in the interval �FX�x −1��FX�x�� would be a unique identifier. Therefore, to show that the
code �T̄X�x��l�x� is unique, all we need to do is show that it is contained in the interval

94 4 A R I T H M E T I C C O D I N G

�FX�x −1��FX�x��. Because we are truncating the binary representation of T̄X�x� to obtain
�T̄X�x��l�x�, �T̄X�x��l�x� is less than or equal to T̄X�x�. More specifically,

0 ≤ T̄X�x�−�T̄X�x��l�x� <
1

2l�x�
� (4.11)

As T̄X�x� is strictly less than FX�x��,

�T̄X�x��l�x� < FX�x��

To show that �T̄X�x��l�x� ≥ FX�x −1�, note that

1
2l�x�

= 1

2�log 1
P�x�

�+1

<
1

2log 1
P�x�

+1

= 1

2 1
P�x�

= P�x�

2
�

From (4.3) we have

P�x�

2
= T̄X�x�−FX�x −1��

Therefore,

T̄X�x�−FX�x −1� >
1

2l�x�
� (4.12)

Combining (4.11) and (4.12), we have

�T̄X�x��l�x� > FX�x −1�� (4.13)

Therefore, the code �T̄X�x��l�x� is a unique representation of T̄X�x�.
To show that this code is uniquely decodable, we will show that the code is a prefix

code; that is, no codeword is a prefix of another codeword. Because a prefix code is always
uniquely decodable, by showing that an arithmetic code is a prefix code, we automatically
show that it is uniquely decodable. Given a number a in the interval �0� 1� with an n-bit
binary representation �b1b2 	 	 	 bn
, for any other number b to have a binary representation
with �b1b2 	 	 	 bn
 as the prefix, b has to lie in the interval �a�a+ 1

2n �. (See Problem 1.)
If x and y are two distinct sequences, we know that �T̄X�x��l�x� and �T̄X�y��l�y� lie in

two disjoint intervals, �FX�x−1��FX�x�� and �FX�y−1��FX�y��. Therefore, if we can show
that for any sequence x, the interval ��T̄X�x��l�x�� �T̄X�x��l�x� + 1

2l�x� � lies entirely within the
interval �FX�x − 1��FX�x��, this will mean that the code for one sequence cannot be the
prefix for the code for another sequence.

4.4 Generating a Binary Code 95

We have already shown that �T̄X�x��l�x� > FX�x − 1�. Therefore, all we need to do is
show that

FX�x�−�T̄X�x��l�x� >
1

2l�x�
�

This is true because

FX�x�−�T̄X�x��l�x� > FX�x�− T̄X�x�

= P�x�

2

>
1

2l�x�
�

This code is prefix free, and by taking the binary representation of T̄X�x� and truncating it
to l�x� = �log 1

P�x�
�+1 bits, we obtain a uniquely decodable code.

Although the code is uniquely decodable, how efficient is it? We have shown that the
number of bits l�x� required to represent FX�x� with enough accuracy such that the code for
different values of x are distinct is

l�x� =
⌈

log
1

P�x�

⌉

+1�

Remember that l�x� is the number of bits required to encode the entire sequence x. So, the
average length of an arithmetic code for a sequence of length m is given by

lAm = ∑
P�x�l�x� (4.14)

= ∑
P�x�

[⌈

log
1

P�x�

⌉

+1
]

(4.15)

<
∑

P�x�

[

log
1

P�x�
+1+1

]

(4.16)

= −∑P�x� log P�x�+2
∑

P�x� (4.17)

= H�Xm�+2� (4.18)

Given that the average length is always greater than the entropy, the bounds on lA�m� are

H�X�m�� ≤ lA�m� < H�X�m��+2�

The length per symbol, lA, or rate of the arithmetic code is
l
A�m�

m
. Therefore, the bounds on

lA are

H�X�m��

m
≤ lA <

H�X�m��

m
+ 2

m
� (4.19)

We have shown in Chapter 3 that for iid sources

H�X�m�� = mH�X�� (4.20)

96 4 A R I T H M E T I C C O D I N G

Therefore,

H�X� ≤ lA < H�X�+ 2
m

� (4.21)

By increasing the length of the sequence, we can guarantee a rate as close to the entropy as
we desire.

4 . 4 . 2 Algor i thm Implementat ion

In Section 4.3.1 we developed a recursive algorithm for the boundaries of the interval
containing the tag for the sequence being encoded as

l�n� = l�n−1� + �u�n−1� − l�n−1��FX�xn −1� (4.22)

u�n� = l�n−1� + �u�n−1� − l�n−1��FX�xn� (4.23)

where xn is the value of the random variable corresponding to the nth observed symbol, l�n�

is the lower limit of the tag interval at the nth iteration, and u�n� is the upper limit of the tag
interval at the nth iteration.

Before we can implement this algorithm, there is one major problem we have to resolve.
Recall that the rationale for using numbers in the interval �0� 1� as a tag was that there are
an infinite number of numbers in this interval. However, in practice the number of numbers
that can be uniquely represented on a machine is limited by the maximum number of digits
(or bits) we can use for representing the number. Consider the values of l�n� and u�n� in
Example 4.3.5. As n gets larger, these values come closer and closer together. This means
that in order to represent all the subintervals uniquely we need increasing precision as the
length of the sequence increases. In a system with finite precision, the two values are bound
to converge, and we will lose all information about the sequence from the point at which
the two values converged. To avoid this situation, we need to rescale the interval. However,
we have to do it in a way that will preserve the information that is being transmitted. We
would also like to perform the encoding incrementally—that is, to transmit portions of the
code as the sequence is being observed, rather than wait until the entire sequence has been
observed before transmitting the first bit. The algorithm we describe in this section takes
care of the problems of synchronized rescaling and incremental encoding.

As the interval becomes narrower, we have three possibilities:

1. The interval is entirely confined to the lower half of the unit interval �0� 0�5�.

2. The interval is entirely confined to the upper half of the unit interval �0�5� 1�0�.

3. The interval straddles the midpoint of the unit interval.

We will look at the third case a little later in this section. First, let us examine the first two
cases. Once the interval is confined to either the upper or lower half of the unit interval, it
is forever confined to that half of the unit interval. The most significant bit of the binary
representation of all numbers in the interval �0� 0�5� is 0, and the most significant bit of the
binary representation of all numbers in the interval �0�5� 1
 is 1. Therefore, once the interval
gets restricted to either the upper or lower half of the unit interval, the most significant bit of

4.4 Generating a Binary Code 97

the tag is fully determined. Therefore, without waiting to see what the rest of the sequence
looks like, we can indicate to the decoder whether the tag is confined to the upper or lower
half of the unit interval by sending a 1 for the upper half and a 0 for the lower half. The bit
that we send is also the first bit of the tag.

Once the encoder and decoder know which half contains the tag, we can ignore the half
of the unit interval not containing the tag and concentrate on the half containing the tag.
As our arithmetic is of finite precision, we can do this best by mapping the half interval
containing the tag to the full �0� 1� interval. The mappings required are

E1 � �0� 0�5� → �0� 1�� E1�x� = 2x (4.24)

E2 � �0�5� 1� → �0� 1�� E2�x� = 2�x−0�5�� (4.25)

As soon as we perform either of these mappings, we lose all information about the most
significant bit. However, this should not matter because we have already sent that bit to the
decoder. We can now continue with this process, generating another bit of the tag every time
the tag interval is restricted to either half of the unit interval. This process of generating the
bits of the tag without waiting to see the entire sequence is called incremental encoding.

Example 4 . 4 . 2: Tag generat ion wi th sca l ing

Let’s revisit Example 4.3.5. Recall that we wish to encode the sequence 1 3 2 1. The
probability model for the source is P�a1� = 0�8, P�a2� = 0�02, P�a3� = 0�18. Initializing u�0�

to 1, and l�0� to 0, the first element of the sequence, 1, results in the following update:

l�1� = 0+ �1−0�0 = 0

u�1� = 0+ �1−0��0�8� = 0�8�

The interval �0� 0�8� is not confined to either the upper or lower half of the unit interval, so
we proceed.

The second element of the sequence is 3. This results in the update

l�2� = 0+ �0�8−0�FX�2� = 0�8×0�82 = 0�656

u�2� = 0+ �0�8−0�FX�3� = 0�8×1�0 = 0�8�

The interval �0�656� 0�8� is contained entirely in the upper half of the unit interval, so we
send the binary code 1 and rescale:

l�2� = 2× �0�656−0�5� = 0�312

u�2� = 2× �0�8−0�5� = 0�6�

The third element, 2, results in the following update equations:

l�3� = 0�312+ �0�6−0�312�FX�1� = 0�312+0�288×0�8 = 0�5424

u�3� = 0�312+ �0�8−0�312�FX�2� = 0�312+0�288×0�82 = 0�54816�

98 4 A R I T H M E T I C C O D I N G

The interval for the tag is �0�5424� 0�54816�, which is contained entirely in the upper half
of the unit interval. We transmit a 1 and go through another rescaling:

l�3� = 2× �0�5424−0�5� = 0�0848

u�3� = 2× �0�54816−0�5� = 0�09632�

This interval is contained entirely in the lower half of the unit interval, so we send a 0 and
use the E1 mapping to rescale:

l�3� = 2× �0�0848� = 0�1696

u�3� = 2× �0�09632� = 0�19264�

The interval is still contained entirely in the lower half of the unit interval, so we send
another 0 and go through another rescaling:

l�3� = 2× �0�1696� = 0�3392

u�3� = 2× �0�19264� = 0�38528�

Because the interval containing the tag remains in the lower half of the unit interval, we
send another 0 and rescale one more time:

l�3� = 2×0�3392 = 0�6784

u�3� = 2×0�38528 = 0�77056�

Now the interval containing the tag is contained entirely in the upper half of the unit interval.
Therefore, we transmit a 1 and rescale using the E2 mapping:

l�3� = 2× �0�6784−0�5� = 0�3568

u�3� = 2× �0�77056−0�5� = 0�54112�

At each stage we are transmitting the most significant bit that is the same in both the
upper and lower limit of the tag interval. If the most significant bits in the upper and
lower limit are the same, then the value of this bit will be identical to the most significant
bit of the tag. Therefore, by sending the most significant bits of the upper and lower endpoint
of the tag whenever they are identical, we are actually sending the binary representation of
the tag. The rescaling operations can be viewed as left shifts, which make the second most
significant bit the most significant bit.

Continuing with the last element, the upper and lower limits of the interval containing
the tag are

l�4� = 0�3568+ �0�54112−0�3568�FX�0� = 0�3568+0�18422×0�0 = 0�3568

u�4� = 0�3568+ �0�54112−0�3568�FX�1� = 0�3568+0�18422×0�8 = 0�504256�

4.4 Generating a Binary Code 99

At this point, if we wished to stop encoding, all we need to do is inform the receiver of
the final status of the tag value. We can do so by sending the binary representation of any
value in the final tag interval. Generally, this value is taken to be l�n�. In this particular
example, it is convenient to use the value of 0�5. The binary representation of 0�5 is �10 	 	 	 .
Thus, we would transmit a 1 followed by as many 0s as required by the word length of the
implementation being used. �

Notice that the tag interval size at this stage is approximately 64 times the size it was
when we were using the unmodified algorithm. Therefore, this technique solves the finite
precision problem. As we shall soon see, the bits that we have been sending with each
mapping constitute the tag itself, which satisfies our desire for incremental encoding. The
binary sequence generated during the encoding process in the previous example is 1100011.
We could simply treat this as the binary expansion of the tag. A binary number �1100011
corresponds to the decimal number 0�7734375. Looking back to Example 4.3.5, notice that
this number lies within the final tag interval. Therefore, we could use this to decode the
sequence.

However, we would like to do incremental decoding as well as incremental encoding.
This raises three questions:

1. How do we start decoding?

2. How do we continue decoding?

3. How do we stop decoding?

The second question is the easiest to answer. Once we have started decoding, all we have to
do is mimic the encoder algorithm. That is, once we have started decoding, we know how
to continue decoding. To begin the decoding process, we need to have enough information
to decode the first symbol unambiguously. In order to guarantee unambiguous decoding, the
number of bits received should point to an interval smaller than the smallest tag interval.
Based on the smallest tag interval, we can determine how many bits we need before we start
the decoding procedure. We will demonstrate this procedure in Example 4.4.4. First let’s
look at other aspects of decoding using the message from Example 4.4.2.

Example 4 . 4 . 3:

We will use a word length of 6 for this example. Note that because we are dealing with
real numbers this word length may not be sufficient for a different sequence. As in the
encoder, we start with initializing u�0� to 1 and l�0� to 0. The sequence of received bits is
110001100 	 	 	 0. The first 6 bits correspond to a tag value of 0�765625, which means that
the first element of the sequence is 1, resulting in the following update:

l�1� = 0+ �1−0�0 = 0

u�1� = 0+ �1−0��0�8� = 0�8�

100 4 A R I T H M E T I C C O D I N G

The interval �0� 0�8� is not confined to either the upper or lower half of the unit interval,
so we proceed. The tag 0�765625 lies in the top 18% of the interval �0� 0�8�; therefore, the
second element of the sequence is 3. Updating the tag interval we get

l�2� = 0+ �0�8−0�FX�2� = 0�8×0�82 = 0�656

u�2� = 0+ �0�8−0�FX�3� = 0�8×1�0 = 0�8�

The interval �0�656� 0�8� is contained entirely in the upper half of the unit interval. At
the encoder, we sent the bit 1 and rescaled. At the decoder, we will shift 1 out of the receive
buffer and move the next bit in to make up the 6 bits in the tag. We will also update the tag
interval, resulting in

l�2� = 2× �0�656−0�5� = 0�312

u�2� = 2× �0�8−0�5� = 0�6

while shifting a bit to give us a tag of 0�546875. When we compare this value with the
tag interval, we can see that this value lies in the 80–82% range of the tag interval, so we
decode the next element of the sequence as 2. We can then update the equations for the tag
interval as

l�3� = 0�312+ �0�6−0�312�FX�1� = 0�312+0�288×0�8 = 0�5424

u�3� = 0�312+ �0�8−0�312�FX�2� = 0�312+0�288×0�82 = 0�54816�

As the tag interval is now contained entirely in the upper half of the unit interval, we
rescale using E2 to obtain

l�3� = 2× �0�5424−0�5� = 0�0848

u�3� = 2× �0�54816−0�5� = 0�09632�

We also shift out a bit from the tag and shift in the next bit. The tag is now 000110. The
interval is contained entirely in the lower half of the unit interval. Therefore, we apply E1

and shift another bit. The lower and upper limits of the tag interval become

l�3� = 2× �0�0848� = 0�1696

u�3� = 2× �0�09632� = 0�19264

and the tag becomes 001100. The interval is still contained entirely in the lower half of
the unit interval, so we shift out another 0 to get a tag of 011000 and go through another
rescaling:

l�3� = 2× �0�1696� = 0�3392

u�3� = 2× �0�19264� = 0�38528�

4.4 Generating a Binary Code 101

Because the interval containing the tag remains in the lower half of the unit interval, we
shift out another 0 from the tag to get 110000 and rescale one more time:

l�3� = 2×0�3392 = 0�6784

u�3� = 2×0�38528 = 0�77056�

Now the interval containing the tag is contained entirely in the upper half of the unit
interval. Therefore, we shift out a 1 from the tag and rescale using the E2 mapping:

l�3� = 2× �0�6784−0�5� = 0�3568

u�3� = 2× �0�77056−0�5� = 0�54112�

Now we compare the tag value to the the tag interval to decode our final element. The tag
is 100000, which corresponds to 0�5. This value lies in the first 80% of the interval, so we
decode this element as 1. �

If the tag interval is entirely contained in the upper or lower half of the unit interval,
the scaling procedure described will prevent the interval from continually shrinking. Now
we consider the case where the diminishing tag interval straddles the midpoint of the unit
interval. As our trigger for rescaling, we check to see if the tag interval is contained in the
interval �0�25� 0�75�. This will happen when l�n� is greater than 0�25 and u�n� is less than
0�75. When this happens, we double the tag interval using the following mapping:

E3 � �0�25� 0�75� → �0� 1�� E3�x� = 2�x−0�25�� (4.26)

We have used a 1 to transmit information about an E2 mapping, and a 0 to transmit
information about an E1 mapping. How do we transfer information about an E3 mapping
to the decoder? We use a somewhat different strategy in this case. At the time of the E3

mapping, we do not send any information to the decoder; instead, we simply record the fact
that we have used the E3 mapping at the encoder. Suppose that after this, the tag interval gets
confined to the upper half of the unit interval. At this point we would use an E2 mapping
and send a 1 to the receiver. Note that the tag interval at this stage is at least twice what it
would have been if we had not used the E3 mapping. Furthermore, the upper limit of the
tag interval would have been less than 0�75. Therefore, if the E3 mapping had not taken
place right before the E2 mapping, the tag interval would have been contained entirely in
the lower half of the unit interval. At this point we would have used an E1 mapping and
transmitted a 0 to the receiver. In fact, the effect of the earlier E3 mapping can be mimicked
at the decoder by following the E2 mapping with an E1 mapping. At the encoder, right after
we send a 1 to announce the E2 mapping, we send a 0 to help the decoder track the changes
in the tag interval at the decoder. If the first rescaling after the E3 mapping happens to be an
E1 mapping, we do exactly the opposite. That is, we follow the 0 announcing an E1 mapping
with a 1 to mimic the effect of the E3 mapping at the encoder.

What happens if we have to go through a series of E3 mappings at the encoder? We
simply keep track of the number of E3 mappings and then send that many bits of the opposite
variety after the first E1 or E2 mapping. If we went through three E3 mappings at the encoder,

102 4 A R I T H M E T I C C O D I N G

followed by an E2 mapping, we would transmit a 1 followed by three 0s. On the other hand,
if we went through an E1 mapping after the E3 mappings, we would transmit a 0 followed
by three 1s. Since the decoder mimics the encoder, the E3 mappings are also applied at the
decoder when the tag interval is contained in the interval �0�25� 0�75�.

4 . 4 . 3 Integer Implementat ion

We have described a floating-point implementation of arithmetic coding. Let us now repeat
the procedure using integer arithmetic and generate the binary code in the process.

En code r Imp lemen ta t i on

The first thing we have to do is decide on the word length to be used. Given a word length
of m, we map the important values in the �0� 1� interval to the range of 2m binary words.
The point 0 gets mapped to

m times
︷ ︸︸ ︷
00 	 	 	 0�

1 gets mapped to

m times
︷ ︸︸ ︷
11 	 	 	 1�

The value of 0�5 gets mapped to

1

m−1 times
︷ ︸︸ ︷
00 	 	 	 0�

The update equations remain almost the same as Equations (4.9) and (4.10). As we are going
to do integer arithmetic, we need to replace FX�x� in these equations.

Define nj as the number of times the symbol j occurs in a sequence of length
Total Count. Then FX�k� can be estimated by

FX�k� =
∑k

i=1 ni

Total Count
� (4.27)

If we now define

Cum_Count�k� =
k∑

i=1

ni

we can write Equations (4.9) and (4.10) as

l�n� = l�n−1� +
⌊

�u�n−1� − l�n−1� +1�×Cum_Count�xn −1�

Total Count

⌋

(4.28)

u�n� = l�n−1� +
⌊

�u�n−1� − l�n−1� +1�×Cum_Count�xn�

Total Count

⌋

−1 (4.29)

4.4 Generating a Binary Code 103

where xn is the nth symbol to be encoded, �x� is the largest integer less than or equal
to x, and where the addition and subtraction of one is to handle the effects of the integer
arithmetic.

Because of the way we mapped the endpoints and the halfway points of the unit interval,
when both l�n� and u�n� are in either the upper half or lower half of the interval, the leading
bit of u�n� and l�n� will be the same. If the leading or most significant bit (MSB) is 1, then
the tag interval is contained entirely in the upper half of the �00 	 	 	 0� 11 	 	 	 1
 interval. If
the MSB is 0, then the tag interval is contained entirely in the lower half. Applying the E1

and E2 mappings is a simple matter. All we do is shift out the MSB and then shift in a 1
into the integer code for u�n� and a 0 into the code for l�n�. For example, suppose m was 6,
u�n� was 54, and l�n� was 33. The binary representations of u�n� and l�n� are 110110 and
100001, respectively. Notice that the MSB for both endpoints is 1. Following the procedure
above, we would shift out (and transmit or store) the 1, and shift in 1 for u�n� and 0 for l�n�,
obtaining the new value for u�n� as 101101, or 45, and a new value for l�n� as 000010, or 2.
This is equivalent to performing the E2 mapping. We can see how the E1 mapping would
also be performed using the same operation.

To see if the E3 mapping needs to be performed, we monitor the second most significant
bit of u�n� and l�n�. When the second most significant bit of u�n� is 0 and the second most
significant bit of l�n� is 1, this means that the tag interval lies in the middle half of the
�00 	 	 	 0� 11 	 	 	 1
 interval. To implement the E3 mapping, we complement the second most
significant bit in u�n� and l�n�, and shift left, shifting in a 1 in u�n� and a 0 in l�n�. We also
keep track of the number of E3 mappings in Scale3.

We can summarize the encoding algorithm using the following pseudocode:

Initialize l and u.
Get symbol.

l ←− l+
⌊

�u− l+1�×Cum_Count�x−1�

TotalCount

⌋

u ←− l+
⌊

�u− l+1�×Cum_Count�x�

TotalCount

⌋

−1

while(MSB of u and l are both equal to b or E3 condition holds)
if(MSB of u and l are both equal to b)

{
send b
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
while(Scale3 > 0)

{
send complement of b
decrement Scale3
}

}

104 4 A R I T H M E T I C C O D I N G

if(E3 condition holds)

{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
complement (new) MSB of l and u
increment Scale3
}

To see how all this functions together, let’s look at an example.

Example 4 . 4 . 4:

We will encode the sequence 1 3 2 1 with parameters shown in Table 4.5. First we need to
select the word length m. Note that Cum_Count�1� and Cum_Count�2� differ by only 1.
Recall that the values of Cum_Count will get translated to the endpoints of the subintervals.
We want to make sure that the value we select for the word length will allow enough range
for it to be possible to represent the smallest difference between the endpoints of intervals.
We always rescale whenever the interval gets small. In order to make sure that the endpoints
of the intervals always remain distinct, we need to make sure that all values in the range
from 0 to Total_Count, which is the same as Cum_Count�3�, are uniquely represented in
the smallest range an interval under consideration can be without triggering a rescaling. The
interval is smallest without triggering a rescaling when l�n� is just below the midpoint of the
interval and u�n� is at three-quarters of the interval, or when u�n� is right at the midpoint of
the interval and l�n� is just below a quarter of the interval. That is, the smallest the interval
�l�n�� u�n�
 can be is one-quarter of the total available range of 2m values. Thus, m should be
large enough to accommodate uniquely the set of values between 0 and Total_Count.

TAB L E 4 . 5 Values of some of the parameters for
arithmetic coding example.

Count�1� = 40 Cum_Count�0� = 0 Scale3 = 0
Count�2� = 1 Cum_Count�1� = 40
Count�3� = 9 Cum_Count�2� = 41
Total_Count = 50 Cum_Count�3� = 50

For this example, this means that the total interval range has to be greater than 200.
A value of m = 8 satisfies this requirement.

With this value of m we have

l�0� = 0 = �00000000�2 (4.30)

u�0� = 255 = �11111111�2 (4.31)

where � · · · �2 is the binary representation of a number.

4.4 Generating a Binary Code 105

The first element of the sequence to be encoded is 1. Using Equations (4.28) and (4.29),

l�1� = 0+
⌊

256×Cum_Count�0�

50

⌋

= 0 = �00000000�2 (4.32)

u�1� = 0+
⌊

256×Cum_Count�1�

50

⌋

−1 = 203 = �11001011�2� (4.33)

The next element of the sequence is 3.

l�2� = 0+
⌊

204×Cum_Count�2�

50

⌋

= 167 = �10100111�2 (4.34)

u�2� = 0+
⌊

204×Cum_Count�3�

50

⌋

−1 = 203 = �11001011�2 (4.35)

The MSBs of l�2� and u�2� are both 1. Therefore, we shift this value out and send it to the
decoder. All other bits are shifted left by 1 bit, giving

l�2� = �01001110�2 = 78 (4.36)

u�2� = �10010111�2 = 151� (4.37)

Notice that while the MSBs of the limits are different, the second MSB of the upper limit is
0, while the second MSB of the lower limit is 1. This is the condition for the E3 mapping.
We complement the second MSB of both limits and shift 1 bit to the left, shifting in a 0 as
the LSB of l�2� and a 1 as the LSB of u�2�. This gives us

l�2� = �00011100�2 = 28 (4.38)

u�2� = �10101111�2 = 175� (4.39)

We also increment Scale3 to a value of 1.
The next element in the sequence is 2. Updating the limits, we have

l�3� = 28+
⌊

148×Cum_Count�1�

50

⌋

= 146 = �10010010�2 (4.40)

u�3� = 28+
⌊

148×Cum_Count�2�

50

⌋

−1 = 148 = �10010100�2� (4.41)

The two MSBs are identical, so we shift out a 1 and shift left by 1 bit:

l�3� = �00100100�2 = 36 (4.42)

u�3� = �00101001�2 = 41� (4.43)

As Scale3 is 1, we transmit a 0 and decrement Scale3 to 0. The MSBs of the upper and
lower limits are both 0, so we shift out and transmit 0:

l�3� = �01001000�2 = 72 (4.44)

u�3� = �01010011�2 = 83� (4.45)

106 4 A R I T H M E T I C C O D I N G

Both MSBs are again 0, so we shift out and transmit 0:

l�3� = �10010000�2 = 144 (4.46)

u�3� = �10100111�2 = 167� (4.47)

Now both MSBs are 1, so we shift out and transmit a 1. The limits become

l�3� = �00100000�2 = 32 (4.48)

u�3� = �01001111�2 = 79� (4.49)

Once again the MSBs are the same. This time we shift out and transmit a 0.

l�3� = �01000000�2 = 64 (4.50)

u�3� = �10011111�2 = 159� (4.51)

Now the MSBs are different. However, the second MSB for the lower limit is 1 while the
second MSB for the upper limit is 0. This is the condition for the E3 mapping. Applying the
E3 mapping by complementing the second MSB and shifting 1 bit to the left, we get

l�3� = �00000000�2 = 0 (4.52)

u�3� = �10111111�2 = 191� (4.53)

We also increment Scale3 to 1.
The next element in the sequence to be encoded is 1. Therefore,

l�4� = 0+
⌊

192×Cum_Count�0�

50

⌋

= 0 = �00000000�2 (4.54)

u�4� = 0+
⌊

192×Cum_Count�1�

50

⌋

−1 = 152 = �10011000�2� (4.55)

The encoding continues in this fashion. To this point we have generated the binary sequence
1100010. If we wished to terminate the encoding at this point, we have to send the current
status of the tag. This can be done by sending the value of the lower limit l�4�. As l�4� is
0, we will end up sending eight 0s. However, Scale3 at this point is 1. Therefore, after we
send the first 0 from the value of l�4�, we need to send a 1 before sending the remaining
seven 0s. The final transmitted sequence is 1100010010000000. �

Decode r Imp lemen ta t i on

Once we have the encoder implementation, the decoder implementation is easy to describe.
As mentioned earlier, once we have started decoding all we have to do is mimic the encoder
algorithm. Let us first describe the decoder algorithm using pseudocode and then study its
implementation using Example 4.4.5.

4.4 Generating a Binary Code 107

Decode r A lgo r i t hm

Initialize l and u.
Read the first m bits of the received bitstream into tag t.
k = 0

while
(⌊

�t − l+1�×Total Count−1
u− l+1

⌋

≥ Cum_Count�k�

)

k ←− k+1
decode symbol x.

l ←− l+
⌊

�u− l+1�×Cum_Count�x−1�

Total Count

⌋

u ←− l+
⌊

�u− l+1�×Cum_Count�x�

Total Count

⌋

−1

while(MSB of u and l are both equal to b or E3 condition holds)
if(MSB of u and l are both equal to b)

{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift t to the left by 1 bit and read next bit from received bitstream into LSB
}

if(E3 condition holds)

{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift t to the left by 1 bit and read next bit from received bitstream into LSB
complement (new) MSB of l, u, and t
}

Example 4 . 4 . 5:

After encoding the sequence in Example 4.4.4, we ended up with the following binary
sequence: 1100010010000000. Treating this as the received sequence and using the param-
eters from Table 4.5, let us decode this sequence. Using the same word length, eight, we
read in the first 8 bits of the received sequence to form the tag t:

t = �11000100�2 = 196�

We initialize the lower and upper limits as

l = �00000000�2 = 0

u = �11111111�2 = 255�

108 4 A R I T H M E T I C C O D I N G

To begin decoding, we compute

⌊
�t − l+1�×Total Count−1

u− l+1

⌋

=
⌊

197×50−1
255−0+1

⌋

= 38

and compare this value to

Cum_Count =

⎡

⎢
⎢
⎣

0
40
41
50

⎤

⎥
⎥
⎦

Since

0 ≤ 38 < 40�

we decode the first symbol as 1. Once we have decoded a symbol, we update the lower and
upper limits:

l = 0+
⌊

256×Cum_Count�0

Total Count

⌋

= 0+
⌊

256× 0
50

⌋

= 0

u = 0+
⌊

256×Cum_Count�1

Total Count

⌋

−1 = 0+
⌊

256× 40
50

⌋

−1 = 203

or

l = �00000000�2

u = �11001011�2�

The MSB of the limits are different and the E3 condition does not hold. Therefore, we
continue decoding without modifying the tag value. To obtain the next symbol, we compare

⌊
�t − l+1�×Total Count−1

u− l+1

⌋

which is 48, against the Cum_Count array:

Cum_Count�2
 ≤ 48 < Cum_Count�3
�

Therefore, we decode 3 and update the limits:

l = 0+
⌊

204×Cum_Count�2

Total Count

⌋

= 0+
⌊

204× 41
50

⌋

= 167 = �1010011�2

u = 0+
⌊

204×Cum_Count�3

Total Count

⌋

−1 = 0+
⌊

204× 50
50

⌋

−1 = 203 = �11001011�2�

4.5 Comparison of Huffman and Arithmetic Coding 109

As the MSB of u and l are the same, we shift the MSB out and read in a 0 for the LSB of
l and a 1 for the LSB of u. We mimic this action for the tag as well, shifting the MSB out
and reading in the next bit from the received bitstream as the LSB:

l = �01001110�2

u = �10010111�2

t = �10001001�2�

Examining l and u we can see we have an E3 condition. Therefore, for l, u, and t, we
shift the MSB out, complement the new MSB, and read in a 0 as the LSB of l, a 1 as the
LSB of u, and the next bit in the received bitstream as the LSB of t. We now have

l = �00011100�2 = 28

u = �10101111�2 = 175

t = �10010010�2 = 146�

To decode the next symbol, we compute
⌊

�t − l+1�×Total Count−1
u− l+1

⌋

= 40�

Since 40 ≤ 40 < 41, we decode 2.
Updating the limits using this decoded symbol, we get

l = 28+
⌊

�175−28+1�×40
50

⌋

= 146 = �10010010�2

u = 28+
⌊

�175−28+1�×41
50

⌋

−1 = 148 = �10010100�2�

We can see that we have quite a few bits to shift out. However, notice that the lower limit
l has the same value as the tag t. Furthermore, the remaining received sequence consists
entirely of 0s. Therefore, we will be performing identical operations on numbers that are the
same, resulting in identical numbers. This will result in the final decoded symbol being 1.
We knew this was the final symbol to be decoded because only four symbols had been
encoded. In practice this information has to be conveyed to the decoder. �

4.5 Comparison of Huffman and Arithmetic
Coding

We have described a new coding scheme that, although more complicated than Huffman
coding, allows us to code sequences of symbols. How well this coding scheme works depends
on how it is used. Let’s first try to use this code for encoding sources for which we know
the Huffman code.

110 4 A R I T H M E T I C C O D I N G

Looking at Example 4.4.1, the average length for this code is

l = 2×0�5+3×0�25+4×0�125+4×0�125 (4.56)

= 2�75 bits/symbol� (4.57)

Recall from Section 2.4 that the entropy of this source was 1.75 bits/symbol and the Huffman
code achieved this entropy. Obviously, arithmetic coding is not a good idea if you are going
to encode your message one symbol at a time. Let’s repeat the example with messages
consisting of two symbols. (Note that we are only doing this to demonstrate a point. In
practice, we would not code sequences this short using an arithmetic code.)

Example 4 . 5 . 1:

If we encode two symbols at a time, the resulting code is shown in Table 4.6.

TAB L E 4 . 6 Arithmetic code for two-symbol sequences.

Message P�x� T̄X�x� T̄X�x� in Binary �log 1
P�x�

�+1 Code

11 �25 �125 �001 3 001
12 �125 �3125 �0101 4 0101
13 �0625 �40625 �01101 5 01101
14 �0625 �46875 �01111 5 01111
21 �125 �5625 �1001 4 1001
22 �0625 �65625 �10101 5 10101
23 �03125 �703125 �101101 6 101101
24 �03125 �734375 �101111 6 101111
31 �0625 �78125 �11001 5 11001
32 �03125 �828125 �110101 6 110101
33 �015625 �8515625 �1101101 7 1101101
34 �015625 �8671875 �1101111 7 1101111
41 �0625 �90625 �11101 5 11101
42 �03125 �953125 �111101 6 111101
43 �015625 �9765625 �1111101 7 1111101
44 �015625 �984375 �1111111 7 1111111

The average length per message is 4.5 bits. Therefore, using two symbols at a time we
get a rate of 2.25 bits/symbol (certainly better than 2.75 bits/symbol, but still not as good
as the best rate of 1.75 bits/symbol). However, we see that as we increase the number of
symbols per message, our results get better and better. �

How many samples do we have to group together to make the arithmetic coding scheme
perform better than the Huffman coding scheme? We can get some idea by looking at the
bounds on the coding rate.

4.5 Comparison of Huffman and Arithmetic Coding 111

Recall that the bounds on the average length lA of the arithmetic code are

H�X� ≤ lA ≤ H�X�+ 2
m

�

It does not take many symbols in a sequence before the coding rate for the arithmetic code
becomes quite close to the entropy. However, recall that for Huffman codes, if we block m
symbols together, the coding rate is

H�X� ≤ lH ≤ H�X�+ 1
m

�

The advantage seems to lie with the Huffman code, although the advantage decreases
with increasing m. However, remember that to generate a codeword for a sequence of length
m, using the Huffman procedure requires building the entire code for all possible sequences
of length m. If the original alphabet size was k, then the size of the codebook would be km.
Taking relatively reasonable values of k = 16 and m = 20 gives a codebook size of 1620! This
is obviously not a viable option. For the arithmetic coding procedure, we do not need to build
the entire codebook. Instead, we simply obtain the code for the tag corresponding to a given
sequence. Therefore, it is entirely feasible to code sequences of length 20 or much more. In
practice, we can make m large for the arithmetic coder and not for the Huffman coder. This
means that for most sources we can get rates closer to the entropy using arithmetic coding
than by using Huffman coding. The exceptions are sources whose probabilities are powers
of two. In these cases, the single-letter Huffman code achieves the entropy, and we cannot
do any better with arithmetic coding, no matter how long a sequence we pick.

The amount of gain also depends on the source. Recall that for Huffman codes we are
guaranteed to obtain rates within 0�086+pmax of the entropy, where pmax is the probability
of the most probable letter in the alphabet. If the alphabet size is relatively large and the
probabilities are not too skewed, the maximum probability pmax is generally small. In these
cases, the advantage of arithmetic coding over Huffman coding is small, and it might not be
worth the extra complexity to use arithmetic coding rather than Huffman coding. However,
there are many sources, such as facsimile, in which the alphabet size is small, and the
probabilities are highly unbalanced. In these cases, the use of arithmetic coding is generally
worth the added complexity.

Another major advantage of arithmetic coding is that it is easy to implement a system with
multiple arithmetic codes. This may seem contradictory, as we have claimed that arithmetic
coding is more complex than Huffman coding. However, it is the computational machinery
that causes the increase in complexity. Once we have the computational machinery to
implement one arithmetic code, all we need to implement more than a single arithmetic code
is the availability of more probability tables. If the alphabet size of the source is small, as in
the case of a binary source, there is very little added complexity indeed. In fact, as we shall see
in the next section, it is possible to develop multiplication-free arithmetic coders that are quite
simple to implement (nonbinary multiplication-free arithmetic coders are described in [44]).

Finally, it is much easier to adapt arithmetic codes to changing input statistics. All we
need to do is estimate the probabilities of the input alphabet. This can be done by keeping a
count of the letters as they are coded. There is no need to preserve a tree, as with adaptive
Huffman codes. Furthermore, there is no need to generate a code a priori, as in the case of

112 4 A R I T H M E T I C C O D I N G

Huffman coding. This property allows us to separate the modeling and coding procedures
in a manner that is not very feasible with Huffman coding. This separation permits greater
flexibility in the design of compression systems, which can be used to great advantage.

4.6 Adaptive Arithmetic Coding

We have seen how to construct arithmetic coders when the distribution of the source, in the
form of cumulative counts, is available. In many applications such counts are not available
a priori. It is a relatively simple task to modify the algorithms discussed so that the coder
learns the distribution as the coding progresses. A straightforward implementation is to start
out with a count of 1 for each letter in the alphabet. We need a count of at least 1 for each
symbol, because if we do not we will have no way of encoding the symbol when it is first
encountered. This assumes that we know nothing about the distribution of the source. If we
do know something about the distribution of the source, we can let the initial counts reflect
our knowledge.

After coding is initiated, the count for each letter encountered is incremented after
that letter has been encoded. The cumulative count table is updated accordingly. It is very
important that the updating take place after the encoding; otherwise the decoder will not
be using the same cumulative count table as the encoder to perform the decoding. At the
decoder, the count and cumulative count tables are updated after each letter is decoded.

In the case of the static arithmetic code, we picked the size of the word based on Total
Count, the total number of symbols to be encoded. In the adaptive case, we may not know
ahead of time what the total number of symbols is going to be. In this case we have to pick
the word length independent of the total count. However, given a word length m we know
that we can only accomodate a total count of 2m−2 or less. Therefore, during the encoding and
decoding processes when the total count approaches 2m−2, we have to go through a rescaling,
or renormalization, operation. A simple rescaling operation is to divide all counts by 2 and
rounding up the result so that no count gets rescaled to zero. This periodic rescaling can
have an added benefit in that the count table better reflects the local statisitcs of the source.

4.7 Applicat ions

Arithmetic coding is used in a variety of lossless and lossy compression applications.
It is a part of many international standards. In the area of multimedia there are a few
principal organizations that develop standards. The International Standards Organization
(ISO) and the International Electrotechnical Commission (IEC) are industry groups that work
on multimedia standards, while the International Telecommunications Union (ITU), which
is part of the United Nations, works on multimedia standards on behalf of the member states
of the United Nations. Quite often these institutions work together to create international
standards. In later chapters we will be looking at a number of these standards, and we will
see how arithmetic coding is used in image compression, audio compression, and video
compression standards.

For now let us look at the lossless compression example from the previous chapter.

4.8 Summary 113

TAB L E 4 . 7 Compression using adaptive arithmetic coding of pixel values.

Total Size Compression Ratio Compression Ratio
Image Name Bits/Pixel (bytes) (arithmetic) (Huffman)

Sena 6�52 53,431 1�23 1.16
Sensin 7�12 58,306 1�12 1.27
Earth 4�67 38,248 1�71 1.67
Omaha 6�84 56,061 1�17 1.14

TAB L E 4 . 8 Compression using adaptive arithmetic coding of pixel differences.

Total Size Compression Ratio Compression Ratio
Image Name Bits/Pixel (bytes) (arithmetic) (Huffman)

Sena 3�89 31,847 2�06 2.08
Sensin 4�56 37,387 1�75 1.73
Earth 3�92 32,137 2�04 2.04
Omaha 6�27 51,393 1�28 1.26

In Tables 4.7 and 4.8, we show the results of using adaptive arithmetic coding to
encode the same test images that were previously encoded using Huffman coding. We have
included the compression ratios obtained using Huffman code from the previous chapter
for comparison. Comparing these values to those obtained in the previous chapter, we can
see very little change. The reason is that beacuse the alphabet size for the images is quite
large, the value of pmax is quite small, and in the Huffman coder performs very close to the
entropy.

As we mentioned before, a major advantage of arithmetic coding over Huffman coding
is the ability to separate the modeling and coding aspects of the compression approach. In
terms of image coding, this allows us to use a number of different models that take advantage
of local properties. For example, we could use different decorrelation strategies in regions
of the image that are quasi-constant and will, therefore, have differences that are small, and
in regions where there is a lot of activity, causing the presence of larger difference values.

4.8 Summary

In this chapter we introduced the basic ideas behind arithmetic coding. We have shown
that the arithmetic code is a uniquely decodable code that provides a rate close to the
entropy for long stationary sequences. This ability to encode sequences directly instead of
as a concatenation of the codes for the elements of the sequence makes this approach more
efficient than Huffman coding for alphabets with highly skewed probabilities. We have
looked in some detail at the implementation of the arithmetic coding approach.

The arithmetic coding results in this chapter were obtained by using the program provided
by Witten, Neal, and Cleary [45]. This code can be used (with some modifications) for
exploring different aspects of arithmetic coding (see problems).

114 4 A R I T H M E T I C C O D I N G

Fu r t he r Read ing

1. The book Text Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1], contains
a very readable section on arithmetic coding, complete with pseudocode and C code.

2. A thorough treatment of various aspects of arithmetic coding can be found in the
excellent chapter Arithmetic Coding, by Amir Said [46] in the Lossless Compression
Handbook.

3. There is an excellent tutorial article by G.G. Langdon, Jr. [47] in the March 1984
issue of the IBM Journal of Research and Development.

4. The separate model and code paradigm is explored in a precise manner in the context
of arithmetic coding in a paper by J.J. Rissanen and G.G. Langdon [48].

5. The separation of modeling and coding is exploited in a very nice manner in an early
paper by G.G. Langdon and J.J. Rissanen [49].

6. Various models for text compression that can be used effectively with arithmetic
coding are described by T.G. Bell, I.H. Witten, and J.G. Cleary [50] in an article in
the ACM Computing Surveys.

7. The coder used in the JBIG algorithm is a descendant of the Q coder, described in
some detail in several papers [51, 52, 53] in the November 1988 issue of the IBM
Journal of Research and Development.

4.9 Projects and Problems

1. Given a number a in the interval �0� 1� with an n-bit binary representation �b1b2	 	 	 bn
,
show that for any other number b to have a binary representation with �b1b2	 	 	 bn
 as
the prefix, b has to lie in the interval �a�a+ 1

2n �.

2. The binary arithmetic coding approach specified in the JBIG standard can be used for
coding gray-scale images via bit plane encoding. In bit plane encoding, we combine
the most significant bits for each pixel into one bit plane, the next most significant
bits into another bit plane, and so on. Use the function extrctbp to obtain eight
bit planes for the sena.img and omaha.img test images, and encode them using
arithmetic coding. Use the low-resolution contexts shown in Figure 7.11.

3. Bit plane encoding is more effective when the pixels are encoded using a Gray
code. The Gray code assigns numerically adjacent values binary codes that differ by
only 1 bit. To convert from the standard binary code b0b1b2	 	 	 b7 to the Gray code
g0g1g2	 	 	 g7, we can use the equations

g0 = b0

gk = bk ⊕bk−1�

Convert the test images sena.img and omaha.img to a Gray code representation,
and bit plane encode. Compare with the results for the non-Gray-coded representation.

4.9 Projects and Problems 115

TAB L E 4 . 9 Probability model for
Problems 5 and 6.

Letter Probability

a1 .2
a2 .3
a3 .5

TAB L E 4 . 10 Frequency counts
for Problem 7.

Letter Count

a 37
b 38
c 25

4. In Example 4.4.4, repeat the encoding using m = 6. Comment on your results.

5. Given the probability model in Table 4.9, find the real valued tag for the sequence
a1 a1 a3 a2 a3 a1.

6. For the probability model in Table 4.9, decode a sequence of length 10 with the tag
0�63215699.

7. Given the frequency counts shown in Table 4.10:

(a) What is the word length required for unambiguous encoding?

(b) Find the binary code for the sequence abacabb.

(c) Decode the code you obtained to verify that your encoding was correct.

8. Generate a binary sequence of length L with P�0� = 0�8, and use the arithmetic coding
algorithm to encode it. Plot the difference of the rate in bits/symbol and the entropy
as a function of L. Comment on the effect of L on the rate.

5
Dictionary Techniques

5.1 Overview

I
n the previous two chapters we looked at coding techniques that assume a
source that generates a sequence of independent symbols. As most sources are
correlated to start with, the coding step is generally preceded by a decorrelation
step. In this chapter we will look at techniques that incorporate the structure in
the data in order to increase the amount of compression. These techniques—

both static and adaptive (or dynamic)—build a list of commonly occurring patterns and
encode these patterns by transmitting their index in the list. They are most useful with sources
that generate a relatively small number of patterns quite frequently, such as text sources and
computer commands. We discuss applications to text compression, modem communications,
and image compression.

5.2 Introduct ion

In many applications, the output of the source consists of recurring patterns. A classic
example is a text source in which certain patterns or words recur constantly. Also, there are
certain patterns that simply do not occur, or if they do, occur with great rarity. For example,
we can be reasonably sure that the word Limpopo1 occurs in a very small fraction of the
text sources in existence.

A very reasonable approach to encoding such sources is to keep a list, or dictionary,
of frequently occurring patterns. When these patterns appear in the source output, they are
encoded with a reference to the dictionary. If the pattern does not appear in the dictionary,
then it can be encoded using some other, less efficient, method. In effect we are splitting

1 “How the Elephant Got Its Trunk” in Just So Stories by Rudyard Kipling.

118 5 D I C T I O N A R Y T E C H N I Q U E S

the input into two classes, frequently occurring patterns and infrequently occurring patterns.
For this technique to be effective, the class of frequently occurring patterns, and hence the
size of the dictionary, must be much smaller than the number of all possible patterns.

Suppose we have a particular text that consists of four-character words, three characters
from the 26 lowercase letters of the English alphabet followed by a punctuation mark.
Suppose our source alphabet consists of the 26 lowercase letters of the English alphabet and
the punctuation marks comma, period, exclamation mark, question mark, semicolon, and
colon. In other words, the size of the input alphabet is 32. If we were to encode the text
source one character at a time, treating each character as an equally likely event, we would
need 5 bits per character. Treating all 324 (= 220 = 1�048�576) four-character patterns as
equally likely, we have a code that assigns 20 bits to each four-character pattern. Let us now
put the 256 most likely four-character patterns into a dictionary. The transmission scheme
works as follows: Whenever we want to send a pattern that exists in the dictionary, we will
send a 1-bit flag, say, a 0, followed by an 8-bit index corresponding to the entry in the
dictionary. If the pattern is not in the dictionary, we will send a 1 followed by the 20-bit
encoding of the pattern. If the pattern we encounter is not in the dictionary, we will actually
use more bits than in the original scheme, 21 instead of 20. But if it is in the dictionary, we
will send only 9 bits. The utility of our scheme will depend on the percentage of the words
we encounter that are in the dictionary. We can get an idea about the utility of our scheme
by calculating the average number of bits per pattern. If the probability of encountering a
pattern from the dictionary is p, then the average number of bits per pattern R is given by

R = 9p+21�1−p� = 21−12p� (5.1)

For our scheme to be useful, R should have a value less than 20. This happens when
p ≥ 0�084. This does not seem like a very large number. However, note that if all patterns
were occurring in an equally likely manner, the probability of encountering a pattern from
the dictionary would be less than 0�00025!

We do not simply want a coding scheme that performs slightly better than the simple-
minded approach of coding each pattern as equally likely; we would like to improve the
performance as much as possible. In order for this to happen, p should be as large as possible.
This means that we should carefully select patterns that are most likely to occur as entries
in the dictionary. To do this, we have to have a pretty good idea about the structure of the
source output. If we do not have information of this sort available to us prior to the encoding
of a particular source output, we need to acquire this information somehow when we are
encoding. If we feel we have sufficient prior knowledge, we can use a static approach; if not,
we can take an adaptive approach. We will look at both these approaches in this chapter.

5.3 Stat ic Dict ionary

Choosing a static dictionary technique is most appropriate when considerable prior knowl-
edge about the source is available. This technique is especially suitable for use in specific
applications. For example, if the task were to compress the student records at a university, a
static dictionary approach may be the best. This is because we know ahead of time that cer-
tain words such as “Name” and “Student ID” are going to appear in almost all of the records.

5.3 Static Dictionary 119

Other words such as “Sophomore,” “credits,” and so on will occur quite often. Depending
on the location of the university, certain digits in social security numbers are more likely to
occur. For example, in Nebraska most student ID numbers begin with the digits 505. In fact,
most entries will be of a recurring nature. In this situation, it is highly efficient to design a
compression scheme based on a static dictionary containing the recurring patterns. Similarly,
there could be a number of other situations in which an application-specific or data-specific
static-dictionary-based coding scheme would be the most efficient. It should be noted that
these schemes would work well only for the applications and data they were designed for.
If these schemes were to be used with different applications, they may cause an expansion
of the data instead of compression.

A static dictionary technique that is less specific to a single application is digram coding.
We describe this in the next section.

5 . 3 . 1 Digram Coding

One of the more common forms of static dictionary coding is digram coding. In this form
of coding, the dictionary consists of all letters of the source alphabet followed by as many
pairs of letters, called digrams, as can be accommodated by the dictionary. For example,
suppose we were to construct a dictionary of size 256 for digram coding of all printable
ASCII characters. The first 95 entries of the dictionary would be the 95 printable ASCII
characters. The remaining 161 entries would be the most frequently used pairs of characters.

The digram encoder reads a two-character input and searches the dictionary to see if this
input exists in the dictionary. If it does, the corresponding index is encoded and transmitted.
If it does not, the first character of the pair is encoded. The second character in the pair
then becomes the first character of the next digram. The encoder reads another character to
complete the digram, and the search procedure is repeated.

Example 5 . 3 . 1:

Suppose we have a source with a five-letter alphabet �= �a� b� c�d� r�. Based on knowledge
about the source, we build the dictionary shown in Table 5.1.

TAB L E 5 . 1 A sample dictionary.

Code Entry Code Entry

000 a 100 r
001 b 101 ab
010 c 110 ac
011 d 111 ad

Suppose we wish to encode the sequence

abracadabra

The encoder reads the first two characters ab and checks to see if this pair of letters exists
in the dictionary. It does and is encoded using the codeword 101. The encoder then reads

120 5 D I C T I O N A R Y T E C H N I Q U E S

the next two characters ra and checks to see if this pair occurs in the dictionary. It does not,
so the encoder sends out the code for r, which is 100, then reads in one more character, c,
to make the two-character pattern ac. This does exist in the dictionary and is encoded as
110. Continuing in this fashion, the remainder of the sequence is coded. The output string
for the given input sequence is 101100110111101100000. �

TAB L E 5 . 2 Thirty most frequently occurring pairs of characters
in a 41,364-character-long LaTeX document.

Pair Count Pair Count

e/b 1128 ar 314
/bt 838 at 313
/b/b 823 /bw 309
th 817 te 296
he 712 /bs 295
in 512 d/b 272
s/b 494 /bo 266
er 433 io 257
/ba 425 co 256
t/b 401 re 247
en 392 /b$ 246
on 385 r/b 239
n/b 353 di 230
ti 322 ic 229
/bi 317 ct 226

TAB L E 5 . 3 Thirty most frequently occurring pairs of
characters in a collection of C programs
containing 64,983 characters.

Pair Count Pair Count

/b/b 5728 st 442
nl/b 1471 le 440
�nl 1133 ut 440
in 985 f� 416
nt 739 ar 381
= /b 687 or 374
/bi 662 r/b 373
t/b 615 en 371
/b = 612 er 358
�� 558 ri 357
� /b 554 at 352
nlnl 506 pr 351
/bf 505 te 349
e/b 500 an 348
/b∗ 444 lo 347

5.4 Adaptive Dictionary 121

A list of the 30 most frequently occurring pairs of characters in an earlier version of this
chapter is shown in Table 5.2. For comparison, the 30 most frequently occurring pairs of
characters in a set of C programs is shown in Table 5.3.

In these tables, /b corresponds to a space and nl corresponds to a new line. Notice how
different the two tables are. It is easy to see that a dictionary designed for compressing LATEX
documents would not work very well when compressing C programs. However, generally
we want techniques that will be able to compress a variety of source outputs. If we wanted
to compress computer files, we do not want to change techniques based on the content of
the file. Rather, we would like the technique to adapt to the characteristics of the source
output. We discuss adaptive-dictionary-based techniques in the next section.

5.4 Adaptive Dict ionary

Most adaptive-dictionary-based techniques have their roots in two landmark papers by
Jacob Ziv and Abraham Lempel in 1977 [54] and 1978 [55]. These papers provide two
different approaches to adaptively building dictionaries, and each approach has given rise
to a number of variations. The approaches based on the 1977 paper are said to belong to
the LZ77 family (also known as LZ1), while the approaches based on the 1978 paper are
said to belong to the LZ78, or LZ2, family. The transposition of the initials is a historical
accident and is a convention we will observe in this book. In the following sections, we first
describe an implementation of each approach followed by some of the more well-known
variations.

5 . 4 . 1 The LZ77 Approach

In the LZ77 approach, the dictionary is simply a portion of the previously encoded sequence.
The encoder examines the input sequence through a sliding window as shown in Figure 5.1.
The window consists of two parts, a search buffer that contains a portion of the recently
encoded sequence, and a look-ahead buffer that contains the next portion of the sequence to
be encoded. In Figure 5.1, the search buffer contains eight symbols, while the look-ahead
buffer contains seven symbols. In practice, the sizes of the buffers are significantly larger;
however, for the purpose of explanation, we will keep the buffer sizes small.

To encode the sequence in the look-ahead buffer, the encoder moves a search pointer back
through the search buffer until it encounters a match to the first symbol in the look-ahead

a ba r a a ad b ar r ar r ar

Search buffer

Match pointer

Look-ahead buffer

x x x x

F IGURE 5. 1 Encoding using the LZ77 approach.

122 5 D I C T I O N A R Y T E C H N I Q U E S

buffer. The distance of the pointer from the look-ahead buffer is called the offset. The encoder
then examines the symbols following the symbol at the pointer location to see if they match
consecutive symbols in the look-ahead buffer. The number of consecutive symbols in the
search buffer that match consecutive symbols in the look-ahead buffer, starting with the
first symbol, is called the length of the match. The encoder searches the search buffer for
the longest match. Once the longest match has been found, the encoder encodes it with a
triple �o� l� c�, where o is the offset, l is the length of the match, and c is the codeword
corresponding to the symbol in the look-ahead buffer that follows the match. For example,
in Figure 5.1 the pointer is pointing to the beginning of the longest match. The offset o
in this case is 7, the length of the match l is 4, and the symbol in the look-ahead buffer
following the match is 	.

The reason for sending the third element in the triple is to take care of the situation
where no match for the symbol in the look-ahead buffer can be found in the search buffer.
In this case, the offset and match-length values are set to 0, and the third element of the
triple is the code for the symbol itself.

If the size of the search buffer is S, the size of the window (search and look-ahead
buffers) is W , and the size of the source alphabet is A, then the number of bits needed to code
the triple using fixed-length codes is �log2 S�+�log2 W�+�log2 A�. Notice that the second
term is �log2 W�, not �log2 S�. The reason for this is that the length of the match can actually
exceed the length of the search buffer. We will see how this happens in Example 5.4.1.

In the following example, we will look at three different possibilities that may be
encountered during the coding process:

1. There is no match for the next character to be encoded in the window.

2. There is a match.

3. The matched string extends inside the look-ahead buffer.

Example 5 . 4 . 1: The LZ77 approach

Suppose the sequence to be encoded is

 cabracadabrarrarrad

Suppose the length of the window is 13, the size of the look-ahead buffer is six, and the
current condition is as follows:

cabraca dabrar

with dabrar in the look-ahead buffer. We look back in the already encoded portion of the
window to find a match for d. As we can see, there is no match, so we transmit the triple
�0� 0�C�d��. The first two elements of the triple show that there is no match to d in the
search buffer, while C�d� is the code for the character d. This seems like a wasteful way to
encode a single character, and we will have more to say about this later.

5.4 Adaptive Dictionary 123

For now, let’s continue with the encoding process. As we have encoded a single character,
we move the window by one character. Now the contents of the buffer are

abracad abrarr

with abrarr in the look-ahead buffer. Looking back from the current location, we find a
match to a at an offset of two. The length of this match is one. Looking further back, we
have another match for a at an offset of four; again the length of the match is one. Looking
back even further in the window, we have a third match for a at an offset of seven. However,
this time the length of the match is four (see Figure 5.2). So we encode the string abra with
the triple �7� 4�C�r��, and move the window forward by five characters. The window now
contains the following characters:

adabrar rarrad

Now the look-ahead buffer contains the string rarrad. Looking back in the window, we find
a match for r at an offset of one and a match length of one, and a second match at an offset
of three with a match length of what at first appears to be three. It turns out we can use a
match length of five instead of three.

c a rb a ac d ba r ra r ra r da

l = 4

o = 7

Search
pointer

F IGURE 5. 2 The encoding process.

Why this is so will become clearer when we decode the sequence. To see how the
decoding works, let us assume that we have decoded the sequence cabraca and we receive
the triples �0� 0�C�d��, �7� 4�C�r��, and �3� 5�C�d��. The first triple is easy to decode; there
was no match within the previously decoded string, and the next symbol is d. The decoded
string is now cabracad. The first element of the next triple tells the decoder to move the
copy pointer back seven characters, and copy four characters from that point. The decoding
process works as shown in Figure 5.3.

Finally, let’s see how the triple �3� 5�C�d�� gets decoded. We move back three characters
and start copying. The first three characters we copy are rar. The copy pointer moves once
again, as shown in Figure 5.4, to copy the recently copied character r. Similarly, we copy
the next character a. Even though we started copying only three characters back, we end
up decoding five characters. Notice that the match only has to start in the search buffer; it
can extend into the look-ahead buffer. In fact, if the last character in the look-ahead buffer

124 5 D I C T I O N A R Y T E C H N I Q U E S

c a rb a ac d ba r a c a rb a ac d ba r ra

Copy 4
Decode C(r)

c a rb a ac d ba c a rb a ac d ba r

Copy 2 Copy 3

c a rb a ac d c a rb a ac d a

Move back 7 Copy 1

F IGURE 5. 3 Decoding of the triple �7, 4, C(r)�.

a b ba r ra r ra r a b ba r ra r ra r a

Copy 4 Copy 5

a ab b ar r ar r dr a

Decode C(d)

a b ba r ra r a a b ba r ra r ra

Copy 2 Copy 3

a b ba r ra a b ba r ra r

Move back 3 Copy 1

F IGURE 5. 4 Decoding the triple �3, 5, C(d)�.

5.4 Adaptive Dictionary 125

had been r instead of d, followed by several more repetitions of rar, the entire sequence of
repeated rars could have been encoded with a single triple. �

As we can see, the LZ77 scheme is a very simple adaptive scheme that requires no
prior knowledge of the source and seems to require no assumptions about the characteristics
of the source. The authors of this algorithm showed that asymptotically the performance
of this algorithm approached the best that could be obtained by using a scheme that had
full knowledge about the statistics of the source. While this may be true asymptotically, in
practice there are a number of ways of improving the performance of the LZ77 algorithm
as described here. Furthermore, by using the recent portions of the sequence, there is an
assumption of sorts being used here—that is, that patterns recur “close” together. As we
shall see, in LZ78 the authors removed this “assumption” and came up with an entirely
different adaptive-dictionary-based scheme. Before we get to that, let us look at the different
variations of the LZ77 algorithm.

Var i a t i on s on the LZ77 Theme

There are a number of ways that the LZ77 scheme can be made more efficient, and most
of these have appeared in the literature. Many of the improvements deal with the efficient
encoding of the triples. In the description of the LZ77 algorithm, we assumed that the
triples were encoded using a fixed-length code. However, if we were willing to accept
more complexity, we could encode the triples using variable-length codes. As we saw in
earlier chapters, these codes can be adaptive or, if we were willing to use a two-pass
algorithm, they can be semiadaptive. Popular compression packages, such as PKZip, Zip,
LHarc, PNG, gzip, and ARJ, all use an LZ77-based algorithm followed by a variable-length
coder.

Other variations on the LZ77 algorithm include varying the size of the search and look-
ahead buffers. To make the search buffer large requires the development of more effective
search strategies. Such strategies can be implemented more effectively if the contents of the
search buffer are stored in a manner conducive to fast searches.

The simplest modification to the LZ77 algorithm, and one that is used by most variations
of the LZ77 algorithm, is to eliminate the situation where we use a triple to encode a single
character. Use of a triple is highly inefficient, especially if a large number of characters
occur infrequently. The modification to get rid of this inefficiency is simply the addition of
a flag bit, to indicate whether what follows is the codeword for a single symbol. By using
this flag bit we also get rid of the necessity for the third element of the triple. Now all
we need to do is to send a pair of values corresponding to the offset and length of match.
This modification to the LZ77 algorithm is referred to as LZSS [56, 57].

5 . 4 . 2 The LZ78 Approach

The LZ77 approach implicitly assumes that like patterns will occur close together. It makes
use of this structure by using the recent past of the sequence as the dictionary for encoding.

126 5 D I C T I O N A R Y T E C H N I Q U E S

a cb d fe g ih a cb d fe g ih a cb d fe g ih

Search buffer Look-ahead buffer

F IGURE 5. 5 The Achilles’ heel of LZ77.

However, this means that any pattern that recurs over a period longer than that covered
by the coder window will not be captured. The worst-case situation would be where the
sequence to be encoded was periodic with a period longer than the search buffer. Consider
Figure 5.5.

This is a periodic sequence with a period of nine. If the search buffer had been just one
symbol longer, this sequence could have been significantly compressed. As it stands, none
of the new symbols will have a match in the search buffer and will have to be represented
by separate codewords. As this involves sending along overhead (a 1-bit flag for LZSS and
a triple for the original LZ77 algorithm), the net result will be an expansion rather than a
compression.

Although this is an extreme situation, there are less drastic circumstances in which the
finite view of the past would be a drawback. The LZ78 algorithm solves this problem by
dropping the reliance on the search buffer and keeping an explicit dictionary. This dictionary
has to be built at both the encoder and decoder, and care must be taken that the dictionaries
are built in an identical manner. The inputs are coded as a double �i� c�, with i being an
index corresponding to the dictionary entry that was the longest match to the input, and c
being the code for the character in the input following the matched portion of the input. As
in the case of LZ77, the index value of 0 is used in the case of no match. This double then
becomes the newest entry in the dictionary. Thus, each new entry into the dictionary is one
new symbol concatenated with an existing dictionary entry. To see how the LZ78 algorithm
works, consider the following example.

Example 5 . 4 . 2: The LZ78 approach

Let us encode the following sequence using the LZ78 approach:

wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo2

where /b stands for space. Initially, the dictionary is empty, so the first few symbols encoun-
tered are encoded with the index value set to 0. The first three encoder outputs are �0�C�w��,
�0�C�a��, �0�C�b��, and the dictionary looks like Table 5.4.

The fourth symbol is a b, which is the third entry in the dictionary. If we append the
next symbol, we would get the pattern ba, which is not in the dictionary, so we encode
these two symbols as �3�C�a��, and add the pattern ba as the fourth entry in the dictionary.
Continuing in this fashion, the encoder output and the dictionary develop as in Table 5.5.
Notice that the entries in the dictionary generally keep getting longer, and if this particular

2 “The Monster Song” from Sesame Street.

5.4 Adaptive Dictionary 127

TAB L E 5 . 4 The initial dictionary.

Index Entry

1 w
2 a
3 b

TAB L E 5 . 5 Development of dictionary.

Dictionary
Encoder Output Index Entry

�0�C�w�� 1 w
�0�C�a�� 2 a
�0�C�b�� 3 b
�3�C�a�� 4 ba
�0�C�/b�� 5 /b
�1�C�a�� 6 wa
�3�C�b�� 7 bb
�2�C�/b�� 8 a/b
�6�C�b�� 9 wab
�4�C�/b�� 10 ba/b
�9�C�b�� 11 wabb
�8�C�w�� 12 a/bw
�0�C�o�� 13 o
�13�C�/b�� 14 o/b
�1�C�o�� 15 wo
�14�C�w�� 16 o/bw
�13�C�o�� 17 oo

sentence was repeated often, as it is in the song, after a while the entire sentence would be
an entry in the dictionary. �

While the LZ78 algorithm has the ability to capture patterns and hold them indefinitely, it
also has a rather serious drawback. As seen from the example, the dictionary keeps growing
without bound. In a practical situation, we would have to stop the growth of the dictionary at
some stage, and then either prune it back or treat the encoding as a fixed dictionary scheme.
We will discuss some possible approaches when we study applications of dictionary coding.

Var i a t i on s on the LZ78 Theme-—The LZW Algo r i t hm

There are a number of ways the LZ78 algorithm can be modified, and as is the case with the
LZ77 algorithm, anything that can be modified probably has been. The most well-known
modification, one that initially sparked much of the interest in the LZ algorithms, is a
modification by Terry Welch known as LZW [58]. Welch proposed a technique for removing

128 5 D I C T I O N A R Y T E C H N I Q U E S

the necessity of encoding the second element of the pair �i� c�. That is, the encoder would
only send the index to the dictionary. In order to do this, the dictionary has to be primed with
all the letters of the source alphabet. The input to the encoder is accumulated in a pattern
p as long as p is contained in the dictionary. If the addition of another letter a results in a
pattern p∗a (∗ denotes concatenation) that is not in the dictionary, then the index of p is
transmitted to the receiver, the pattern p∗a is added to the dictionary, and we start another
pattern with the letter a. The LZW algorithm is best understood with an example. In the
following two examples, we will look at the encoder and decoder operations for the same
sequence used to explain the LZ78 algorithm.

Example 5 . 4 . 3: The LZW algor i thm-—encoding

We will use the sequence previously used to demonstrate the LZ78 algorithm as our input
sequence:

wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo

Assuming that the alphabet for the source is �/b� a� b� o�w�, the LZW dictionary initially
looks like Table 5.6.

TAB L E 5 . 6 Initial LZW dictionary.

Index Entry

1 /b
2 a
3 b
4 o
5 w

The encoder first encounters the letter w. This “pattern” is in the dictionary so we
concatenate the next letter to it, forming the pattern wa. This pattern is not in the dictionary,
so we encode w with its dictionary index 5, add the pattern wa to the dictionary as the sixth
element of the dictionary, and begin a new pattern starting with the letter a. As a is in the
dictionary, we concatenate the next element b to form the pattern ab. This pattern is not in
the dictionary, so we encode a with its dictionary index value 2, add the pattern ab to the
dictionary as the seventh element of the dictionary, and start constructing a new pattern with
the letter b. We continue in this manner, constructing two-letter patterns, until we reach
the letter w in the second wabba. At this point the output of the encoder consists entirely
of indices from the initial dictionary: 5 2 3 3 2 1. The dictionary at this point looks like
Table 5.7. (The 12th entry in the dictionary is still under construction.) The next symbol in
the sequence is a. Concatenating this to w, we get the pattern wa. This pattern already exists
in the dictionary (item 6), so we read the next symbol, which is b. Concatenating this to
wa, we get the pattern wab. This pattern does not exist in the dictionary, so we include it as
the 12th entry in the dictionary and start a new pattern with the symbol b. We also encode

5.4 Adaptive Dictionary 129

wa with its index value of 6. Notice that after a series of two-letter entries, we now have
a three-letter entry. As the encoding progresses, the length of the entries keeps increasing.
The longer entries in the dictionary indicate that the dictionary is capturing more of the
structure in the sequence. The dictionary at the end of the encoding process is shown in
Table 5.8. Notice that the 12th through the 19th entries are all either three or four letters in
length. Then we encounter the pattern woo for the first time and we drop back to two-letter
patterns for three more entries, after which we go back to entries of increasing length.

TAB L E 5 . 7 Constructing the 12th entry
of the LZW dictionary.

Index Entry

1 /b
2 a
3 b
4 o
5 w
6 wa
7 ab
8 bb
9 ba

10 a/b
11 /bw
12 w…

TAB L E 5 . 8 The LZW dictionary for encoding
wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo.

Index Entry Index Entry

1 /b 14 a/bw
2 a 15 wabb
3 b 16 ba/b
4 o 17 /bwa
5 w 18 abb
6 wa 19 ba/bw
7 ab 20 wo
8 bb 21 oo
9 ba 22 o/b

10 a/b 23 /bwo
11 /bw 24 oo/b
12 wab 25 /bwoo
13 bba

The encoder output sequence is 5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4. �

130 5 D I C T I O N A R Y T E C H N I Q U E S

Example 5 . 4 . 4: The LZW algor i thm-—decoding

In this example we will take the encoder output from the previous example and decode it
using the LZW algorithm. The encoder output sequence in the previous example was

5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4

This becomes the decoder input sequence. The decoder starts with the same initial dictionary
as the encoder (Table 5.6).

The index value 5 corresponds to the letter w, so we decode w as the first element of
our sequence. At the same time, in order to mimic the dictionary construction procedure
of the encoder, we begin construction of the next element of the dictionary. We start with
the letter w. This pattern exists in the dictionary, so we do not add it to the dictionary
and continue with the decoding process. The next decoder input is 2, which is the index
corresponding to the letter a. We decode an a and concatenate it with our current pattern to
form the pattern wa. As this does not exist in the dictionary, we add it as the sixth element
of the dictionary and start a new pattern beginning with the letter a. The next four inputs
3 3 2 1 correspond to the letters bba/b and generate the dictionary entries ab, bb, ba, and
a/b. The dictionary now looks like Table 5.9, where the 11th entry is under construction.

TAB L E 5 . 9 Constructing the 11th entry of the
LZW dictionary while decoding.

Index Entry

1 /b
2 a
3 b
4 o
5 w
6 wa
7 ab
8 bb
9 ba

10 a/b
11 /b

The next input is 6, which is the index of the pattern wa. Therefore, we decode a w
and an a. We first concatenate w to the existing pattern, which is /b, and form the pattern
/bw. As /bw does not exist in the dictionary, it becomes the 11th entry. The new pattern now
starts with the letter w. We had previously decoded the letter a, which we now concatenate
to w to obtain the pattern wa. This pattern is contained in the dictionary, so we decode the
next input, which is 8. This corresponds to the entry bb in the dictionary. We decode the
first b and concatenate it to the pattern wa to get the pattern wab. This pattern does not exist
in the dictionary, so we add it as the 12th entry in the dictionary and start a new pattern
with the letter b. Decoding the second b and concatenating it to the new pattern, we get
the pattern bb. This pattern exists in the dictionary, so we decode the next element in the

5.4 Adaptive Dictionary 131

sequence of encoder outputs. Continuing in this fashion, we can decode the entire sequence.
Notice that the dictionary being constructed by the decoder is identical to that constructed
by the encoder. �

There is one particular situation in which the method of decoding the LZW algorithm
described above breaks down. Suppose we had a source with an alphabet � = �a� b�, and
we were to encode the sequence beginning with abababab

 . The encoding process is
still the same. We begin with the initial dictionary shown in Table 5.10 and end up with the
final dictionary shown in Table 5.11.

The transmitted sequence is 1 2 3 5

 . This looks like a relatively straightforward
sequence to decode. However, when we try to do so, we run into a snag. Let us go through
the decoding process and see what happens.

We begin with the same initial dictionary as the encoder (Table 5.10). The first two
elements in the received sequence 1 2 3 5

 are decoded as a and b, giving rise to the third
dictionary entry ab, and the beginning of the next pattern to be entered in the dictionary, b.
The dictionary at this point is shown in Table 5.12.

TAB L E 5 . 10 Initial dictionary for
abababab.

Index Entry

1 a
2 b

TAB L E 5 . 11 Final dictionary for
abababab.

Index Entry

1 a
2 b
3 ab
4 ba
5 aba
6 abab
7 b

TAB L E 5 . 12 Constructing the fourth entry of
the dictionary while decoding.

Index Entry

1 a
2 b
3 ab
4 b

132 5 D I C T I O N A R Y T E C H N I Q U E S

TAB L E 5 . 13 Constructing the fifth
entry (stage one).

Index Entry

1 a
2 b
3 ab
4 ba
5 a

TAB L E 5 . 14 Constructing the fifth
entry (stage two).

Index Entry

1 a
2 b
3 ab
4 ba
5 ab

The next input to the decoder is 3. This corresponds to the dictionary entry ab. Decoding
each in turn, we first concatenate a to the pattern under construction to get ba. This pattern
is not contained in the dictionary, so we add this to the dictionary (keep in mind, we have
not used the b from ab yet), which now looks like Table 5.13.

The new entry starts with the letter a. We have only used the first letter from the pair
ab. Therefore, we now concatenate b to a to obtain the pattern ab. This pattern is contained
in the dictionary, so we continue with the decoding process. The dictionary at this stage
looks like Table 5.14.

The first four entries in the dictionary are complete, while the fifth entry is still under
construction. However, the very next input to the decoder is 5, which corresponds to the
incomplete entry! How do we decode an index for which we do not as yet have a complete
dictionary entry?

The situation is actually not as bad as it looks. (Of course, if it were, we would not now
be studying LZW.) While we may not have a fifth entry for the dictionary, we do have the
beginnings of the fifth entry, which is ab

 . Let us, for the moment, pretend that we do
indeed have the fifth entry and continue with the decoding process. If we had a fifth entry,
the first two letters of the entry would be a and b. Concatenating a to the partial new entry
we get the pattern aba. This pattern is not contained in the dictionary, so we add this to
our dictionary, which now looks like Table 5.15. Notice that we now have the fifth entry in
the dictionary, which is aba. We have already decoded the ab portion of aba. We can now
decode the last letter a and continue on our merry way.

This means that the LZW decoder has to contain an exception handler to handle the
special case of decoding an index that does not have a corresponding complete entry in the
decoder dictionary.

5.5 Applications 133

TAB L E 5 . 15 Completion of
the fifth entry.

Index Entry

1 a
2 b
3 ab
4 ba
5 aba
6 a

5.5 Applicat ions

Since the publication of Terry Welch’s article [58], there has been a steadily increasing
number of applications that use some variant of the LZ78 algorithm. Among the LZ78
variants, by far the most popular is the LZW algorithm. In this section we describe two of
the best-known applications of LZW: GIF, and V.42 bis. While the LZW algorithm was
initially the algorithm of choice patent concerns has lead to increasing use of the LZ77
algorithm. The most popular implementation of the LZ77 algorithm is the deflate algorithm
initially designed by Phil Katz. It is part of the popular zlib library developed by Jean-loup
Gailly and Mark Adler. Jean-loup Gailly also used deflate in the widely used gzip algorithm.
The deflate algorithm is also used in PNG which we describe below.

5 . 5 . 1 F i le Compress ion-—UNIX compress

The UNIX compress command is one of the earlier applications of LZW. The size of the
dictionary is adaptive. We start with a dictionary of size 512. This means that the transmitted
codewords are 9 bits long. Once the dictionary has filled up, the size of the dictionary is
doubled to 1024 entries. The codewords transmitted at this point have 10 bits. The size of
the dictionary is progressively doubled as it fills up. In this way, during the earlier part of
the coding process when the strings in the dictionary are not very long, the codewords used
to encode them also have fewer bits. The maximum size of the codeword, bmax, can be set
by the user to between 9 and 16, with 16 bits being the default. Once the dictionary contains
2bmax entries, compress becomes a static dictionary coding technique. At this point the
algorithm monitors the compression ratio. If the compression ratio falls below a threshold,
the dictionary is flushed, and the dictionary building process is restarted. This way, the
dictionary always reflects the local characteristics of the source.

5 . 5 . 2 Image Compress ion-—The Graphics
In terchange Format (GIF)

The Graphics Interchange Format (GIF) was developed by Compuserve Information Service
to encode graphical images. It is another implementation of the LZW algorithm and is very
similar to the compress command. The compressed image is stored with the first byte

134 5 D I C T I O N A R Y T E C H N I Q U E S

TAB L E 5 . 16 Comparison of GIF with arithmetic
coding.

Arithmetic Coding Arithmetic Coding
Image GIF of Pixel Values of Pixel Differences

Sena 51,085 53,431 31,847
Sensin 60,649 58,306 37,126
Earth 34,276 38,248 32,137
Omaha 61,580 56,061 51,393

being the minimum number of bits b per pixel in the original image. For the images we
have been using as examples, this would be eight. The binary number 2b is defined to be the
clear code. This code is used to reset all compression and decompression parameters to a
start-up state. The initial size of the dictionary is 2b+1. When this fills up, the dictionary size
is doubled, as was done in the compress algorithm, until the maximum dictionary size
of 4096 is reached. At this point the compression algorithm behaves like a static dictionary
algorithm. The codewords from the LZW algorithm are stored in blocks of characters. The
characters are 8 bits long, and the maximum block size is 255. Each block is preceded by a
header that contains the block size. The block is terminated by a block terminator consisting
of eight 0s. The end of the compressed image is denoted by an end-of-information code with
a value of 2b +1. This codeword should appear before the block terminator.

GIF has become quite popular for encoding all kinds of images, both computer-generated
and “natural” images. While GIF works well with computer-generated graphical images, and
pseudocolor or color-mapped images, it is generally not the most efficient way to losslessly
compress images of natural scenes, photographs, satellite images, and so on. In Table 5.16
we give the file sizes for the GIF-encoded test images. For comparison, we also include the
file sizes for arithmetic coding the original images and arithmetic coding the differences.

Notice that even if we account for the extra overhead in the GIF files, for these images
GIF barely holds its own even with simple arithmetic coding of the original pixels. While
this might seem odd at first, if we examine the image on a pixel level, we see that there are
very few repetitive patterns compared to a text source. Some images, like the Earth image,
contain large regions of constant values. In the dictionary coding approach, these regions
become single entries in the dictionary. Therefore, for images like these, the straight forward
dictionary coding approach does hold its own. However, for most other images, it would
probably be preferable to perform some preprocessing to obtain a sequence more amenable
to dictionary coding. The PNG standard described next takes advantage of the fact that
in natural images the pixel-to-pixel variation is generally small to develop an appropriate
preprocessor. We will also revisit this subject in Chapter 7.

5 . 5 . 3 Image Compress ion-—Por tab le Network
Graphics (PNG)

The PNG standard is one of the first standards to be collaboratively developed over the
Internet. The impetus for it was an announcement in December 1994 by Unisys (which had
acquired the patent for LZW from Sperry) and CompuServe that they would start charging

5.5 Applications 135

royalties to authors of software that included support for GIF. The announcement resulted in
an uproar in the segment of the compression community that formed the core of the Usenet
group comp.compression. The community decided that a patent-free replacement for GIF
should be developed, and within three months PNG was born. (For a more detailed history
of PNG as well as software and much more, go to the PNG website maintained by Greg
Roelof, http://www.libpng.org/pub/png/.)

Unlike GIF, the compression algorithm used in PNG is based on LZ77. In particular,
it is based on the deflate [59] implementation of LZ77. This implementation allows for
match lengths of between 3 and 258. At each step the encoder examines three bytes. If it
cannot find a match of at least three bytes it puts out the first byte and examines the next
three bytes. So, at each step it either puts out the value of a single byte, or literal, or the pair
< match length� offset >. The alphabets of the literal and match length are combined to
form an alphabet of size 286 (indexed by 0−−285). The indices 0−−255 represent literal
bytes and the index 256 is an end-of-block symbol. The remaining 29 indices represent
codes for ranges of lengths between 3 and 258, as shown in Table 5.17. The table shows
the index, the number of selector bits to follow the index, and the lengths represented by
the index and selector bits. For example, the index 277 represents the range of lengths from
67 to 82. To specify which of the sixteen values has actually occurred, the code is followed
by four selector bits.

The index values are represented using a Huffman code. The Huffman code is specified
in Table 5.18.

The offset can take on values between 1 and 32,768. These values are divided into
30 ranges. The thirty range values are encoded using a Huffman code (different from the
Huffman code for the literal and length values) and the code is followed by a number of
selector bits to specify the particular distance within the range.

We have mentioned earlier that in natural images there is not great deal of repetition of
sequences of pixel values. However, pixel values that are spatially close also tend to have
values that are similar. The PNG standard makes use of this structure by estimating the
value of a pixel based on its causal neighbors and subtracting this estimate from the pixel.
The difference modulo 256 is then encoded in place of the original pixel. There are four
different ways of getting the estimate (five if you include no estimation), and PNG allows

TAB L E 5 . 17 Codes for representations of match length [59].

Index # of selector bits Length Index # of selector bits Length Index # of selector bits Length

257 0 3 267 1 15,16 277 4 67–82
258 0 4 268 1 17,18 278 4 83–98
259 0 5 269 2 19–22 279 4 99–114
260 0 6 270 2 23–26 280 4 115–130
261 0 7 271 2 27–30 281 5 131–162
262 0 8 272 2 31–34 282 5 163–194
263 0 9 273 3 35–42 283 5 195–226
264 0 10 274 3 43–50 284 5 227–257
265 1 11, 12 275 3 51–58 285 0 258
266 1 13, 14 276 3 59–66

136 5 D I C T I O N A R Y T E C H N I Q U E S

TAB L E 5 . 18 Huffman codes for the
match length alphabet [59].

Index Ranges # of bits Binary Codes

0–143 8 00110000 through
10111111

144–255 9 110010000 through
111111111

256–279 7 0000000 through
0010111

280–287 8 11000000 through
11000111

TAB L E 5 . 19 Comparison of PNG with GIF and arithmetic coding.

Arithmetic Coding Arithmetic Coding
Image PNG GIF of Pixel Values of Pixel Differences

Sena 31,577 51,085 53,431 31,847
Sensin 34,488 60,649 58,306 37,126
Earth 26,995 34,276 38,248 32,137
Omaha 50,185 61,580 56,061 51,393

the use of a different method of estimation for each row. The first way is to use the pixel
from the row above as the estimate. The second method is to use the pixel to the left as the
estimate. The third method uses the average of the pixel above and the pixel to the left. The
final method is a bit more complex. An initial estimate of the pixel is first made by adding
the pixel to the left and the pixel above and subtracting the pixel to the upper left. Then the
pixel that is closest to the initial esitmate (upper, left, or upper left) is taken as the estimate.
A comparison of the performance of PNG and GIF on our standard image set is shown in
Table 5.19. The PNG method clearly outperforms GIF.

5 . 5 . 4 Compress ion over Modems-—V.42 bis

The ITU-T Recommendation V.42 bis is a compression standard devised for use over a
telephone network along with error-correcting procedures described in CCITT Recommen-
dation V.42. This algorithm is used in modems connecting computers to remote users. The
algorithm described in this recommendation operates in two modes, a transparent mode and
a compressed mode. In the transparent mode, the data are transmitted in uncompressed form,
while in the compressed mode an LZW algorithm is used to provide compression.

The reason for the existence of two modes is that at times the data being transmitted do
not have repetitive structure and therefore cannot be compressed using the LZW algorithm.
In this case, the use of a compression algorithm may even result in expansion. In these
situations, it is better to send the data in an uncompressed form. A random data stream
would cause the dictionary to grow without any long patterns as elements of the dictionary.
This means that most of the time the transmitted codeword would represent a single letter

5.5 Applications 137

from the source alphabet. As the dictionary size is much larger than the source alphabet
size, the number of bits required to represent an element in the dictionary is much more than
the number of bits required to represent a source letter. Therefore, if we tried to compress
a sequence that does not contain repeating patterns, we would end up with more bits to
transmit than if we had not performed any compression. Data without repetitive structure are
often encountered when a previously compressed file is transferred over the telephone lines.

The V.42 bis recommendation suggests periodic testing of the output of the compression
algorithm to see if data expansion is taking place. The exact nature of the test is not specified
in the recommendation.

In the compressed mode, the system uses LZW compression with a variable-size dictio-
nary. The initial dictionary size is negotiated at the time a link is established between the
transmitter and receiver. The V.42 bis recommendation suggests a value of 2048 for the
dictionary size. It specifies that the minimum size of the dictionary is to be 512. Suppose
the initial negotiations result in a dictionary size of 512. This means that our codewords that
are indices into the dictionary will be 9 bits long. Actually, the entire 512 indices do not
correspond to input strings; three entries in the dictionary are reserved for control codewords.
These codewords in the compressed mode are shown in Table 5.20.

When the numbers of entries in the dictionary exceed a prearranged threshold C3, the
encoder sends the STEPUP control code, and the codeword size is incremented by 1 bit.
At the same time, the threshold C3 is also doubled. When all available dictionary entries
are filled, the algorithm initiates a reuse procedure. The location of the first string entry in
the dictionary is maintained in a variable N5. Starting from N5, a counter C1 is incremented
until it finds a dictionary entry that is not a prefix to any other dictionary entry. The fact
that this entry is not a prefix to another dictionary entry means that this pattern has not been
encountered since it was created. Furthermore, because of the way it was located, among
patterns of this kind this pattern has been around the longest. This reuse procedure enables
the algorithm to prune the dictionary of strings that may have been encountered in the past
but have not been encountered recently, on a continual basis. In this way the dictionary is
always matched to the current source statistics.

To reduce the effect of errors, the CCITT recommends setting a maximum string length.
This maximum length is negotiated at link setup. The CCITT recommends a range of 6–250,
with a default value of 6.

The V.42 bis recommendation avoids the need for an exception handler for the case
where the decoder receives a codeword corresponding to an incomplete entry by forbidding
the use of the last entry in the dictionary. Instead of transmitting the codeword corresponding
to the last entry, the recommendation requires the sending of the codewords corresponding

TAB L E 5 . 20 Control codewords in
compressed mode.

Codeword Name Description

0 ETM Enter transparent mode
1 FLUSH Flush data
2 STEPUP Increment codeword size

138 5 D I C T I O N A R Y T E C H N I Q U E S

to the constituents of the last entry. In the example used to demonstrate this quirk of the
LZW algorithm, instead of transmitting the codeword 5, the V.42 bis recommendation would
have forced us to send the codewords 3 and 1.

5.6 Summary

In this chapter we have introduced techniques that keep a dictionary of recurring patterns
and transmit the index of those patterns instead of the patterns themselves in order to achieve
compression. There are a number of ways the dictionary can be constructed.

� In applications where certain patterns consistently recur, we can build application-
specific static dictionaries. Care should be taken not to use these dictionaries outside
their area of intended application. Otherwise, we may end up with data expansion
instead of data compression.

� The dictionary can be the source output itself. This is the approach used by the LZ77
algorithm. When using this algorithm, there is an implicit assumption that recurrence
of a pattern is a local phenomenon.

� This assumption is removed in the LZ78 approach, which dynamically constructs a
dictionary from patterns observed in the source output.

Dictionary-based algorithms are being used to compress all kinds of data; however, care
should be taken with their use. This approach is most useful when structural constraints
restrict the frequently occurring patterns to a small subset of all possible patterns. This is
the case with text, as well as computer-to-computer communication.

Fu r t he r Read ing

1. Text Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1], provides an excellent
exposition of dictionary-based coding techniques.

2. The Data Compression Book, by M. Nelson and J.-L. Gailley [60], also does a good
job of describing the Ziv-Lempel algorithms. There is also a very nice description of
some of the software implementation aspects.

3. Data Compression, by G. Held and T.R. Marshall [61], contains a description of
digram coding under the name “diatomic coding.” The book also includes BASIC
programs that help in the design of dictionaries.

4. The PNG algorithm is described in a very accessible manner in “PNG Lossless
Compression,” by G. Roelofs [62] in the Lossless Compression Handbook.

5. A more in-depth look at dictionary compression is provided in “Dictionary-Based Data
Compression: An Algorithmic Perspective,” by S.C. Şahinalp and N.M. Rajpoot [63]
in the Lossless Compression Handbook.

5.7 Projects and Problems 139

5.7 Projects and Problems

1. To study the effect of dictionary size on the efficiency of a static dictionary technique,
we can modify Equation (5.1) so that it gives the rate as a function of both p and
the dictionary size M . Plot the rate as a function of p for different values of M , and
discuss the trade-offs involved in selecting larger or smaller values of M .

2. Design and implement a digram coder for text files of interest to you.

(a) Study the effect of the dictionary size, and the size of the text file being encoded
on the amount of compression.

(b) Use the digram coder on files that are not similar to the ones you used to design
the digram coder. How much does this affect your compression?

3. Given an initial dictionary consisting of the letters a b r y /b, encode the following
message using the LZW algorithm: a/bbar/barray/bby/bbarrayar/bbay.

4. A sequence is encoded using the LZW algorithm and the initial dictionary shown in
Table 5.21.

TAB L E 5 . 21 Initial dictionary
for Problem 4.

Index Entry

1 a
2 /b
3 h
4 i
5 s
6 t

(a) The output of the LZW encoder is the following sequence:

6 3 4 5 2 3 1 6 2 9 11 16 12 14 4 20 10 8 23 13

Decode this sequence.

(b) Encode the decoded sequence using the same initial dictionary. Does your answer
match the sequence given above?

5. A sequence is encoded using the LZW algorithm and the initial dictionary shown in
Table 5.22.

(a) The output of the LZW encoder is the following sequence:

3 1 4 6 8 4 2 1 2 5 10 6 11 13 6

Decode this sequence.

140 5 D I C T I O N A R Y T E C H N I Q U E S

TAB L E 5 . 22 Initial dictionary
for Problem 5.

Index Entry

1 a
2 /b
3 r
4 t

(b) Encode the decoded sequence using the same initial dictionary. Does your answer
match the sequence given above?

6. Encode the following sequence using the LZ77 algorithm:

barrayar/bbar/bby/bbarrayar/bbay

Assume you have a window size of 30 with a look-ahead buffer of size 15. Furthermore,
assume that C�a� = 1, C�b� = 2, C�/b� = 3, C�r� = 4, and C�y� = 5.

7. A sequence is encoded using the LZ77 algorithm. Given that C�a� = 1, C�/b� = 2,
C�r� = 3, and C�t� = 4, decode the following sequence of triples:

�0� 0� 3� �0� 0� 1� �0� 0� 4� �2� 8� 2� �3� 1� 2� �0� 0� 3� �6� 4� 4� �9� 5� 4�
Assume that the size of the window is 20 and the size of the look-ahead buffer is 10.
Encode the decoded sequence and make sure you get the same sequence of triples.

8. Given the following primed dictionary and the received sequence below, build an
LZW dictionary and decode the transmitted sequence.

Received Sequence: 4, 5, 3, 1, 2, 8, 2, 7, 9, 7, 4

Decoded Sequence:

Initial dictionary:

(a) S

(b) � b
(c) I

(d) T

(e) H

6
Context-Based Compression

6.1 Overview

I
n this chapter we present a number of techniques that use minimal prior
assumptions about the statistics of the data. Instead they use the context of the
data being encoded and the past history of the data to provide more efficient
compression. We will look at a number of schemes that are principally used
for the compression of text. These schemes use the context in which the data

occurs in different ways.

6.2 Introduct ion

In Chapters 3 and 4 we learned that we get more compression when the message that is
being coded has a more skewed set of probabilities. By “skewed” we mean that certain
symbols occur with much higher probability than others in the sequence to be encoded. So
it makes sense to look for ways to represent the message that would result in greater skew.
One very effective way to do so is to look at the probability of occurrence of a letter in the
context in which it occurs. That is, we do not look at each symbol in a sequence as if it
had just happened out of the blue. Instead, we examine the history of the sequence before
determining the likely probabilities of different values that the symbol can take.

In the case of English text, Shannon [8] showed the role of context in two very interesting
experiments. In the first, a portion of text was selected and a subject (possibly his wife,
Mary Shannon) was asked to guess each letter. If she guessed correctly, she was told that
she was correct and moved on to the next letter. If she guessed incorrectly, she was told
the correct answer and again moved on to the next letter. Here is a result from one of these
experiments. Here the dashes represent the letters that were correctly guessed.

142 6 C O N T E X T - B A S E D C O M P R E S S I O N

Actual Text T H E R O O M W A S N O T V E R Y L I G H T A S M A L L O B L O N G

Subject Performance _ _ _ _ R O O _ _ _ _ _ _ N O T _ V _ _ _ _ _ I _ _ _ _ _ _ S M _ _ _ _ O B L _ _ _

Notice that there is a good chance that the subject will guess the letter, especially if the
letter is at the end of a word or if the word is clear from the context. If we now represent
the original sequence by the subject performance, we would get a very different set of
probabilities for the values that each element of the sequence takes on. The probabilities are
definitely much more skewed in the second row: the “letter” _ occurs with high probability.
If a mathematical twin of the subject were available at the other end, we could send the
“reduced” sentence in the second row and have the twin go through the same guessing
process to come up with the original sequence.

In the second experiment, the subject was allowed to continue guessing until she had
guessed the correct letter and the number of guesses required to correctly predict the letter
was noted. Again, most of the time the subject guessed correctly, resulting in 1 being the
most probable number. The existence of a mathematical twin at the receiving end would
allow this skewed sequence to represent the original sequence to the receiver. Shannon used
his experiments to come up with upper and lower bounds for the English alphabet (1.3 bits
per letter and 0.6 bits per letter, respectively).

The difficulty with using these experiments is that the human subject was much better
at predicting the next letter in a sequence than any mathematical predictor we can develop.
Grammar is hypothesized to be innate to humans [64], in which case development of a
predictor as efficient as a human for language is not possible in the near future. However,
the experiments do provide an approach to compression that is useful for compression of all
types of sequences, not simply language representations.

If a sequence of symbols being encoded does not consist of independent occurrences
of the symbols, then the knowledge of which symbols have occurred in the neighborhood
of the symbol being encoded will give us a much better idea of the value of the symbol
being encoded. If we know the context in which a symbol occurs we can guess with a much
greater likelihood of success what the value of the symbol is. This is just another way of
saying that, given the context, some symbols will occur with much higher probability than
others. That is, the probability distribution given the context is more skewed. If the context
is known to both encoder and decoder, we can use this skewed distribution to perform the
encoding, thus increasing the level of compression. The decoder can use its knowledge of
the context to determine the distribution to be used for decoding. If we can somehow group
like contexts together, it is quite likely that the symbols following these contexts will be the
same, allowing for the use of some very simple and efficient compression strategies. We
can see that the context can play an important role in enhancing compression, and in this
chapter we will look at several different ways of using the context.

Consider the encoding of the word probability. Suppose we have already encoded the
first four letters, and we want to code the fifth letter, a. If we ignore the first four letters,
the probability of the letter a is about 0.06. If we use the information that the previous letter
is b, this reduces the probability of several letters such as q and z occurring and boosts
the probability of an a occurring. In this example, b would be the first-order context for
a�ob would be the second-order context for a, and so on. Using more letters to define the
context in which a occurs, or higher-order contexts, will generally increase the probability

6.3 Prediction with Partial Match (ppm) 143

of the occurrence of a in this example, and hence reduce the number of bits required to
encode its occurrence. Therefore, what we would like to do is to encode each letter using
the probability of its occurrence with respect to a context of high order.

If we want to have probabilities with respect to all possible high-order contexts, this
might be an overwhelming amount of information. Consider an alphabet of size M . The
number of first-order contexts is M , the number of second-order contexts is M2, and so on.
Therefore, if we wanted to encode a sequence from an alphabet of size 256 using contexts
of order 5, we would need 2565, or about 1�09951 × 1012 probability distributions! This is
not a practical alternative. A set of algorithms that resolve this problem in a very simple and
elegant way is based on the prediction with partial match (ppm) approach. We will describe
this in the next section.

6.3 Predict ion with Part ial Match (ppm)

The best-known context-based algorithm is the ppm algorithm, first proposed by Cleary and
Witten [65] in 1984. It has not been as popular as the various Ziv-Lempel-based algorithms
mainly because of the faster execution speeds of the latter algorithms. Lately, with the
development of more efficient variants, ppm-based algorithms are becoming increasingly
more popular.

The idea of the ppm algorithm is elegantly simple. We would like to use large contexts to
determine the probability of the symbol being encoded. However, the use of large contexts
would require us to estimate and store an extremely large number of conditional probabilities,
which might not be feasible. Instead of estimating these probabilities ahead of time, we can
reduce the burden by estimating the probabilities as the coding proceeds. This way we only
need to store those contexts that have occurred in the sequence being encoded. This is a
much smaller number than the number of all possible contexts. While this mitigates the
problem of storage, it also means that, especially at the beginning of an encoding, we will
need to code letters that have not occurred previously in this context. In order to handle
this situation, the source coder alphabet always contains an escape symbol, which is used to
signal that the letter to be encoded has not been seen in this context.

6 . 3 . 1 The Bas i c A lgor i thm

The basic algorithm initially attempts to use the largest context. The size of the largest
context is predetermined. If the symbol to be encoded has not previously been encountered in
this context, an escape symbol is encoded and the algorithm attempts to use the next smaller
context. If the symbol has not occurred in this context either, the size of the context is further
reduced. This process continues until either we obtain a context that has previously been
encountered with this symbol, or we arrive at the conclusion that the symbol has not been
encountered previously in any context. In this case, we use a probability of 1/M to encode
the symbol, where M is the size of the source alphabet. For example, when coding the a
of probability, we would first attempt to see if the string proba has previously occurred—
that is, if a had previously occurred in the context of prob. If not, we would encode an

144 6 C O N T E X T - B A S E D C O M P R E S S I O N

escape and see if a had occurred in the context of rob. If the string roba had not occurred
previously, we would again send an escape symbol and try the context ob. Continuing in
this manner, we would try the context b, and failing that, we would see if the letter a (with a
zero-order context) had occurred previously. If a was being encountered for the first time,
we would use a model in which all letters occur with equal probability to encode a. This
equiprobable model is sometimes referred to as the context of order −1.

As the development of the probabilities with respect to each context is an adaptive
process, each time a symbol is encountered, the count corresponding to that symbol is
updated. The number of counts to be assigned to the escape symbol is not obvious, and a
number of different approaches have been used. One approach used by Cleary and Witten is
to give the escape symbol a count of one, thus inflating the total count by one. Cleary and
Witten call this method of assigning counts Method A, and the resulting algorithm ppma.
We will describe some of the other ways of assigning counts to the escape symbol later in
this section.

Before we delve into some of the details, let’s work through an example to see how
all this works together. As we will be using arithmetic coding to encode the symbols, you
might wish to refresh your memory of the arithmetic coding algorithms.

Example 6 . 3 . 1:

Let’s encode the sequence

this/bis/bthe/btithe

Assuming we have already encoded the initial seven characters this/bis, the various counts
and Cum_Count arrays to be used in the arithmetic coding of the symbols are shown in
Tables 6.1–6.4. In this example, we are assuming that the longest context length is two. This
is a rather small value and is used here to keep the size of the example reasonably small.
A more common value for the longest context length is five.

We will assume that the word length for arithmetic coding is six. Thus, l = 000000 and
u = 111111. As this/bis has already been encoded, the next letter to be encoded is /b. The
second-order context for this letter is is. Looking at Table 6.4, we can see that the letter /b

TAB L E 6 . 1 Count array for −1 order context.

Letter Count Cum_Count

t 1 1
h 1 2
i 1 3
s 1 4
e 1 5
/b 1 6

Total Count 6

6.3 Prediction with Partial Match (ppm) 145

TAB L E 6 . 2 Count array for zero-order context.

Letter Count Cum_Count

t 1 1
h 1 2
i 2 4
s 2 6
/b 1 7

�Esc� 1 8

Total Count 8

TAB L E 6 . 3 Count array for first-order contexts.

Context Letter Count Cum_Count

t h 1 1
�Esc� 1 2

Total Count 2

h i 1 1
�Esc� 1 2

Total Count 2

i s 2 2
�Esc� 1 3

Total Count 3

/b i 1 1
�Esc� 1 2

Total Count 2

s /b 1 1
�Esc� 1 2

Total Count 2

is the first letter in this context with a Cum_Count value of 1. As the Total_Count in this
case is 2, the update equations for the lower and upper limits are

l = 0+
⌊

�63−0+1�× 0
2

⌋

= 0 = 000000

u = 0+
⌊

�63−0+1�× 1
2

⌋

−1 = 31 = 011111�

146 6 C O N T E X T - B A S E D C O M P R E S S I O N

TAB L E 6 . 4 Count array for second-order contexts.

Context Letter Count Cum_Count

th i 1 1
�Esc� 1 2

Total Count 2

hi s 1 1
�Esc� 1 2

Total Count 2

is /b 1 1
�Esc� 1 2

Total Count 2

s/b i 1 1
�Esc� 1 2

Total Count 2

/bi s 1 1
�Esc� 1 2

Total Count 2

As the MSBs of both l and u are the same, we shift that bit out, shift a 0 into the LSB of l,
and a 1 into the LSB of u. The transmitted sequence, lower limit, and upper limit after the
update are

Transmitted sequence � 0

l � 000000

u � 111111

We also update the counts in Tables 6.2–6.4.
The next letter to be encoded in the sequence is t. The second-order context is s/b.

Looking at Table 6.4, we can see that t has not appeared before in this context. We therefore
encode an escape symbol. Using the counts listed in Table 6.4, we update the lower and
upper limits:

l = 0+
⌊

�63−0+1�× 1

2

⌋

= 32 = 100000

u = 0+
⌊

�63−0+1�× 2
2

⌋

−1 = 63 = 111111�

6.3 Prediction with Partial Match (ppm) 147

Again, the MSBs of l and u are the same, so we shift the bit out and shift 0 into the LSB of
l, and 1 into u, restoring l to a value of 0 and u to a value of 63. The transmitted sequence
is now 01. After transmitting the escape, we look at the first-order context of t, which is /b.
Looking at Table 6.3, we can see that t has not previously occurred in this context. To let
the decoder know this, we transmit another escape. Updating the limits, we get

l = 0+
⌊

�63−0+1�× 1
2

⌋

= 32 = 100000

u = 0+
⌊

�63−0+1�× 2
2

⌋

−1 = 63 = 111111�

As the MSBs of l and u are the same, we shift the MSB out and shift 0 into the LSB of l
and 1 into the LSB of u. The transmitted sequence is now 011. Having escaped out of the
first-order contexts, we examine Table 6.5, the updated version of Table 6.2, to see if we
can encode t using a zero-order context. Indeed we can, and using the Cum_Count array,
we can update l and u:

l = 0+
⌊

�63−0+1�× 0
9

⌋

= 0 = 000000

u = 0+
⌊

�63−0+1�× 1
9

⌋

−1 = 6 = 000110�

TAB L E 6 . 5 Updated count array for
zero-order context.

Letter Count Cum_Count

t 1 1
h 1 2
i 2 4
s 2 6
/b 2 8

�Esc� 1 9

Total Count 9

The three most significant bits of both l and u are the same, so we shift them out. After the
update we get

Transmitted sequence � 011000

l � 000000

u � 110111

148 6 C O N T E X T - B A S E D C O M P R E S S I O N

The next letter to be encoded is h. The second-order context /bt has not occurred previ-
ously, so we move directly to the first-order context t. The letter h has occurred previously
in this context, so we update l and u and obtain

Transmitted sequence � 0110000

l � 000000

u � 110101

TAB L E 6 . 6 Count array for zero-order context.

Letter Count Cum_Count

t 2 2
h 2 4
i 2 6
s 2 8
/b 2 10

�Esc� 1 11

Total Count 11

TAB L E 6 . 7 Count array for first-order contexts.

Context Letter Count Cum_Count

t h 2 2
�Esc� 1 3

Total Count 3

h i 1 1
�Esc� 1 2

Total Count 2

i s 2 2
�Esc� 1 3

Total Count 3

/b i 1 1
t 1 2

�Esc� 1 3

Total Count 3

s /b 2 2
�Esc� 1 3

Total Count 3

6.3 Prediction with Partial Match (ppm) 149

TAB L E 6 . 8 Count array for second-order contexts.

Context Letter Count Cum_Count

th i 1 1
�Esc� 1 2

Total Count 2

hi s 1 1
�Esc� 1 2

Total Count 2

is /b 2 2
�Esc� 1 3

Total Count 3

s/b i 1 1
t 1 2

�Esc� 1 3

Total Count 3

/bi s 1 1
�Esc� 1 2

Total Count 2

/bt h 1 1
�Esc� 1 2

Total Count 2

The method of encoding should now be clear. At this point the various counts are as
shown in Tables 6.6–6.8. �

Now that we have an idea of how the ppm algorithm works, let’s examine some of the
variations.

6 . 3 . 2 The Escape Symbol

In our example we used a count of one for the escape symbol, thus inflating the total count in
each context by one. Cleary and Witten call this Method A, and the corresponding algorithm
is referred to as ppma. There is really no obvious justification for assigning a count of one
to the escape symbol. For that matter, there is no obvious method of assigning counts to the
escape symbol. There have been various methods reported in the literature.

Another method described by Cleary and Witten is to reduce the counts of each symbol
by one and assign these counts to the escape symbol. For example, suppose in a given

150 6 C O N T E X T - B A S E D C O M P R E S S I O N

TAB L E 6 . 9 Counts using Method A.

Context Symbol Count

prob a 10
l 9
o 3

�Esc� 1

Total Count 23

TAB L E 6 . 10 Counts using Method B.

Context Symbol Count

prob a 9
l 8
o 2

�Esc� 3

Total Count 22

sequence a occurs 10 times in the context of prob, l occurs 9 times, and o occurs 3 times
in the same context (e.g., problem, proboscis, etc.). In Method A we assign a count of one
to the escape symbol, resulting in a total count of 23, which is one more than the number of
times prob has occurred. The situation is shown in Table 6.9.

In this second method, known as Method B, we reduce the count of each of the symbols
a� l, and o by one and give the escape symbol a count of three, resulting in the counts shown
in Table 6.10.

The reasoning behind this approach is that if in a particular context more symbols can
occur, there is a greater likelihood that there is a symbol in this context that has not occurred
before. This increases the likelihood that the escape symbol will be used. Therefore, we
should assign a higher probability to the escape symbol.

A variant of Method B, appropriately named Method C, was proposed by Moffat [66].
In Method C, the count assigned to the escape symbol is the number of symbols that have
occurred in that context. In this respect, Method C is similar to Method B. The difference
comes in the fact that, instead of “robbing” this from the counts of individual symbols, the
total count is inflated by this amount. This situation is shown in Table 6.11.

While there is some variation in the performance depending on the characteristics of the
data being encoded, of the three methods for assigning counts to the escape symbol, on the
average, Method C seems to provide the best performance.

6 . 3 . 3 Length of Context

It would seem that as far as the maximum length of the contexts is concerned, more is
better. However, this is not necessarily true. A longer maximum length will usually result

6.3 Prediction with Partial Match (ppm) 151

TAB L E 6 . 11 Counts using Method C.

Context Symbol Count

prob a 10
l 9
o 3

�Esc� 3

Total Count 25

in a higher probability if the symbol to be encoded has a nonzero count with respect to
that context. However, a long maximum length also means a higher probability of long
sequences of escapes, which in turn can increase the number of bits used to encode the
sequence. If we plot the compression performance versus maximum context length, we
see an initial sharp increase in performance until some value of the maximum length,
followed by a steady drop as the maximum length is further increased. The value at which
we see a downturn in performance changes depending on the characteristics of the source
sequence.

An alternative to the policy of a fixed maximum length is used in the algorithm ppm∗

[67]. This algorithm uses the fact that long contexts that give only a single prediction are
seldom followed by a new symbol. If mike has always been followed by y in the past, it
will probably not be followed by /b the next time it is encountered. Contexts that are always
followed by the same symbol are called deterministic contexts. The ppm∗ algorithm first
looks for the longest deterministic context. If the symbol to be encoded does not occur in that
context, an escape symbol is encoded and the algorithm defaults to the maximum context
length. This approach seems to provide a small but significant amount of improvement over
the basic algorithm. Currently, the best variant of the ppm∗ algorithm is the ppmz algorithm
by Charles Bloom. Details of the ppmz algorithm as well as implementations of the algorithm
can be found at http://www.cbloom.com/src/ppmz.html.

6 . 3 . 4 The Exc lus ion Pr inc ip le

The basic idea behind arithmetic coding is the division of the unit interval into subintervals,
each of which represents a particular letter. The smaller the subinterval, the more bits are
required to distinguish it from other subintervals. If we can reduce the number of symbols
to be represented, the number of subintervals goes down as well. This in turn means that
the sizes of the subintervals increase, leading to a reduction in the number of bits required
for encoding. The exclusion principle used in ppm provides this kind of reduction in rate.
Suppose we have been compressing a text sequence and come upon the sequence proba,
and suppose we are trying to encode the letter a. Suppose also that the state of the two-letter
context ob and the one-letter context b are as shown in Table 6.12.

First we attempt to encode a with the two-letter context. As a does not occur in this
context, we issue an escape symbol and reduce the size of the context. Looking at the table
for the one-letter context b, we see that a does occur in this context with a count of 4 out of a
total possible count of 21. Notice that other letters in this context include l and o. However,

152 6 C O N T E X T - B A S E D C O M P R E S S I O N

TAB L E 6 . 12 Counts for exclusion
example.

Context Symbol Count

ob l 10
o 3

�Esc� 2

Total Count 15

b l 5
o 3
a 4
r 2
e 2

�Esc� 5

Total Count 21

TAB L E 6 . 13 Modified table used for
exclusion example.

Context Symbol Count

b a 4
r 2
e 2

�Esc� 3

Total Count 11

by sending the escape symbol in the context of ob, we have already signalled to the decoder
that the symbol being encoded is not any of the letters that have previously been encountered
in the context of ob. Therefore, we can increase the size of the subinterval corresponding
to a by temporarily removing l and o from the table. Instead of using Table 6.12, we use
Table 6.13 to encode a. This exclusion of symbols from contexts on a temporary basis can
result in cumulatively significant savings in terms of rate.

You may have noticed that we keep talking about small but significant savings. In lossless
compression schemes, there is usually a basic principle, such as the idea of prediction with
partial match, followed by a host of relatively small modifications. The importance of these
modifications should not be underestimated because often together they provide the margin
of compression that makes a particular scheme competitive.

6.4 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) algorithm also uses the context of the symbol
being encoded, but in a very different way, for lossless compression. The transform that

6.4 The Burrows-Wheeler Transform 153

is a major part of this algorithm was developed by Wheeler in 1983. However, the BWT
compression algorithm, which uses this transform, saw the light of day in 1994 [68]. Unlike
most of the previous algorithms we have looked at, the BWT algorithm requires that the
entire sequence to be coded be available to the encoder before the coding takes place. Also,
unlike most of the previous algorithms, the decoding procedure is not immediately evident
once we know the encoding procedure. We will first describe the encoding procedure. If
it is not clear how this particular encoding can be reversed, bear with us and we will get
to it.

The algorithm can be summarized as follows. Given a sequence of length N , we create
N −1 other sequences where each of these N −1 sequences is a cyclic shift of the original
sequence. These N sequences are arranged in lexicographic order. The encoder then transmits
the sequence of length N created by taking the last letter of each sorted, cyclically shifted,
sequence. This sequence of last letters L, and the position of the original sequence in the
sorted list, are coded and sent to the decoder. As we shall see, this information is sufficient
to recover the original sequence.

We start with a sequence of length N and end with a representation that contains
N + 1 elements. However, this sequence has a structure that makes it highly amenable to
compression. In particular we will use a method of coding called move-to-front (mtf), which
is particularly effective on the type of structure exhibited by the sequence L.

Before we describe the mtf approach, let us work through an example to generate the L
sequence.

Example 6 . 4 . 1:

Let’s encode the sequence

this/bis/bthe

We start with all the cyclic permutations of this sequence. As there are a total of 11 characters,
there are 11 permutations, shown in Table 6.14.

TAB L E 6 . 14 Permutations of this/bis/bthe.

0 t h i s /b i s /b t h e
1 h i s /b i s /b t h e t
2 i s /b i s /b t h e t h
3 s /b i s /b t h e t h i
4 /b i s /b t h e t h i s
5 i s /b t h e t h i s /b
6 s /b t h e t h i s /b i
7 /b t h e t h i s /b i s
8 t h e t h i s /b i s /b
9 h e t h i s /b i s /b t

10 e t h i s /b i s /b t h

154 6 C O N T E X T - B A S E D C O M P R E S S I O N

TAB L E 6 . 15 Sequences sorted into
lexicographic order.

0 /b i s /b t h e t h i s
1 /b t h e t h i s /b i s
2 e t h i s /b i s /b t h
3 h e t h i s /b i s /b t
4 h i s /b i s /b t h e t
5 i s /b i s /b t h e t h
6 i s /b t h e t h i s /b
7 s /b i s /b t h e t h i
8 s /b t h e t h i s /b i
9 t h e t h i s /b i s /b

10 t h i s /b i s /b t h e

Now let’s sort these sequences in lexicographic (dictionary) order (Table 6.15). The
sequence of last letters L in this case is

L � sshtth/bii/be

Notice how like letters have come together. If we had a longer sequence of letters, the runs
of like letters would have been even longer. The mtf algorithm, which we will describe later,
takes advantage of these runs.

The original sequence appears as sequence number 10 in the sorted list, so the encoding
of the sequence consists of the sequence L and the index value 10. �

Now that we have an encoding of the sequence, let’s see how we can decode the
original sequence by using the sequence L and the index to the original sequence in the
sorted list. The important thing to note is that all the elements of the initial sequence are
contained in L. We just need to figure out the permutation that will let us recover the original
sequence.

The first step in obtaining the permutation is to generate the sequence F consisting of
the first element of each row. That is simple to do because we lexicographically ordered the
sequences. Therefore, the sequence F is simply the sequence L in lexicographic order. In
our example this means that F is given as

F � /b/behhiisstt

We can use L and F to generate the original sequence. Look at Table 6.15 containing
the cyclically shifted sequences sorted in lexicographic order. Because each row is a cyclical
shift, the letter in the first column of any row is the letter appearing after the last column
in the row in the original sequence. If we know that the original sequence is in the kth

row, then we can begin unraveling the original sequence starting with the kth element
of F .

6.4 The Burrows-Wheeler Transform 155

Example 6 . 4 . 2:

In our example

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

/b
/b
e
h
h
i
i
s
s
t
t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
s
h
t
t
h
/b
i
i
/b
e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

the original sequence is sequence number 10, so the first letter in of the original sequence is
F�10� = t. To find the letter following t we look for t in the array L. There are two t’s in L.
Which should we use? The t in F that we are working with is the lower of two t’s, so we
pick the lower of two t’s in L. This is L�4�. Therefore, the next letter in our reconstructed
sequence is F�4� = h. The reconstructed sequence to this point is th. To find the next letter,
we look for h in the L array. Again there are two h’s. The h at F�4�is the lower of two
h’s in F , so we pick the lower of the two h’s in L. This is the fifth element of L, so the
next element in our decoded sequence is F�5� = i. The decoded sequence to this point is thi.
The process continues as depicted in Figure 6.1 to generate the original sequence.

0

1

2

3

4

5

6

7

8

9

10

b

b

e

h

h

i

i

s

s

t

t

s

s

h

t

t

h

b

i

i

b

e

F IGURE 6. 1 Decoding process. �

156 6 C O N T E X T - B A S E D C O M P R E S S I O N

Why go through all this trouble? After all, we are going from a sequence of length N to
another sequence of length N plus an index value. It appears that we are actually causing
expansion instead of compression. The answer is that the sequence L can be compressed
much more efficiently than the original sequence. Even in our small example we have runs
of like symbols. This will happen a lot more when N is large. Consider a large sample of
text that has been cyclically shifted and sorted. Consider all the rows of A beginning with
he/b. With high probability he/b would be preceded by t. Therefore, in L we would get a
long run of ts.

6 . 4 . 1 Move- to-Front Coding

A coding scheme that takes advantage of long runs of identical symbols is the move-to-front
(mtf) coding. In this coding scheme, we start with some initial listing of the source alphabet.
The symbol at the top of the list is assigned the number 0, the next one is assigned the
number 1, and so on. The first time a particular symbol occurs, the number corresponding
to its place in the list is transmitted. Then it is moved to the top of the list. If we have a
run of this symbol, we transmit a sequence of 0s. This way, long runs of different symbols
get transformed to a large number of 0s. Applying this technique to our example does not
produce very impressive results due to the small size of the sequence, but we can see how
the technique functions.

Example 6 . 4 . 3:

Let’s encode L = sshtth/bii/be. Let’s assume that the source alphabet is given by

� = 	/b� e�h� i� s� t
�

We start out with the assignment

0 1 2 3 4 5

/b e h i s t

The first element of L is s, which gets encoded as a 4. We then move s to the top of the
list, which gives us

0 1 2 3 4 5

s /b e h i t

The next s is encoded as 0. Because s is already at the top of the list, we do not need to
make any changes. The next letter is h, which we encode as 3. We then move h to the top
of the list:

6.5 Associative Coder of Buyanovsky (ACB) 157

0 1 2 3 4 5

h s /b e i t

The next letter is t, which gets encoded as 5. Moving t to the top of the list, we get

0 1 2 3 4 5

t h s /b e i

The next letter is also a t, so that gets encoded as a 0.
Continuing in this fashion, we get the sequence

4 0 3 5 0 1 3 5 0 1 5

As we warned, the results are not too impressive with this small sequence, but we can see
how we would get large numbers of 0s and small values if the sequence to be encoded was
longer. �

6.5 Associat ive Coder of Buyanovsky (ACB)

A different approach to using contexts for compression is employed by the eponymous
compression utility developed by George Buyanovsky. The details of this very efficient coder
are not well known; however, the way the context is used is interesting and we will briefly
describe this aspect of ACB. More detailed descriptions are available in [69] and [70]. The
ACB coder develops a sorted dictionary of all encountered contexts. In this it is similar to
other context based encoders. However, it also keeps track of the contents of these contexts.
The content of a context is what appears after the context. In a traditional left-to-right reading
of text, the contexts are unbounded to the left and the contents to the right (to the limits
of text that has already been encoded). When encoding the coder searches for the longest
match to the current context reading right to left. This again is not an unusual thing to do.
What is interesting is what the coder does after the best match is found. Instead of simply
examining the content corresponding to the best matched context, the coder also examines
the contents of the coders in the neighborhood of the best matched contexts. Fenwick [69]
describes this process as first finding an anchor point then searching the contents of the
neighboring contexts for the best match. The location of the anchor point is known to both
the encoder and the decoder. The location of the best content match is signalled to the
decoder by encoding the offset � of the context of this content from the anchor point. We
have not specified what we mean by “best” match. The coder takes the utilitarian approach
that the best match is the one that ends up providing the most compression. Thus, a longer
match farther away from the anchor may not be as advantageous as a shorter match closer
to the anchor because of the number of bits required to encode �. The length of the match
� is also sent to the decoder.

158 6 C O N T E X T - B A S E D C O M P R E S S I O N

The interesting aspect of this scheme is that it moves away from the idea of exactly
matching the past. It provides a much richer environment and flexibility to enhance the
compression and will, hopefully, provide a fruitful avenue for further research.

6.6 Dynamic Markov Compression

Quite often the probabilities of the value that the next symbol in a sequence takes on depend
not only on the current value but on the past values as well. The ppm scheme relies on
this longer-range correlation. The ppm scheme, in some sense, reflects the application, that
is, text compression, for which it is most used. Dynamic Markov compression (DMC),
introduced by Cormack and Horspool [71], uses a more general framework to take advantage
of relationships and correlations, or contexts, that extend beyond a single symbol.

Consider the sequence of pixels in a scanned document. The sequence consists of runs
of black and white pixels. If we represent black by 0 and white by 1, we have runs of 0s
and 1s. If the current value is 0, the probability that the next value is 0 is higher than if
the current value was 1. The fact that we have two different sets of probabilities is reflected
in the two-state model shown in Figure 6.2. Consider state A. The probability of the next
value being 1 changes depending on whether we reached state A from state B or from state
A itself. We can have the model reflect this by cloning state A, as shown in Figure 6.3, to
create state A′. Now if we see a white pixel after a run of black pixels, we go to state A′.
The probability that the next value will be 1 is very high in this state. This way, when we
estimate probabilities for the next pixel value, we take into account not only the value of
the current pixel but also the value of the previous pixel.

This process can be continued as long as we wish to take into account longer and longer
histories. “As long as we wish” is a rather vague statement when it comes to implementing
the algorithm. In fact, we have been rather vague about a number of implementation issues.
We will attempt to rectify the situation.

There are a number of issues that need to be addressed in order to implement this
algorithm:

1. What is the initial number of states?

2. How do we estimate probabilities?

1 0

0

1

A B

F IGURE 6. 2 A two-state model for binary sequences.

6.6 Dynamic Markov Compression 159

0

1

1

1

0

0

B

A

A'

F IGURE 6. 3 A three-state model obtained by cloning.

3. How do we decide when a state needs to be cloned?

4. What do we do when the number of states becomes too large?

Let’s answer each question in turn.
We can start the encoding process with a single state with two self-loops for 0 and 1.

This state can be cloned to two and then a higher number of states. In practice it has been
found that, depending on the particular application, it is more efficient to start with a larger
number of states than one.

The probabilities from a given state can be estimated by simply counting the number of
times a 0 or a 1 occurs in that state divided by the number of times the particular state is
occupied. For example, if in state V the number of times a 0 occurs is denoted by nV

0 and
the number of times a 1 occurs is denoted by nV

1 , then

P�0�V� = nV
0

nV
0 +nV

1

P�1�V� = nV
1

nV
0 +nV

1

�

What if a 1 has never previously occurred in this state? This approach would assign a
probability of zero to the occurrence of a 1. This means that there will be no subinterval
assigned to the possibility of a 1 occurring, and when it does occur, we will not be able to
represent it. In order to avoid this, instead of counting from zero, we start the count of 1s
and 0s with a small number c and estimate the probabilities as

P�0�V� = nV
0 + c

nV
0 +nV

1 +2c

P�1�V� = nV
1 + c

nV
0 +nV

1 +2c
�

160 6 C O N T E X T - B A S E D C O M P R E S S I O N

0 1

00

0
1

Cloning

0

A

B

C

0

A C

1

0
C'B

F IGURE 6. 4 The cloning process.

Whenever we have two branches leading to a state, it can be cloned. And, theoretically,
cloning is never harmful. By cloning we are providing additional information to the encoder.
This might not reduce the rate, but it should never result in an increase in the rate. However,
cloning does increase the complexity of the coding, and hence the decoding, process. In
order to control the increase in the number of states, we should only perform cloning when
there is a reasonable expectation of reduction in rate. We can do this by making sure that
both paths leading to the state being considered for cloning are used often enough. Consider
the situation shown in Figure 6.4. Suppose the current state is A and the next state is C. As
there are two paths entering C, C is a candidate for cloning. Cormack and Horspool suggest
that C be cloned if nA

0 > T1 and nB
0 > T2, where T1 and T2 are threshold values set by the

user. If there are more than three paths leading to a candidate for cloning, then we check
that both the number of transitions from the current state is greater than T1 and the number
of transitions from all other states to the candidate state is greater than T2.

Finally, what do we do when, for practical reasons, we cannot accommodate any more
states? A simple solution is to restart the algorithm. In order to make sure that we do not
start from ground zero every time, we can train the initial state configuration using a certain
number of past inputs.

6.7 Summary

The context in which a symbol occurs can be very informative about the value that the
symbol takes on. If this context is known to the decoder then this information need not be
encoded: it can be inferred by the decoder. In this chapter we have looked at several creative
ways in which the knowledge of the context can be used to provide compression.

6.8 Projects and Problems 161

Fu r t he r Read ing

1. The basic ppm algorithm is described in detail in Text Compression, by T.C. Bell,
J.G. Cleary, and I.H. Witten [1].

2. For an excellent description of Burrows-Wheeler Coding, including methods of imple-
mentation and improvements to the basic algorithm, see “Burrows-Wheeler Compres-
sion,” by P. Fenwick [72] in Lossless Compression Handbook.

3. The ACB algorithm is described in “Symbol Ranking and ACB Compression,” by
P. Fenwick [69] in the Lossless Compression Handbook, and in Data Compression:
The Complete Reference by D. Salomon [70]. The chapter by Fenwick also explores
compression schemes based on Shannon’s experiments.

6.8 Projects and Problems

1. Decode the bitstream generated in Example 6.3.1. Assume you have already decoded
this/bis and Tables 6.1–6.4 are available to you.

2. Given the sequence the/bbeta/bcat/bate/bthe/bceta/bhat:

(a) Encode the sequence using the ppma algorithm and an adaptive arithmetic coder.
Assume a six-letter alphabet 	h� e� t� a� c� /b
.

(b) Decode the encoded sequence.

3. Given the sequence eta/bceta/band/bbeta/bceta:

(a) Encode using the Burrows-Wheeler transform and move-to-front coding.

(b) Decode the encoded sequence.

4. A sequence is encoded using the Burrows-Wheeler transform. Given L = elbkkee,
and index = 5 (we start counting from 1, not 0), find the original sequence.

7
Lossless Image Compression

7.1 Overview

I
n this chapter we examine a number of schemes used for lossless compression
of images. We will look at schemes for compression of grayscale and color
images as well as schemes for compression of binary images. Among these
schemes are several that are a part of international standards.

7.2 Introduct ion

In the previous chapters we have focused on compression techniques. Although some of
them may apply to some preferred applications, the focus has been on the technique rather
than on the application. However, there are certain techniques for which it is impossible
to separate the technique from the application. This is because the techniques rely upon
the properties or characteristics of the application. Therefore, we have several chapters in
this book that focus on particular applications. In this chapter we will examine techniques
specifically geared toward lossless image compression. Later chapters will examine speech,
audio, and video compression.

In the previous chapters we have seen that a more skewed set of probabilities for the
message being encoded results in better compression. In Chapter 6 we saw how the use of
context to obtain a skewed set of probabilities can be especially effective when encoding
text. We can also transform the sequence (in an invertible fashion) into another sequence
that has the desired property in other ways. For example, consider the following sequence:

1 2 5 7 2 −2 0 −5 −3 −1 1 −2 −7 −4 −2 1 3 4

164 7 L O S S L E S S I M A G E C O M P R E S S I O N

If we consider this sample to be fairly typical of the sequence, we can see that the probability
of any given number being in the range from −7 to 7 is about the same. If we were to
encode this sequence using a Huffman or arithmetic code, we would use almost 4 bits per
symbol.

Instead of encoding this sequence directly, we could do the following: add two to the
previous number in the sequence and send the difference between the current element in the
sequence and this predicted value. The transmitted sequence would be

1 −1 1 0 −7 −4 0 −7 0 0 0 −5 −7 1 0 1 0 −1

This method uses a rule (add two) and the history (value of the previous symbol) to generate
the new sequence. If the rule by which this residual sequence was generated is known to
the decoder, it can recover the original sequence from the residual sequence. The length
of the residual sequence is the same as the original sequence. However, notice that the
residual sequence is much more likely to contain 0s, 1s, and −1s than other values. That is,
the probability of 0, 1, and −1 will be significantly higher than the probabilities of other
numbers. This, in turn, means that the entropy of the residual sequence will be low and,
therefore, provide more compression.

We used a particular method of prediction in this example (add two to the previous
element of the sequence) that was specific to this sequence. In order to get the best possible
performance, we need to find the prediction approach that is best suited to the particular
data we are dealing with. We will look at several prediction schemes used for lossless image
compression in the following sections.

7 . 2 . 1 The Old JPEG Standard

The Joint Photographic Experts Group (JPEG) is a joint ISO/ITU committee responsible
for developing standards for continuous-tone still-picture coding. The more famous standard
produced by this group is the lossy image compression standard. However, at the time of the
creation of the famous JPEG standard, the committee also created a lossless standard [73].
At this time the standard is more or less obsolete, having been overtaken by the much more
efficient JPEG-LS standard described later in this chapter. However, the old JPEG standard
is still useful as a first step into examining predictive coding in images.

The old JPEG lossless still compression standard [73] provides eight different predictive
schemes from which the user can select. The first scheme makes no prediction. The next
seven are listed below. Three of the seven are one-dimensional predictors, and four are
two-dimensional prediction schemes. Here, I�i� j� is the �i� j�th pixel of the original image,
and Î�i� j� is the predicted value for the �i� j�th pixel.

1 Î�i� j� = I�i−1� j� (7.1)

2 Î�i� j� = I�i� j −1� (7.2)

3 Î�i� j� = I�i−1� j −1� (7.3)

4 Î�i� j� = I�i� j −1�+ I�i−1� j�− I�i−1� j −1� (7.4)

7.2 Introduction 165

5 Î�i� j� = I�i� j −1�+ �I�i−1� j�− I�i−1� j −1�� /2 (7.5)

6 Î�i� j� = I�i−1� j�+ �I�i� j −1�− I�i−1� j −1�� /2 (7.6)

7 Î�i� j� = �I�i� j −1�+ I�i−1� j�� /2 (7.7)

Different images can have different structures that can be best exploited by one of these
eight modes of prediction. If compression is performed in a nonreal-time environment—for
example, for the purposes of archiving—all eight modes of prediction can be tried and the
one that gives the most compression is used. The mode used to perform the prediction can
be stored in a 3-bit header along with the compressed file. We encoded our four test images
using the various JPEG modes. The residual images were encoded using adaptive arithmetic
coding. The results are shown in Table 7.1.

The best results—that is, the smallest compressed file sizes—are indicated in bold in
the table. From these results we can see that a different JPEG predictor is the best for the
different images. In Table 7.2, we compare the best JPEG results with the file sizes obtained
using GIF and PNG. Note that PNG also uses predictive coding with four possible predictors,
where each row of the image can be encoded using a different predictor. The PNG approach
is described in Chapter 5.

Even if we take into account the overhead associated with GIF, from this comparison
we can see that the predictive approaches are generally better suited to lossless image
compression than the dictionary-based approach when the images are “natural” gray-scale
images. The situation is different when the images are graphic images or pseudocolor images.
A possible exception could be the Earth image. The best compressed file size using the
second JPEG mode and adaptive arithmetic coding is 32,137 bytes, compared to 34,276
bytes using GIF. The difference between the file sizes is not significant. We can see the
reason by looking at the Earth image. Note that a significant portion of the image is the

TAB L E 7 . 1 Compressed file size in bytes of the residual images obtained using
the various JPEG prediction modes.

Image JPEG 0 JPEG 1 JPEG 2 JPEG 3 JPEG 4 JPEG 5 JPEG 6 JPEG 7

Sena 53,431 37,220 31,559 38,261 31,055 29,742 33,063 32,179
Sensin 58,306 41,298 37,126 43,445 32,429 33,463 35,965 36,428
Earth 38,248 32,295 32,137 34,089 33,570 33,057 33,072 32,672
Omaha 56,061 48,818 51,283 53,909 53,771 53,520 52,542 52,189

TAB L E 7 . 2 Comparison of the file sizes
obtained using JPEG lossless
compression, GIF, and PNG.

Image Best JPEG GIF PNG

Sena 31,055 51,085 31,577
Sensin 32,429 60,649 34,488
Earth 32,137 34,276 26,995
Omaha 48,818 61,341 50,185

166 7 L O S S L E S S I M A G E C O M P R E S S I O N

background, which is of a constant value. In dictionary coding, this would result in some
very long entries that would provide significant compression. We can see that if the ratio of
background to foreground were just a little different in this image, the dictionary method in
GIF might have outperformed the JPEG approach. The PNG approach which allows the use
of a different predictor (or no predictor) on each row, prior to dictionary coding significantly
outperforms both GIF and JPEG on this image.

7.3 CALIC

The Context Adaptive Lossless Image Compression (CALIC) scheme, which came into
being in response to a call for proposal for a new lossless image compression scheme in
1994 [74, 75], uses both context and prediction of the pixel values. The CALIC scheme
actually functions in two modes, one for gray-scale images and another for bi-level images.
In this section, we will concentrate on the compression of gray-scale images.

In an image, a given pixel generally has a value close to one of its neighbors. Which
neighbor has the closest value depends on the local structure of the image. Depending on
whether there is a horizontal or vertical edge in the neighborhood of the pixel being encoded,
the pixel above, or the pixel to the left, or some weighted average of neighboring pixels may
give the best prediction. How close the prediction is to the pixel being encoded depends
on the surrounding texture. In a region of the image with a great deal of variability, the
prediction is likely to be further from the pixel being encoded than in the regions with less
variability.

In order to take into account all these factors, the algorithm has to make a determination
of the environment of the pixel to be encoded. The only information that can be used to
make this determination has to be available to both encoder and decoder.

Let’s take up the question of the presence of vertical or horizontal edges in the neigh-
borhood of the pixel being encoded. To help our discussion, we will refer to Figure 7.1. In
this figure, the pixel to be encoded has been marked with an X. The pixel above is called
the north pixel, the pixel to the left is the west pixel, and so on. Note that when pixel X is
being encoded, all other marked pixels (N� W� NW� NE� WW� NN� NE, and NNE) are
available to both encoder and decoder.

NN NNE

NW N NE

WW W X

F IGURE 7. 1 Labeling the neighbors of pixel X.

7.3 CALIC 167

We can get an idea of what kinds of boundaries may or may not be in the neighborhood
of X by computing

dh = �W −WW �+ �N −NW �+ �NE −N �
dv = �W −NW �+ �N −NN �+ �NE −NNE� �

The relative values of dh and dv are used to obtain the initial prediction of the pixel X.
This initial prediction is then refined by taking other factors into account. If the value of dh

is much higher than the value of dv, this will mean there is a large amount of horizontal
variation, and it would be better to pick N to be the initial prediction. If, on the other hand,
dv is much larger than dh, this would mean that there is a large amount of vertical variation,
and the initial prediction is taken to be W . If the differences are more moderate or smaller,
the predicted value is a weighted average of the neighboring pixels.

The exact algorithm used by CALIC to form the initial prediction is given by the
following pseudocode:

if dh −dv > 80
X̂ ← N

else if dv −dh > 80
X̂ ← W

else
{

X̂ ← �N +W�/2+ �NE −NW�/4
if dh −dv > 32

X̂ ← �X̂ +N�/2
else if dv −dh > 32

X̂ ← �X̂ +W�/2
else if dh −dv > 8

X̂ ← �3X̂ +N�/4
else if dv −dh > 8

X̂ ← �3X̂ +W�/4
}

Using the information about whether the pixel values are changing by large or small
amounts in the vertical or horizontal direction in the neighborhood of the pixel being encoded
provides a good initial prediction. In order to refine this prediction, we need some information
about the interrelationships of the pixels in the neighborhood. Using this information, we
can generate an offset or refinement to our initial prediction. We quantify the information
about the neighborhood by first forming the vector

�N�W�NW�NE�NN�WW� 2N −NN� 2W −WW�

We then compare each component of this vector with our initial prediction X̂. If the value
of the component is less than the prediction, we replace the value with a 1; otherwise

168 7 L O S S L E S S I M A G E C O M P R E S S I O N

we replace it with a 0. Thus, we end up with an eight-component binary vector. If each
component of the binary vector was independent, we would end up with 256 possible vectors.
However, because of the dependence of various components, we actually have 144 possible
configurations. We also compute a quantity that incorporates the vertical and horizontal
variations and the previous error in prediction by

� = dh +dv +2 �N − N̂ � (7.8)

where N̂ is the predicted value of N . This range of values of � is divided into four intervals,
each being represented by 2 bits. These four possibilities, along with the 144 texture
descriptors, create 144 ×4 = 576 contexts for X. As the encoding proceeds, we keep track
of how much prediction error is generated in each context and offset our initial prediction
by that amount. This results in the final predicted value.

Once the prediction is obtained, the difference between the pixel value and the prediction
(the prediction error, or residual) has to be encoded. While the prediction process outlined
above removes a lot of the structure that was in the original sequence, there is still some
structure left in the residual sequence. We can take advantage of some of this structure by
coding the residual in terms of its context. The context of the residual is taken to be the
value of � defined in Equation (7.8). In order to reduce the complexity of the encoding,
rather than using the actual value as the context, CALIC uses the range of values in which
� lies as the context. Thus:

0 ≤ � < q1 ⇒ Context 1

q1 ≤ � < q2 ⇒ Context 2

q2 ≤ � < q3 ⇒ Context 3

q3 ≤ � < q4 ⇒ Context 4

q4 ≤ � < q5 ⇒ Context 5

q5 ≤ � < q6 ⇒ Context 6

q6 ≤ � < q7 ⇒ Context 7

q7 ≤ � < q8 ⇒ Context 8

The values of q1–q8 can be prescribed by the user.
If the original pixel values lie between 0 and M −1, the differences or prediction residuals

will lie between −�M − 1� and M − 1. Even though most of the differences will have a
magnitude close to zero, for arithmetic coding we still have to assign a count to all possible
symbols. This means a reduction in the size of the intervals assigned to values that do occur,
which in turn means using a larger number of bits to represent these values. The CALIC
algorithm attempts to resolve this problem in a number of ways. Let’s describe these using
an example.

7.3 CALIC 169

Consider the sequence

xn 	 0� 7� 4� 3� 5� 2� 1� 7

We can see that all the numbers lie between 0 and 7, a range of values that would require
3 bits to represent. Now suppose we predict a sequence element by the previous element in
the sequence. The sequence of differences

rn = xn −xn−1

is given by

rn 	 0� 7� −3� −1� 2� −3� −1� 6

If we were given this sequence, we could easily recover the original sequence by using

xn = xn−1 + rn�

However, the prediction residual values rn lie in the �−7� 7� range. That is, the alphabet
required to represent these values is almost twice the size of the original alphabet. However,
if we look closely we can see that the value of rn actually lies between −xn−1 and 7−xn−1.
The smallest value that rn can take on occurs when xn has a value of 0, in which case rn

will have a value of −xn−1. The largest value that rn can take on occurs when xn is 7, in
which case rn has a value of 7−xn−1. In other words, given a particular value for xn−1, the
number of different values that rn can take on is the same as the number of values that xn

can take on. Generalizing from this, we can see that if a pixel takes on values between 0
and M −1, then given a predicted value X̂, the difference X − X̂ will take on values in the
range −X̂ to M − 1 − X̂. We can use this fact to map the difference values into the range
�0�M −1�, using the following mapping:

0 → 0

1 → 1

−1 → 2

2 → 3
���

���

−X̂ → 2X̂

X̂ +1 → 2X̂ +1

X̂ +2 → 2X̂ +2
���

���

M −1− X̂ → M −1

where we have assumed that X̂ ≤ �M −1�/2.

170 7 L O S S L E S S I M A G E C O M P R E S S I O N

Another approach used by CALIC to reduce the size of its alphabet is to use a modifi-
cation of a technique called recursive indexing [76]. Recursive indexing is a technique for
representing a large range of numbers using only a small set. It is easiest to explain using an
example. Suppose we want to represent positive integers using only the integers between 0
and 7—that is, a representation alphabet of size 8. Recursive indexing works as follows: If
the number to be represented lies between 0 and 6, we simply represent it by that number.
If the number to be represented is greater than or equal to 7, we first send the number 7,
subtract 7 from the original number, and repeat the process. We keep repeating the process
until the remainder is a number between 0 and 6. Thus, for example, 9 would be represented
by 7 followed by a 2, and 17 would be represented by two 7s followed by a 3. The decoder,
when it sees a number between 0 and 6, would decode it at its face value, and when it
saw 7, would keep accumulating the values until a value between 0 and 6 was received.
This method of representation followed by entropy coding has been shown to be optimal for
sequences that follow a geometric distribution [77].

In CALIC, the representation alphabet is different for different coding contexts. For each
coding context k, we use an alphabet Ak =
0� 1� � � � �Nk�. Furthermore, if the residual occurs
in context k, then the first number that is transmitted is coded with respect to context k; if
further recursion is needed, we use the k+1 context.

We can summarize the CALIC algorithm as follows:

1. Find initial prediction X̂.

2. Compute prediction context.

3. Refine prediction by removing the estimate of the bias in that context.

4. Update bias estimate.

5. Obtain the residual and remap it so the residual values lie between 0 and M −1, where
M is the size of the initial alphabet.

6. Find the coding context k.

7. Code the residual using the coding context.

All these components working together have kept CALIC as the state of the art in lossless
image compression. However, we can get almost as good a performance if we simplify some
of the more involved aspects of CALIC. We study such a scheme in the next section.

7.4 JPEG-LS

The JPEG-LS standard looks more like CALIC than the old JPEG standard. When the initial
proposals for the new lossless compression standard were compared, CALIC was rated first
in six of the seven categories of images tested. Motivated by some aspects of CALIC, a team
from Hewlett-Packard proposed a much simpler predictive coder, under the name LOCO-I
(for low complexity), that still performed close to CALIC [78].

As in CALIC, the standard has both a lossless and a lossy mode. We will not describe
the lossy coding procedures.

7.4 JPEG-LS 171

The initial prediction is obtained using the following algorithm:

if NW ≥ max�W�N�
X̂ = max�W�N�
else
{

if NW ≤ min�W�N�
X̂ = min�W�N�
else
X̂ = W +N −NW

}

This prediction approach is a variation of Median Adaptive Prediction [79], in which the
predicted value is the median of the N , W , and NW pixels. The initial prediction is then
refined using the average value of the prediction error in that particular context.

The contexts in JPEG-LS also reflect the local variations in pixel values. However, they
are computed differently from CALIC. First, measures of differences D1, D2, and D3 are
computed as follows:

D1 = NE −N

D2 = N −NW

D3 = NW −W�

The values of these differences define a three-component context vector Q. The components
of Q (Q1, Q2, and Q3) are defined by the following mappings:

Di ≤ −T3 ⇒ Qi = −4

−T3 < Di ≤ −T2 ⇒ Qi = −3

−T2 < Di ≤ −T1 ⇒ Qi = −2

−T1 < Di ≤ 0 ⇒ Qi = −1

Di = 0 ⇒ Qi = 0

0 < Di ≤ T1 ⇒ Qi = 1

T1 < Di ≤ T2 ⇒ Qi = 2

T2 < Di ≤ T3 ⇒ Qi = 3

T3 < Di ⇒ Qi = 4 (7.9)

where T1, T2, and T3 are positive coefficients that can be defined by the user. Given nine
possible values for each component of the context vector, this results in 9 × 9 × 9 = 729
possible contexts. In order to simplify the coding process, the number of contexts is reduced
by replacing any context vector Q whose first nonzero element is negative by −Q. Whenever

172 7 L O S S L E S S I M A G E C O M P R E S S I O N

TAB L E 7 . 3 Comparison of the file sizes obtained
using new and old JPEG lossless
compression standard and CALIC.

Image Old JPEG New JPEG CALIC

Sena 31,055 27,339 26,433
Sensin 32,429 30,344 29,213
Earth 32,137 26,088 25,280
Omaha 48,818 50,765 48,249

this happens, a variable SIGN is also set to −1; otherwise, it is set to +1. This reduces the
number of contexts to 365. The vector Q is then mapped into a number between 0 and 364.
(The standard does not specify the particular mapping to use.)

The variable SIGN is used in the prediction refinement step. The correction is first
multiplied by SIGN and then added to the initial prediction.

The prediction error rn is mapped into an interval that is the same size as the range
occupied by the original pixel values. The mapping used in JPEG-LS is as follows:

rn < −M

2
⇒ rn ← rn +M

rn >
M

2
⇒ rn ← rn −M

Finally, the prediction errors are encoded using adaptively selected codes based on
Golomb codes, which have also been shown to be optimal for sequences with a geometric
distribution. In Table 7.3 we compare the performance of the old and new JPEG standards and
CALIC. The results for the new JPEG scheme were obtained using a software implementation
courtesy of HP.

We can see that for most of the images the new JPEG standard performs very close
to CALIC and outperforms the old standard by 6% to 18%. The only case where the
performance is not as good is for the Omaha image. While the performance improvement in
these examples may not be very impressive, we should keep in mind that for the old JPEG
we are picking the best result out of eight. In practice, this would mean trying all eight JPEG
predictors and picking the best. On the other hand, both CALIC and the new JPEG standard
are single-pass algorithms. Furthermore, because of the ability of both CALIC and the new
standard to function in multiple modes, both perform very well on compound documents,
which may contain images along with text.

7.5 Mult iresolut ion Approaches

Our final predictive image compression scheme is perhaps not as competitive as the other
schemes. However, it is an interesting algorithm because it approaches the problem from a
slightly different point of view.

7.5 Multiresolution Approaches 173

•

Δ

X

•

Δ

•

X

•

Δ

*

•

•

*

•

*

•

*

•

•

X

•

X

•

•

X

*

•

•

*

•

*

•

*

•

•

X

•

Δ

•

X

•

Δ

*

•

•

*

•

*

•

*

•

•

X

•

X

•

•

X

*

•

•

*

•

*

•

*

•

•

X

•

Δ

•

X

•

Δ

ΔΔ

F IGURE 7. 2 The HINT scheme for hierarchical prediction.

Multiresolution models generate representations of an image with varying spatial reso-
lution. This usually results in a pyramidlike representation of the image, with each layer of
the pyramid serving as a prediction model for the layer immediately below.

One of the more popular of these techniques is known as HINT (Hierarchical INTerpola-
tion) [80]. The specific steps involved in HINT are as follows. First, residuals corresponding
to the pixels labeled � in Figure 7.2 are obtained using linear prediction and transmitted.
Then, the intermediate pixels (�) are estimated by linear interpolation, and the error in
estimation is then transmitted. Then, the pixels X are estimated from � and �, and the
estimation error is transmitted. Finally, the pixels labeled ∗ and then • are estimated from
known neighbors, and the errors are transmitted. The reconstruction process proceeds in a
similar manner.

One use of a multiresolution approach is in progressive image transmission. We describe
this application in the next section.

7 . 5 . 1 Progress ive Image Transmiss ion

The last few years have seen a very rapid increase in the amount of information stored as
images, especially remotely sensed images (such as images from weather and other satellites)
and medical images (such as CAT scans, magnetic resonance images, and mammograms).
It is not enough to have information. We also need to make these images accessible to
individuals who can make use of them. There are many issues involved with making large
amounts of information accessible to a large number of people. In this section we will look
at one particular issue—transmitting these images to remote users. (For a more general look
at the problem of managing large amounts of information, see [81].)

Suppose a user wants to browse through a number of images in a remote database.
The user is connected to the database via a 56 kbits per second (kbps) modem. Suppose the

174 7 L O S S L E S S I M A G E C O M P R E S S I O N

images are of size 1024 × 1024, and on the average users have to look through 30 images
before finding the image they are looking for. If these images were monochrome with 8 bits
per pixel, this process would take close to an hour and 15 minutes, which is not very practical.
Even if we compressed these images before transmission, lossless compression on average
gives us about a two-to-one compression. This would only cut the transmission in half, which
still makes the approach cumbersome. A better alternative is to send an approximation of
each image first, which does not require too many bits but still is sufficiently accurate to
give users an idea of what the image looks like. If users find the image to be of interest, they
can request a further refinement of the approximation, or the complete image. This approach
is called progressive image transmission.

Example 7 . 5 . 1:

A simple progressive transmission scheme is to divide the image into blocks and then send
a representative pixel for the block. The receiver replaces each pixel in the block with the
representative value. In this example, the representative value is the value of the pixel in the
top-left corner. Depending on the size of the block, the amount of data that would need to be
transmitted could be substantially reduced. For example, to transmit a 1024×1024 image at
8 bits per pixel over a 56 kbps line takes about two and a half minutes. Using a block size
of 8 × 8, and using the top-left pixel in each block as the representative value, means we
approximate the 1024 × 1024 image with a 128 × 128 subsampled image. Using 8 bits per
pixel and a 56 kbps line, the time required to transmit this approximation to the image takes
less than two and a half seconds. Assuming that this approximation was sufficient to let the
user decide whether a particular image was the desired image, the time required now to look
through 30 images becomes a minute and a half instead of the hour and a half mentioned
earlier. If the approximation using a block size of 8×8 does not provide enough resolution
to make a decision, the user can ask for a refinement. The transmitter can then divide the
8×8 block into four 4×4 blocks. The pixel at the upper-left corner of the upper-left block
was already transmitted as the representative pixel for the 8 × 8 block, so we need to send
three more pixels for the other three 4×4 blocks. This takes about seven seconds, so even
if the user had to request a finer approximation every third image, this would only increase
the total search time by a little more than a minute. To see what these approximations look
like, we have taken the Sena image and encoded it using different block sizes. The results
are shown in Figure 7.3. The lowest-resolution image, shown in the top left, is a 32 × 32
image. The top-left image is a 64×64 image. The bottom-left image is a 128×128 image,
and the bottom-right image is the 256×256 original.

Notice that even with a block size of 8 the image is clearly recognizable as a person.
Therefore, if the user was looking for a house, they would probably skip over this image
after seeing the first approximation. If the user was looking for a picture of a person, they
could still make decisions based on the second approximation.

Finally, when an image is built line by line, the eye tends to follow the scan line. With
the progressive transmission approach, the user gets a more global view of the image very
early in the image formation process. Consider the images in Figure 7.4. The images on the
left are the 8×8, 4×4, and 2×2 approximations of the Sena image. On the right, we show

7.5 Multiresolution Approaches 175

F IGURE 7. 3 Sena image coded using different block sizes for progressive
transmission. Top row: block size 8×8 and block size 4×4. Bottom
row: block size 2×2 and original image.

how much of the image we would see in the same amount of time if we used the standard
line-by-line raster scan order. �

We would like the first approximations that we transmit to use as few bits as possible
yet be accurate enough to allow the user to make a decision to accept or reject the image
with a certain degree of confidence. As these approximations are lossy, many progressive
transmission schemes use well-known lossy compression schemes in the first pass.

176 7 L O S S L E S S I M A G E C O M P R E S S I O N

F IGURE 7. 4 Comparison between the received image using progressive
transmission and using the standard raster scan order.

7.5 Multiresolution Approaches 177

The more popular lossy compression schemes, such as transform coding, tend to require
a significant amount of computation. As the decoders for most progressive transmission
schemes have to function on a wide variety of platforms, they are generally implemented in
software and need to be simple and fast. This requirement has led to the development of a
number of progressive transmission schemes that do not use lossy compression schemes for
their initial approximations. Most of these schemes have a form similar to the one described
in Example 7.5.1, and they are generally referred to as pyramid schemes because of the
manner in which the approximations are generated and the image is reconstructed.

When we use the pyramid form, we still have a number of ways to generate the
approximations. One of the problems with the simple approach described in Example 7.5.1 is
that if the pixel values vary a lot within a block, the “representative” value may not be very
representative. To prevent this from happening, we could represent the block by some sort of
an average or composite value. For example, suppose we start out with a 512 ×512 image.
We first divide the image into 2 × 2 blocks and compute the integer value of the average
of each block [82, 83]. The integer values of the averages would constitute the penultimate
approximation. The approximation to be transmitted prior to that can be obtained by taking
the average of 2×2 averages and so on, as shown in Figure 7.5.

Using the simple technique in Example 7.5.1, we ended up transmitting the same number
of values as the original number of pixels. However, when we use the mean of the pixels
as our approximation, after we have transmitted the mean values at each level, we still have
to transmit the actual pixel values. The reason is that when we take the integer part of
the average we end up throwing away information that cannot be retrieved. To avoid this
problem of data expansion, we can transmit the sum of the values in the 2 ×2 block. Then
we only need to transmit three more values to recover the original four values. With this
approach, although we would be transmitting the same number of values as the number of
pixels in the image, we might still end up sending more bits because representing all possible

F IGURE 7. 5 The pyramid structure for progressive transmission.

178 7 L O S S L E S S I M A G E C O M P R E S S I O N

values of the sum would require transmitting 2 more bits than was required for the original
value. For example, if the pixels in the image can take on values between 0 and 255, which
can be represented by 8 bits, their sum will take on values between 0 and 1024, which would
require 10 bits. If we are allowed to use entropy coding, we can remove the problem of data
expansion by using the fact that the neighboring values in each approximation are heavily
correlated, as are values in different levels of the pyramid. This means that differences
between these values can be efficiently encoded using entropy coding. By doing so, we end
up getting compression instead of expansion.

Instead of taking the arithmetic average, we could also form some sort of weighted
average. The general procedure would be similar to that described above. (For one of the
more well-known weighted average techniques, see [84].)

The representative value does not have to be an average. We could use the pixel values
in the approximation at the lower levels of the pyramid as indices into a lookup table. The
lookup table can be designed to preserve important information such as edges. The problem
with this approach would be the size of the lookup table. If we were using 2 ×2 blocks of
8-bit values, the lookup table would have 232 values, which is too large for most applications.
The size of the table could be reduced if the number of bits per pixel was lower or if, instead
of taking 2×2 blocks, we used rectangular blocks of size 2×1 and 1×2 [85].

Finally, we do not have to build the pyramid one layer at a time. After sending the
lowest-resolution approximations, we can use some measure of information contained in a
block to decide whether it should be transmitted [86]. One possible measure could be the
difference between the largest and smallest intensity values in the block. Another might be
to look at the maximum number of similar pixels in a block. Using an information measure
to guide the progressive transmission of images allows the user to see portions of the image
first that are visually more significant.

7.6 Facsimile Encoding

One of the earliest applications of lossless compression in the modern era has been the
compression of facsimile, or fax. In facsimile transmission, a page is scanned and converted
into a sequence of black or white pixels. The requirements of how fast the facsimile of an
A4 document (210×297 mm) must be transmitted have changed over the last two decades.
The CCITT (now ITU-T) has issued a number of recommendations based on the speed
requirements at a given time. The CCITT classifies the apparatus for facsimile transmission
into four groups. Although several considerations are used in this classification, if we only
consider the time to transmit an A4-size document over phone lines, the four groups can be
described as follows:

� Group 1: This apparatus is capable of transmitting an A4-size document in about six
minutes over phone lines using an analog scheme. The apparatus is standardized in
recommendation T.2.

� Group 2: This apparatus is capable of transmitting an A4-size document over phone
lines in about three minutes. A Group 2 apparatus also uses an analog scheme and,

7.6 Facsimile Encoding 179

therefore, does not use data compression. The apparatus is standardized in recommen-
dation T.3.

� Group 3: This apparatus uses a digitized binary representation of the facsimile.
Because it is a digital scheme, it can and does use data compression and is capable of
transmitting an A4-size document in about a minute. The apparatus is standardized in
recommendation T.4.

� Group 4: This apparatus has the same speed requirement as Group 3. The apparatus
is standardized in recommendations T.6, T.503, T.521, and T.563.

With the arrival of the Internet, facsimile transmission has changed as well. Given the
wide range of rates and “apparatus” used for digital communication, it makes sense to focus
more on protocols than on apparatus. The newer recommendations from the ITU provide
standards for compression that are more or less independent of apparatus.

Later in this chapter, we will look at the compression schemes described in the ITU-T
recommendations T.4, T.6, T.82 (JBIG) T.88 (JBIG2), and T.42 (MRC). We begin with a
look at an earlier technique for facsimile called run-length coding, which still survives as
part of the T.4 recommendation.

7 . 6 . 1 Run-Length Coding

The model that gives rise to run-length coding is the Capon model [87], a two-state Markov
model with states Sw and Sb (Sw corresponds to the case where the pixel that has just been
encoded is a white pixel, and Sb corresponds to the case where the pixel that has just been
encoded is a black pixel). The transition probabilities P�w�b� and P�b�w�, and the probability
of being in each state P�Sw� and P�Sb�, completely specify this model. For facsimile images,
P�w�w� and P�w�b� are generally significantly higher than P�b�w� and P�b�b�. The Markov
model is represented by the state diagram shown in Figure 7.6.

The entropy of a finite state process with states Si is given by Equation (2.16). Recall
that in Example 2.3.1, the entropy using a probability model and the iid assumption was
significantly more than the entropy using the Markov model.

Sw P(b|b)

P(b|w)

P(w|b)

P(w|w) Sb

F IGURE 7. 6 The Capon model for binary images.

180 7 L O S S L E S S I M A G E C O M P R E S S I O N

Let us try to interpret what the model says about the structure of the data. The highly
skewed nature of the probabilities P�b�w� and P�w�w�, and to a lesser extent P�w�b� and
P�b�b�, says that once a pixel takes on a particular color (black or white), it is highly likely
that the following pixels will also be of the same color. So, rather than code the color of each
pixel separately, we can simply code the length of the runs of each color. For example, if
we had 190 white pixels followed by 30 black pixels, followed by another 210 white pixels,
instead of coding the 430 pixels individually, we would code the sequence 190� 30� 210,
along with an indication of the color of the first string of pixels. Coding the lengths of runs
instead of coding individual values is called run-length coding.

7 . 6 . 2 CCITT Group 3 and 4-—Recommendat ions T .4
and T.6

The recommendations for Group 3 facsimile include two coding schemes. One is a one-
dimensional scheme in which the coding on each line is performed independently of any
other line. The other is two-dimensional; the coding of one line is performed using the
line-to-line correlations.

The one-dimensional coding scheme is a run-length coding scheme in which each line
is represented as a series of alternating white runs and black runs. The first run is always
a white run. If the first pixel is a black pixel, then we assume that we have a white run of
length zero.

Runs of different lengths occur with different probabilities; therefore, they are coded
using a variable-length code. The approach taken in the CCITT standards T.4 and T.6 is to
use a Huffman code to encode the run lengths. However, the number of possible lengths
of runs is extremely large, and it is simply not feasible to build a codebook that large.
Therefore, instead of generating a Huffman code for each run length rl, the run length is
expressed in the form

rl = 64×m+ t for t = 0, 1, …, 63, and m = 1, 2, …, 27. (7.10)

When we have to represent a run length rl, instead of finding a code for rl, we use the
corresponding codes for m and t. The codes for t are called the terminating codes, and the
codes for m are called the make-up codes. If rl < 63, we only need to use a terminating
code. Otherwise, both a make-up code and a terminating code are used. For the range of m
and t given here, we can represent lengths of 1728, which is the number of pixels per line
in an A4-size document. However, if the document is wider, the recommendations provide
for those with an optional set of 13 codes. Except for the optional codes, there are separate
codes for black and white run lengths. This coding scheme is generally referred to as a
modified Huffman (MH) scheme.

In the two-dimensional scheme, instead of reporting the run lengths, which in terms of
our Markov model is the length of time we remain in one state, we report the transition
times when we move from one state to another state. Look at Figure 7.7. We can encode this
in two ways. We can say that the first row consists of a sequence of runs 0� 2� 3� 3� 8, and
the second row consists of runs of length 0� 1� 8� 3� 4 (notice the first runs of length zero).
Or, we can encode the location of the pixel values that occur at a transition from white to

7.6 Facsimile Encoding 181

F IGURE 7. 7 Two rows of an image. The transition pixels are marked with a dot.

black or black to white. The first pixel is an imaginary white pixel assumed to be to the left
of the first actual pixel. Therefore, if we were to code transition locations, we would encode
the first row as 1� 3� 6� 9 and the second row as 1� 2� 10� 13.

Generally, rows of a facsimile image are heavily correlated. Therefore, it would be easier
to code the transition points with reference to the previous line than to code each one in
terms of its absolute location, or even its distance from the previous transition point. This
is the basic idea behind the recommended two-dimensional coding scheme. This scheme
is a modification of a two-dimensional coding scheme called the Relative Element Address
Designate (READ) code [88, 89] and is often referred to as Modified READ (MR). The
READ code was the Japanese proposal to the CCITT for the Group 3 standard.

To understand the two-dimensional coding scheme, we need some definitions.

a0: This is the last pixel whose value is known to both encoder and decoder. At the
beginning of encoding each line, a0 refers to an imaginary white pixel to the left of
the first actual pixel. While it is often a transition pixel, it does not have to be.

a1: This is the first transition pixel to the right of a0. By definition its color should be the
opposite of a0. The location of this pixel is known only to the encoder.

a2: This is the second transition pixel to the right of a0. Its color should be the opposite of
a1, which means it has the same color as a0. The location of this pixel is also known
only to the encoder.

b1: This is the first transition pixel on the line above the line currently being encoded to
the right of a0 whose color is the opposite of a0. As the line above is known to both
encoder and decoder, as is the value of a0, the location of b1 is also known to both
encoder and decoder.

b2: This is the first transition pixel to the right of b1 in the line above the line currently
being encoded.

For the pixels in Figure 7.7, if the second row is the one being currently encoded, and if
we have encoded the pixels up to the second pixel, the assignment of the different pixels
is shown in Figure 7.8. The pixel assignments for a slightly different arrangement of black
and white pixels are shown in Figure 7.9.

If b1 and b2 lie between a0 and a1, we call the coding mode used the pass mode. The
transmitter informs the receiver about the situation by sending the code 0001. Upon receipt
of this code, the receiver knows that from the location of a0 to the pixel right below b2,
all pixels are of the same color. If this had not been true, we would have encountered a
transition pixel. As the first transition pixel to the right of a0 is a1, and as b2 occurs before
a1, no transitions have occurred and all pixels from a0 to right below b2 are the same color.
At this time, the last pixel known to both the transmitter and receiver is the pixel below b2.

182 7 L O S S L E S S I M A G E C O M P R E S S I O N

a0 a1 a2

b1 b2

F IGURE 7. 8 Two rows of an image. The transition pixels are marked with a dot.

a0 a1 a2

b1 b2

F IGURE 7. 9 Two rows of an image. The transition pixels are marked with a dot.

Therefore, this now becomes the new a0, and we find the new positions of b1 and b2 by
examining the row above the one being encoded and continue with the encoding process.

If a1 is detected before b2 by the encoder, we do one of two things. If the distance
between a1 and b1 (the number of pixels from a1 to right under b1) is less than or equal to
three, then we send the location of a1 with respect to b1, move a0 to a1, and continue with
the coding process. This coding mode is called the vertical mode. If the distance between a1

and b1 is large, we essentially revert to the one-dimensional technique and send the distances
between a0 and a1, and a1 and a2, using the modified Huffman code. Let us look at exactly
how this is accomplished.

In the vertical mode, if the distance between a1 and b1 is zero (that is, a1 is exactly
under b1), we send the code 1. If the a1 is to the right of b1 by one pixel (as in Figure 7.9),
we send the code 011. If a1 is to the right of b1 by two or three pixels, we send the codes
000011 or 0000011, respectively. If a1 is to the left of b1 by one, two, or three pixels, we
send the codes 010, 000010, or 0000010, respectively.

In the horizontal mode, we first send the code 001 to inform the receiver about the mode,
and then send the modified Huffman codewords corresponding to the run length from a0 to
a1, and a1 to a2.

As the encoding of a line in the two-dimensional algorithm is based on the previous
line, an error in one line could conceivably propagate to all other lines in the transmission.
To prevent this from happening, the T.4 recommendations contain the requirement that after
each line is coded with the one-dimensional algorithm, at most K − 1 lines will be coded
using the two-dimensional algorithm. For standard vertical resolution, K = 2, and for high
resolution, K = 4.

7.6 Facsimile Encoding 183

The Group 4 encoding algorithm, as standardized in CCITT recommendation T.6, is
identical to the two-dimensional encoding algorithm in recommendation T.4. The main
difference between T.6 and T.4 from the compression point of view is that T.6 does not
have a one-dimensional coding algorithm, which means that the restriction described in
the previous paragraph is also not present. This slight modification of the modified READ
algorithm has earned the name modified modified READ (MMR)!

7 . 6 . 3 JBIG

Many bi-level images have a lot of local structure. Consider a digitized page of text. In large
portions of the image we will encounter white pixels with a probability approaching 1.
In other parts of the image there will be a high probability of encountering a black pixel. We
can make a reasonable guess of the situation for a particular pixel by looking at values of
the pixels in the neighborhood of the pixel being encoded. For example, if the pixels in the
neighborhood of the pixel being encoded are mostly white, then there is a high probability
that the pixel to be encoded is also white. On the other hand, if most of the pixels in the
neighborhood are black, there is a high probability that the pixel being encoded is also
black. Each case gives us a skewed probability—a situation ideally suited for arithmetic
coding. If we treat each case separately, using a different arithmetic coder for each of the
two situations, we should be able to obtain improvement over the case where we use the
same arithmetic coder for all pixels. Consider the following example.

Suppose the probability of encountering a black pixel is 0�2 and the probability of
encountering a white pixel is 0�8. The entropy for this source is given by

H = −0�2 log2 0�2−0�8 log2 0�8 = 0�722� (7.11)

If we use a single arithmetic coder to encode this source, we will get an average bit rate
close to 0�722 bits per pixel. Now suppose, based on the neighborhood of the pixels, that
we can divide the pixels into two sets, one comprising 80% of the pixels and the other
20%. In the first set, the probability of encountering a white pixel is 0�95, and in the second
set the probability of encountering a black pixel is 0�7. The entropy of these sets is 0�286
and 0�881, respectively. If we used two different arithmetic coders for the two sets with
frequency tables matched to the probabilities, we would get rates close to 0�286 bits per
pixel about 80% of the time and close to 0�881 bits per pixel about 20% of the time. The
average rate would be about 0�405 bits per pixel, which is almost half the rate required if
we used a single arithmetic coder. If we use only those pixels in the neighborhood that had
already been transmitted to the receiver to make our decision about which arithmetic coder
to use, the decoder can keep track of which encoder was used to encode a particular pixel.

As we have mentioned before, the arithmetic coding approach is particularly amenable
to the use of multiple coders. All coders use the same computational machinery, with each
coder using a different set of probabilities. The JBIG algorithm makes full use of this feature
of arithmetic coding. Instead of checking to see if most of the pixels in the neighborhood are
white or black, the JBIG encoder uses the pattern of pixels in the neighborhood, or context,
to decide which set of probabilities to use in encoding a particular pixel. If the neighborhood
consists of 10 pixels, with each pixel capable of taking on two different values, the number of

184 7 L O S S L E S S I M A G E C O M P R E S S I O N

O O O
O O O O A
O O X

O AO O O O
O O O O X

(a) (b)

F IGURE 7. 10 (a) Three-line and (b) two-line neighborhoods.

0 0 0
1 0 0 0 1
1 0 0

1 00 0 1 1
0 0 0 1 1

(a) (b)

F IGURE 7. 11 (a) Three-line and (b) two-line contexts.

possible patterns is 1024. The JBIG coder uses 1024 to 4096 coders, depending on whether
a low- or high-resolution layer is being encoded.

For the low-resolution layer, the JBIG encoder uses one of the two different neighbor-
hoods shown in Figure 7.10. The pixel to be coded is marked X, while the pixels to be used
for templates are marked O or A. The A and O pixels are previously encoded pixels and are
available to both encoder and decoder. The A pixel can be thought of as a floating member
of the neighborhood. Its placement is dependent on the input being encoded. Suppose the
image has vertical lines 30 pixels apart. The A pixel would be placed 30 pixels to the left
of the pixel being encoded. The A pixel can be moved around to capture any structure that
might exist in the image. This is especially useful in halftone images in which the A pixels
are used to capture the periodic structure. The location and movement of the A pixel are
transmitted to the decoder as side information.

In Figure 7.11, the symbols in the neighborhoods have been replaced by 0s and 1s.
We take 0 to correspond to white pixels, while 1 corresponds to black pixels. The pixel
to be encoded is enclosed by the heavy box. The pattern of 0s and 1s is interpreted as a
binary number, which is used as an index to the set of probabilities. The context in the case
of the three-line neighborhood (reading left to right, top to bottom) is 0001000110, which
corresponds to an index of 70. For the two-line neighborhood, the context is 0011100001,
or 225. Since there are 10 bits in these templates, we will have 1024 different arithmetic
coders.

In the JBIG standard, the 1024 arithmetic coders are a variation of the arithmetic coder
known as the QM coder. The QM coder is a modification of an adaptive binary arithmetic
coder called the Q coder [51, 52, 53], which in turn is an extension of another binary adaptive
arithmetic coder called the skew coder [90].

In our description of arithmetic coding, we updated the tag interval by updating the
endpoints of the interval, u�n� and l�n�. We could just as well have kept track of one endpoint

7.6 Facsimile Encoding 185

and the size of the interval. This is the approach adopted in the QM coder, which tracks the
lower end of the tag interval l�n� and the size of the interval A�n�, where

A�n� = u�n� − l�n�� (7.12)

The tag for a sequence is the binary representation of l�n�.
We can obtain the update equation for A�n� by subtracting Equation (4.9) from Equation

(4.10) and making this substitution

A�n� = A�n−1��FX�xn�−FX�xn −1� (7.13)

= A�n−1�P�xn�� (7.14)

Substituting A�n� for u�n� − l�n� in Equation (4.9), we get the update equation for l�n�:

l�n� = l�n−1� +A�n−1�FX�xn −1�� (7.15)

Instead of dealing directly with the 0s and 1s put out by the source, the QM coder
maps them into a More Probable Symbol (MPS) and Less Probable Symbol (LPS). If 0
represents black pixels and 1 represents white pixels, then in a mostly black image 0 will
be the MPS, whereas in an image with mostly white regions 1 will be the MPS. Denoting
the probability of occurrence of the LPS for the context C by qc and mapping the MPS
to the lower subinterval, the occurrence of an MPS symbol results in the following update
equations:

l�n� = l�n−1� (7.16)

A�n� = A�n−1��1−qc� (7.17)

while the occurrence of an LPS symbol results in the following update equations:

l�n� = l�n−1� +A�n−1��1−qc� (7.18)

A�n� = A�n−1�qc� (7.19)

Until this point, the QM coder looks very much like the arithmetic coder described earlier
in this chapter. To make the implementation simpler, the JBIG committee recommended
several deviations from the standard arithmetic coding algorithm. The update equations
involve multiplications, which are expensive in both hardware and software. In the QM
coder, the multiplications are avoided by assuming that A�n� has a value close to 1, and
multiplication with A�n� can be approximated by multiplication with 1. Therefore, the update
equations become

For MPS:

l�n� = l�n−1� (7.20)

A�n� = 1−qc (7.21)

For LPS:

l�n� = l�n−1� + �1−qc� (7.22)

A�n� = qc (7.23)

186 7 L O S S L E S S I M A G E C O M P R E S S I O N

In order not to violate the assumption on A�n� whenever the value of A�n� drops below
0�75, the QM coder goes through a series of rescalings until the value of A�n� is greater than
or equal to 0�75. The rescalings take the form of repeated doubling, which corresponds to
a left shift in the binary representation of A�n�. To keep all parameters in sync, the same
scaling is also applied to l�n�. The bits shifted out of the buffer containing the value of l�n�

make up the encoder output. Looking at the update equations for the QM coder, we can see
that a rescaling will occur every time an LPS occurs. Occurrence of an MPS may or may
not result in a rescale, depending on the value of A�n�.

The probability qc of the LPS for context C is updated each time a rescaling takes place
and the context C is active. An ordered list of values for qc is listed in a table. Every time
a rescaling occurs, the value of qc is changed to the next lower or next higher value in
the table, depending on whether the rescaling was caused by the occurrence of an LPS or
an MPS.

In a nonstationary situation, the symbol assigned to LPS may actually occurs more often
than the symbol assigned to MPS. This condition is detected when qc > �A�n� −qc�. In this
situation, the assignments are reversed; the symbol assigned the LPS label is assigned the
MPS label and vice versa. The test is conducted every time a rescaling takes place.

The decoder for the QM coder operates in much the same way as the decoder described
in this chapter, mimicking the encoder operation.

P rog re s s i ve T ran sm i s s i on

In some applications we may not always need to view an image at full resolution. For
example, if we are looking at the layout of a page, we may not need to know what each
word or letter on the page is. The JBIG standard allows for the generation of progressively
lower-resolution images. If the user is interested in some gross patterns in the image
(for example, if they were interested in seeing if there were any figures on a particular page)
they could request a lower-resolution image, which could be transmitted using fewer
bits. Once the lower-resolution image was available, the user could decide whether a
higher-resolution image was necessary. The JBIG specification recommends generating one
lower-resolution pixel for each 2 × 2 block in the higher-resolution image. The number of
lower-resolution images (called layers) is not specified by JBIG.

A straightforward method for generating lower-resolution images is to replace every
2×2 block of pixels with the average value of the four pixels, thus reducing the resolution
by two in both the horizontal and vertical directions. This approach works well as long as
three of the four pixels are either black or white. However, when we have two pixels of
each kind, we run into trouble; consistently replacing the four pixels with either a white
or black pixel causes a severe loss of detail, and randomly replacing with a black or white
pixel introduces a considerable amount of noise into the image [81].

Instead of simply taking the average of every 2×2 block, the JBIG specification provides
a table-based method for resolution reduction. The table is indexed by the neighboring pixels
shown in Figure 7.12, in which the circles represent the lower-resolution layer pixels and
the squares represent the higher-resolution layer pixels.

Each pixel contributes a bit to the index. The table is formed by computing the expression

4e+2�b+d+f +h�+ �a+ c+g + i�−3�B+C�−A�

7.6 Facsimile Encoding 187

a b c

d e f

g h i

A B

C X

F IGURE 7. 12 Pixels used to determine the value of a lower-level pixel.

If the value of this expression is greater than 4�5, the pixel X is tentatively declared to be 1.
The table has certain exceptions to this rule to reduce the amount of edge smearing, generally
encountered in a filtering operation. There are also exceptions that preserve periodic patterns
and dither patterns.

As the lower-resolution layers are obtained from the higher-resolution images, we can use
them when encoding the higher-resolution images. The JBIG specification makes use of the
lower-resolution images when encoding the higher-resolution images by using the pixels of
the lower-resolution images as part of the context for encoding the higher-resolution images.
The contexts used for coding the lowest-resolution layer are those shown in Figure 7.10.
The contexts used in coding the higher-resolution layer are shown in Figure 7.13.

Ten pixels are used in each context. If we include the 2 bits required to indicate which
context template is being used, 12 bits will be used to indicate the context. This means that
we can have 4096 different contexts.

Compa r i s on o f MH , MR , MMR, and JB IG

In this section we have seen three old facsimile coding algorithms: modified Huffman,
modified READ, and modified modified READ. Before we proceed to the more modern
techniques found in T.88 and T.42, we compare the performance of these algorithms with
the earliest of the modern techniques, namely JBIG. We described the JBIG algorithm as
an application of arithmetic coding in Chapter 4. This algorithm has been standardized in
ITU-T recommendation T.82. As we might expect, the JBIG algorithm performs better than
the MMR algorithm, which performs better than the MR algorithm, which in turn performs
better than the MH algorithm. The level of complexity also follows the same trend, although
we could argue that MMR is actually less complex than MR.

A comparison of the schemes for some facsimile sources is shown in Table 7.4. The
modified READ algorithm was used with K = 4, while the JBIG algorithm was used with
an adaptive three-line template and adaptive arithmetic coder to obtain the results in this
table. As we go from the one-dimensional MH coder to the two-dimensional MMR coder,
we get a factor of two reduction in file size for the sparse text sources. We get even more
reduction when we use an adaptive coder and an adaptive model, as is true for the JBIG
coder. When we come to the dense text, the advantage of the two-dimensional MMR over
the one-dimensional MH is not as significant, as the amount of two-dimensional correlation
becomes substantially less.

188 7 L O S S L E S S I M A G E C O M P R E S S I O N

A O

O

O

OO ?
O O

O

(a)

O

A O

O

O

OO ?
O O

O

(b)

O

A O

O

O

OO ?
O O

O

(c)

O

A O

O

O

OO ?
O O

O

(d)

O

F IGURE 7. 13 Contexts used in the coding of higher-resolution layers.

TAB L E 7 . 4 Comparison of binary image coding schemes. Data from [91].

Source Original Size
Description (pixels) MH (bytes) MR (bytes) MMR (bytes) JBIG (bytes)

Letter 4352×3072 20,605 14,290 8,531 6,682
Sparse text 4352×3072 26,155 16,676 9,956 7,696
Dense text 4352×3072 135,705 105,684 92,100 70,703

The compression schemes specified in T.4 and T.6 break down when we try to use them
to encode halftone images. In halftone images, gray levels are represented using binary pixel
patterns. A gray level closer to black would be represented by a pattern that contains more
black pixels, while a gray level closer to white would be represented by a pattern with fewer
black pixels. Thus, the model that was used to develop the compression schemes specified
in T.4 and T.6 is not valid for halftone images. The JBIG algorithm, with its adaptive
model and coder, suffers from no such drawbacks and performs well for halftone images
also [91].

7.6 Facsimile Encoding 189

7 . 6 . 4 JBIG2-—T.88

The JBIG2 standard was approved in February of 2000. Besides facsimile transmission,
the standard is also intended for document storage, archiving, wireless transmission, print
spooling, and coding of images on the Web. The standard provides specifications only
for the decoder, leaving the encoder design open. This means that the encoder design can
be constantly refined, subject only to compatibility with the decoder specifications. This
situation also allows for lossy compression, beacuse the encoder can incorporate lossy
transformations to the data that enhance the level of compression.

The compression algorithm in JBIG provides excellent compression of a generic bi-level
image. The compression algorithm proposed for JBIG2 uses the same arithmetic coding
scheme as JBIG. However, it takes advantage of the fact that a significant number of bi-level
images contain structure that can be used to enhance the compression performance. A large
percentage of bi-level images consist of text on some background, while another significant
percentage of bi-level images are or contain halftone images. The JBIG2 approach allows
the encoder to select the compression technique that would provide the best performance for
the type of data. To do so, the encoder divides the page to be compressed into three types
of regions called symbol regions, halftone regions, and generic regions. The symbol regions
are those containing text data, the halftone regions are those containing halftone images, and
the generic regions are all the regions that do not fit into either category.

The partitioning information has to be supplied to the decoder. The decoder requires that
all information provided to it be organized in segments that are made up of a segment header,
a data header, and segment data. The page information segment contains information about
the page including the size and resolution. The decoder uses this information to set up the
page buffer. It then decodes the various regions using the appropriate decoding procedure
and places the different regions in the appropriate location.

Gene r i c De cod i ng P ro cedu re s

There are two procedures used for decoding the generic regions: the generic region decod-
ing procedure and the generic refinement region decoding procedure. The generic region
decoding procedure uses either the MMR technique used in the Group 3 and Group 4 fax
standards or a variation of the technique used to encode the lowest-resolution layer in the
JBIG recommendation. We describe the operation of the MMR algorithm in Chapter 6. The
latter procedure is described as follows.

The second generic region decoding procedure is a procedure called typical prediction.
In a bi-level image, a line of pixels is often identical to the line above. In typical prediction,
if the current line is the same as the line above, a bit flag called LNTPn is set to 0, and the
line is not transmitted. If the line is not the same, the flag is set to 1, and the line is coded
using the contexts currently used for the low-resolution layer in JBIG. The value of LNTPn

is encoded by generating another bit, SLNTPn, according to the rule

SLNTPn = !�LNTPn ⊕LNTPn−1�

which is treated as a virtual pixel to the left of each row. If the decoder decodes an LNTP
value of 0, it copies the line above. If it decodes an LNTP value of 1, the following bits

190 7 L O S S L E S S I M A G E C O M P R E S S I O N

in the segment data are decoded using an arithmetic decoder and the contexts described
previously.

The generic refinement decoding procedure assumes the existence of a reference layer
and decodes the segment data with reference to this layer. The standard leaves open the
specification of the reference layer.

Symbo l Reg ion De cod i ng

The symbol region decoding procedure is a dictionary-based decoding procedure. The symbol
region segment is decoded with the help of a symbol dictionary contained in the symbol
dictionary segment. The data in the symbol region segment contains the location where
a symbol is to be placed, as well as the index to an entry in the symbol dictionary. The
symbol dictionary consists of a set of bitmaps and is decoded using the generic decoding
procedures. Note that because JBIG2 allows for lossy compression, the symbols do not
have to exactly match the symbols in the original document. This feature can significantly
increase the compression performance when the original document contains noise that may
preclude exact matches with the symbols in the dictionary.

Ha l f t one Reg ion De cod i ng

The halftone region decoding procedure is also a dictionary-based decoding procedure. The
halftone region segment is decoded with the help of a halftone dictionary contained in the
halftone dictionary segment. The halftone dictionary segment is decoded using the generic
decoding procedures. The data in the halftone region segment consists of the location of the
halftone region and indices to the halftone dictionary. The dictionary is a set of fixed-size
halftone patterns. As in the case of the symbol region, if lossy compression is allowed,
the halftone patterns do not have to exactly match the patterns in the original document.
By allowing for nonexact matches, the dictionary can be kept small, resulting in higher
compression.

7.7 MRC-—T.44

With the rapid advance of technology for document production, documents have changed
in appearance. Where a document used to be a set of black and white printed pages, now
documents contain multicolored text as well as color images. To deal with this new type
of document, the ITU-T developed the recommendation T.44 for Mixed Raster Content
(MRC). This recommendation takes the approach of separating the document into ele-
ments that can be compressed using available techniques. Thus, it is more an approach of
partitioning a document image than a compression technique. The compression strategies
employed here are borrowed from previous standards such as JPEG (T.81), JBIG (T.82), and
even T.6.

The T.44 recommendation divides a page into slices where the width of the slice is equal
to the width of the entire page. The height of the slice is variable. In the base mode, each

7.7 MRC-—T.44 191

You are invited to a PARTY

It Will Soon be June 4

with Ruby and Hanna

to CELEBRATE

That’s Ruby’s Birthday!

F IGURE 7. 14 Ruby’s birthday invitation.

This area not coded

or sent

F IGURE 7. 15 The background layer.

slice is represented by three layers: a background layer, a foreground layer, and a mask
layer. These layers are used to effectively represent three basic data types: color images
(which may be continuous tone or color mapped), bi-level data, and multilevel (multicolor)
data. The multilevel image data is put in the background layer, and the mask and foreground
layers are used to represent the bi-level and multilevel nonimage data. To work through the
various definitions, let us use the document shown in Figure 7.14 as an example. We have
divided the document into two slices. The top slice contains the picture of the cake and two
lines of writing in two “colors.” Notice that the heights of the two slices are not the same and
the complexity of the information contained in the two slices is not the same. The top slice
contains multicolored text and a continuous tone image whereas the bottom slice contains
only bi-level text. Let us take the upper slice first and see how to divide it into the three
layers. We will discuss how to code these layers later. The background layer consists of the
cake and nothing else. The default color for the background layer is white (though this can
be changed). Therefore, we do not need to send the left half of this layer, which contains
only white pixels.

192 7 L O S S L E S S I M A G E C O M P R E S S I O N

It Will Soon be June 4

That’s Ruby’s Birthday!

F IGURE 7. 16 The mask layer.

This area not

coded or sent.

F IGURE 7. 17 The foreground layer.

The mask layer (Figure 7.16) consists of a bi-level representation of the textual infor-
mation, while the foreground layer contains the colors used in the text. To reassemble the
slice we begin with the background layer. We then add to it pixels from the foreground
layer using the mask layer as the guide. Wherever the mask layer pixel is black (1) we pick
the corresponding pixel from the foreground layer. Wherever the mask pixel is white (0) we
use the pixel from the background layer. Because of its role in selecting pixels, the mask
layer is also known as the selector layer. During transmission the mask layer is transmitted
first, followed by the background and the foreground layers. During the rendering process
the background layer is rendered first.

When we look at the lower slice we notice that it contains only bi-level information. In
this case we only need the mask layer because the other two layers would be superfluous.
In order to deal with this kind of situation, the standard defines three different kinds of
stripes. Three-layer stripes (3LS) contain all three layers and is useful when there is both
image and textual data in the strip. Two-layer stripes (2LS) only contain two layers, with the
third set to a constant value. This kind of stripe would be useful when encoding a stripe with
multicolored text and no images, or a stripe with images and bi-level text or line drawings.
The third kind of stripe is a one-layer stripe (1LS) which would be used when a stripe
contains only bi-level text or line art, or only continuous tone images.

Once the document has been partitioned it can be compressed. Notice that the types
of data we have after partitioning are continuous tone images, bi-level information, and
multilevel regions. We already have efficient standards for compressing these types of
data. For the mask layer containing bi-level information, the recommendation suggests that
one of several approaches can be used, including modified Huffman or modified READ

7.9 Projects and Problems 193

(as described in recomendation T.4), MMR (as described in recommendation T.6) or JBIG
(recommendation T.82). The encoder includes information in the datastream about which
algorithm has been used. For the continuous tone images and the multilevel regions contained
in the foreground and background layers, the recommendation suggests the use of the JPEG
standard (recommendation T.81) or the JBIG standard. The header for each slice contains
information about which algorithm is used for compression.

7.8 Summary

In this section we have examined a number of ways to compress images. All these approaches
exploit the fact that pixels in an image are generally highly correlated with their neighbors.
This correlation can be used to predict the actual value of the current pixel. The prediction
error can then be encoded and transmitted. Where the correlation is especially high, as in
the case of bi-level images, long stretches of pixels can be encoded together using their
similarity with previous rows. Finally, by identifying different components of an image that
have common characteristics, an image can be partitioned and each partition encoded using
the algorithm best suited to it.

Fu r t he r Read ing

1. A detailed survey of lossless image compression techniques can be found in “Lossless
Image Compression” by K.P. Subbalakshmi. This chapter appears in the Lossless
Compression Handbook, Academic Press, 2003.

2. For a detailed description of the LOCO-I and JPEG-LS compression algorithm, see
“The LOCO-I Lossless Image Compression Algorithm: Principles and Standardiza-
tion into JPEG-LS,” Hewlett-Packard Laboratories Technical Report HPL-98-193,
November 1998 [92].

3. The JBIG and JBIG2 standards are described in a very accessible manner in “Lossless
Bilevel Image Compression,” by M.W. Hoffman. This chapter appears in the Lossless
Compression Handbook, Academic Press, 2003.

4. The area of lossless image compression is a very active one, and new schemes are
being published all the time. These articles appear in a number of journals, including
Journal of Electronic Imaging, Optical Engineering, IEEE Transactions on Image
Processing, IEEE Transactions on Communications, Communications of the ACM,
IEEE Transactions on Computers, and Image Communication, among others.

7.9 Projects and Problems

1. Encode the binary image shown in Figure 7.18 using the modified Huffman scheme.

2. Encode the binary image shown in Figure 7.18 using the modified READ scheme.

3. Encode the binary image shown in Figure 7.18 using the modified modified READ
scheme.

194 7 L O S S L E S S I M A G E C O M P R E S S I O N

F IGURE 7. 18 An 8×16 binary image.

4. Suppose we want to transmit a 512×512, 8-bits-per-pixel image over a 9600 bits per
second line.

(a) If we were to transmit this image using raster scan order, after 15 seconds how
many rows of the image will the user have received? To what fraction of the
image does this correspond?

(b) If we were to transmit the image using the method of Example 7.5.1, how long
would it take the user to receive the first approximation? How long would it take
to receive the first two approximations?

5. An implementation of the progressive transmission example (Example 7.5.1) is included
in the programs accompanying this book. The program is calledprog_tran1.c. Using
this program as a template, experiment with different ways of generating approximations
(you could use various types of weighted averages) and comment on the qualitative
differences (or lack thereof) with using various schemes. Try different block sizes and
comment on the practical effects in terms of quality and rate.

6. The program jpegll_enc.c generates the residual image for the different JPEG
prediction modes, while the program jpegll_dec.c reconstructs the original image
from the residual image. The output of the encoder program can be used as the input
to the public domain arithmetic coding program mentioned in Chapter 4 and the
Huffman coding programs mentioned in Chapter 3. Study the performance of different
combinations of prediction mode and entropy coder using three images of your choice.
Account for any differences you see.

7. Extend jpegll_enc.c and jpegll_dec.c with an additional prediction mode—
be creative! Compare the performance of your predictor with the JPEG predictors.

8. Implement the portions of the CALIC algorithm described in this chapter. Encode the
Sena image using your implementation.

8
Mathematical Preliminaries for
Lossy Coding

8.1 Overview

B
efore we discussed lossless compression, we presented some of the mathemat-
ical background necessary for understanding and appreciating the compression
schemes that followed. We will try to do the same here for lossy compres-
sion schemes. In lossless compression schemes, rate is the general concern.
With lossy compression schemes, the loss of information associated with such

schemes is also a concern. We will look at different ways of assessing the impact of the
loss of information. We will also briefly revisit the subject of information theory, mainly
to get an understanding of the part of the theory that deals with the trade-offs involved
in reducing the rate, or number of bits per sample, at the expense of the introduction of
distortion in the decoded information. This aspect of information theory is also known as
rate distortion theory. We will also look at some of the models used in the development of
lossy compression schemes.

8.2 Introduct ion

This chapter will provide some mathematical background that is necessary for discussing
lossy compression techniques. Most of the material covered in this chapter is common to
many of the compression techniques described in the later chapters. Material that is specific
to a particular technique is described in the chapter in which the technique is presented. Some
of the material presented in this chapter is not essential for understanding the techniques
described in this book. However, to follow some of the literature in this area, familiarity
with these topics is necessary. We have marked these sections with a �. If you are primarily
interested in the techniques, you may wish to skip these sections, at least on first reading.

196 8 L O S S Y C O D I N G

On the other hand, if you wish to delve more deeply into these topics, we have included
a list of resources at the end of this chapter that provide a more mathematically rigorous
treatment of this material.

When we were looking at lossless compression, one thing we never had to worry about
was how the reconstructed sequence would differ from the original sequence. By definition,
the reconstruction of a losslessly constructed sequence is identical to the original sequence.
However, there is only a limited amount of compression that can be obtained with lossless
compression. There is a floor (a hard one) defined by the entropy of the source, below which
we cannot drive the size of the compressed sequence. As long as we wish to preserve all of
the information in the source, the entropy, like the speed of light, is a fundamental limit.

The limited amount of compression available from using lossless compression schemes
may be acceptable in several circumstances. The storage or transmission resources available
to us may be sufficient to handle our data requirements after lossless compression. Or the
possible consequences of a loss of information may be much more expensive than the cost
of additional storage and/or transmission resources. This would be the case with the storage
and archiving of bank records; an error in the records could turn out to be much more
expensive than the cost of buying additional storage media.

If neither of these conditions hold—that is, resources are limited and we do not require
absolute integrity—we can improve the amount of compression by accepting a certain degree
of loss during the compression process. Performance measures are necessary to determine
the efficiency of our lossy compression schemes. For the lossless compression schemes we
essentially used only the rate as the performance measure. That would not be feasible for
lossy compression. If rate were the only criterion for lossy compression schemes, where loss
of information is permitted, the best lossy compression scheme would be simply to throw
away all the data! Therefore, we need some additional performance measure, such as some
measure of the difference between the original and reconstructed data, which we will refer
to as the distortion in the reconstructed data. In the next section, we will look at some of the
more well-known measures of difference and discuss their advantages and shortcomings.

In the best of all possible worlds we would like to incur the minimum amount of
distortion while compressing to the lowest rate possible. Obviously, there is a trade-off
between minimizing the rate and keeping the distortion small. The extreme cases are when
we transmit no information, in which case the rate is zero, or keep all the information, in
which case the distortion is zero. The rate for a discrete source is simply the entropy. The
study of the situations between these two extremes is called rate distortion theory. In this
chapter we will take a brief look at some important concepts related to this theory.

Finally, we need to expand the dictionary of models available for our use, for several
reasons. First, because we are now able to introduce distortion, we need to determine how
to add distortion intelligently. For this, we often need to look at the sources somewhat
differently than we have done previously. Another reason is that we will be looking at
compression schemes for sources that are analog in nature, even though we have treated
them as discrete sources in the past. We need models that more precisely describe the true
nature of these sources. We will describe several different models that are widely used in
the development of lossy compression algorithms.

We will use the block diagram and notation used in Figure 8.1 throughout our dis-
cussions. The output of the source is modeled as a random variable X. The source coder

8.3 Distortion Criteria 197

Source Source
encoder

Channel

X Xc

User Source
decoderY Xc

^

F IGURE 8. 1 Block diagram of a generic compression scheme.

takes the source output and produces the compressed representation Xc. The channel block
represents all transformations the compressed representation undergoes before the source is
reconstructed. Usually, we will take the channel to be the identity mapping, which means
Xc = X̂c. The source decoder takes the compressed representation and produces a recon-
struction of the source output for the user.

8.3 Distort ion Cri ter ia

How do we measure the closeness or fidelity of a reconstructed source sequence to the
original? The answer frequently depends on what is being compressed and who is doing
the answering. Suppose we were to compress and then reconstruct an image. If the image
is a work of art and the resulting reconstruction is to be part of a book on art, the best
way to find out how much distortion was introduced and in what manner is to ask a person
familiar with the work to look at the image and provide an opinion. If the image is that of
a house and is to be used in an advertisement, the best way to evaluate the quality of the
reconstruction is probably to ask a real estate agent. However, if the image is from a satellite
and is to be processed by a machine to obtain information about the objects in the image,
the best measure of fidelity is to see how the introduced distortion affects the functioning of
the machine. Similarly, if we were to compress and then reconstruct an audio segment, the
judgment of how close the reconstructed sequence is to the original depends on the type of
material being examined as well as the manner in which the judging is done. An audiophile
is much more likely to perceive distortion in the reconstructed sequence, and distortion is
much more likely to be noticed in a musical piece than in a politician’s speech.

In the best of all worlds we would always use the end user of a particular source
output to assess quality and provide the feedback required for the design. In practice this
is not often possible, especially when the end user is a human, because it is difficult to
incorporate the human response into mathematical design procedures. Also, there is difficulty
in objectively reporting the results. The people asked to assess one person’s design may
be more easygoing than the people who were asked to assess another person’s design.
Even though the reconstructed output using one person’s design is rated “excellent” and the
reconstructed output using the other person’s design is only rated “acceptable,” switching
observers may change the ratings. We could reduce this kind of bias by recruiting a large

198 8 L O S S Y C O D I N G

number of observers in the hope that the various biases will cancel each other out. This is
often the option used, especially in the final stages of the design of compression systems.
However, the rather cumbersome nature of this process is limiting. We generally need a
more practical method for looking at how close the reconstructed signal is to the original.

A natural thing to do when looking at the fidelity of a reconstructed sequence is to
look at the differences between the original and reconstructed values—in other words, the
distortion introduced in the compression process. Two popular measures of distortion or
difference between the original and reconstructed sequences are the squared error measure
and the absolute difference measure. These are called difference distortion measures. If �xn�
is the source output and �yn� is the reconstructed sequence, then the squared error measure
is given by

d�x� y� = �x−y�2 (8.1)

and the absolute difference measure is given by

d�x� y� = �x−y� � (8.2)

In general, it is difficult to examine the difference on a term-by-term basis. Therefore,
a number of average measures are used to summarize the information in the difference
sequence. The most often used average measure is the average of the squared error measure.
This is called the mean squared error (mse) and is often represented by the symbol 	2 or
	2

d:

	2 = 1
N

N∑

n=1

�xn −yn�
2� (8.3)

If we are interested in the size of the error relative to the signal, we can find the ratio of
the average squared value of the source output and the mse. This is called the signal-to-noise
ratio (SNR).

SNR = 	2
x

	2
d

(8.4)

where 	2
x is the average squared value of the source output, or signal, and 	2

d is the mse. The
SNR is often measured on a logarithmic scale and the units of measurement are decibels
(abbreviated to dB).

SNR�dB� = 10 log10

	2
x

	2
d

(8.5)

Sometimes we are more interested in the size of the error relative to the peak value of
the signal xpeak than with the size of the error relative to the average squared value of the
signal. This ratio is called the peak-signal-to-noise-ratio (PSNR) and is given by

PSNR�dB� = 10 log10

x2
peak

	2
d

� (8.6)

8.3 Distortion Criteria 199

Another difference distortion measure that is used quite often, although not as often as
the mse, is the average of the absolute difference, or

d1 = 1
N

N∑

n=1

�xn −yn� � (8.7)

This measure seems especially useful for evaluating image compression algorithms.
In some applications, the distortion is not perceptible as long as it is below some

threshold. In these situations we might be interested in the maximum value of the error
magnitude,

d� = max
n

�xn −yn� � (8.8)

We have looked at two approaches to measuring the fidelity of a reconstruction. The
first method involving humans may provide a very accurate measure of perceptible fidelity,
but it is not practical and not useful in mathematical design approaches. The second is
mathematically tractable, but it usually does not provide a very accurate indication of the
perceptible fidelity of the reconstruction. A middle ground is to find a mathematical model for
human perception, transform both the source output and the reconstruction to this perceptual
space, and then measure the difference in the perceptual space. For example, suppose we
could find a transformation � that represented the actions performed by the human visual
system (HVS) on the light intensity impinging on the retina before it is “perceived” by the
cortex. We could then find � �x� and � �y� and examine the difference between them. There
are two problems with this approach. First, the process of human perception is very difficult
to model, and accurate models of perception are yet to be discovered. Second, even if we
could find a mathematical model for perception, the odds are that it would be so complex
that it would be mathematically intractable.

In spite of these disheartening prospects, the study of perception mechanisms is still
important from the perspective of design and analysis of compression systems. Even if we
cannot obtain a transformation that accurately models perception, we can learn something
about the properties of perception that may come in handy in the design of compression
systems. In the following, we will look at some of the properties of the human visual system
and the perception of sound. Our review will be far from thorough, but the intent here is to
present some properties that will be useful in later chapters when we talk about compression
of images, video, speech, and audio.

8 . 3 . 1 The Human Visua l Sys tem

The eye is a globe-shaped object with a lens in the front that focuses objects onto the retina
in the back of the eye. The retina contains two kinds of receptors, called rods and cones.
The rods are more sensitive to light than cones, and in low light most of our vision is due
to the operation of rods. There are three kinds of cones, each of which are most sensitive at
different wavelengths of the visible spectrum. The peak sensitivities of the cones are in the
red, blue, and green regions of the visible spectrum [93]. The cones are mostly concentrated
in a very small area of the retina called the fovea. Although the rods are more numerous
than the cones, the cones provide better resolution because they are more closely packed in
the fovea. The muscles of the eye move the eyeball, positioning the image of the object on

200 8 L O S S Y C O D I N G

Light
source

Spatial
low-pass

filter

Logarithmic
nonlinearity

F IGURE 8. 2 A model of monochromatic vision.

the fovea. This becomes a drawback in low light. One way to improve what you see in low
light is to focus to one side of the object. This way the object is imaged on the rods, which
are more sensitive to light.

The eye is sensitive to light over an enormously large range of intensities; the upper end
of the range is about 1010 times the lower end of the range. However, at a given instant
we cannot perceive the entire range of brightness. Instead, the eye adapts to an average
brightness level. The range of brightness levels that the eye can perceive at any given instant
is much smaller than the total range it is capable of perceiving.

If we illuminate a screen with a certain intensity I and shine a spot on it with different
intensity, the spot becomes visible when the difference in intensity is
I . This is called
the just noticeable difference (jnd). The ratio
I

I
is known as the Weber fraction or Weber

ratio. This ratio is known to be constant at about 0�02 over a wide range of intensities in the
absence of background illumination. However, if the background illumination is changed, the
range over which the Weber ratio remains constant becomes relatively small. The constant
range is centered around the intensity level to which the eye adapts.

If
I
I

is constant, then we can infer that the sensitivity of the eye to intensity is a
logarithmic function (d�log I� = dI/I). Thus, we can model the eye as a receptor whose
output goes to a logarithmic nonlinearity. We also know that the eye acts as a spatial low-
pass filter [94, 95]. Putting all of this information together, we can develop a model for
monochromatic vision, shown in Figure 8.2.

How does this description of the human visual system relate to coding schemes? Notice
that the mind does not perceive everything the eye sees. We can use this knowledge to
design compression systems such that the distortion introduced by our lossy compression
scheme is not noticeable.

8 . 3 . 2 Audi tory Percept ion

The ear is divided into three parts, creatively named the outer ear, the middle ear, and the
inner ear. The outer ear consists of the structure that directs the sound waves, or pressure
waves, to the tympanic membrane, or eardrum. This membrane separates the outer ear from
the middle ear. The middle ear is an air-filled cavity containing three small bones that provide
coupling between the tympanic membrane and the oval window, which leads into the inner
ear. The tympanic membrane and the bones convert the pressure waves in the air to acoustical
vibrations. The inner ear contains, among other things, a snail-shaped passage called the
cochlea that contains the transducers that convert the acoustical vibrations to nerve impulses.

8.4 Information Theory Revisited � 201

The human ear can hear sounds from approximately 20 Hz to 20 kHz, a 1000:1 range
of frequencies. The range decreases with age; older people are usually unable to hear the
higher frequencies. As in vision, auditory perception has several nonlinear components. One
is that loudness is a function not only of the sound level, but also of the frequency. Thus, for
example, a pure 1 kHz tone presented at a 20 dB intensity level will have the same apparent
loudness as a 50 Hz tone presented at a 50 dB intensity level. By plotting the amplitude of
tones at different frequencies that sound equally loud, we get a series of curves called the
Fletcher-Munson curves [96].

Another very interesting audio phenomenon is that of masking, where one sound blocks
out or masks the perception of another sound. The fact that one sound can drown out another
seems reasonable. What is not so intuitive about masking is that if we were to try to mask a
pure tone with noise, only the noise in a small frequency range around the tone being masked
contributes to the masking. This range of frequencies is called the critical band. For most
frequencies, when the noise just masks the tone, the ratio of the power of the tone divided by
the power of the noise in the critical band is a constant [97]. The width of the critical band
varies with frequency. This fact has led to the modeling of auditory perception as a bank
of band-pass filters. There are a number of other, more complicated masking phenomena
that also lend support to this theory (see [97, 98] for more information). The limitations of
auditory perception play a major role in the design of audio compression algorithms. We
will delve further into these limitations when we discuss audio compression in Chapter 16.

8.4 Information Theory Revis i ted �

In order to study the trade-offs between rate and the distortion of lossy compression schemes,
we would like to have rate defined explicitly as a function of the distortion for a given
distortion measure. Unfortunately, this is generally not possible, and we have to go about it
in a more roundabout way. Before we head down this path, we need a few more concepts
from information theory.

In Chapter 2, when we talked about information, we were referring to letters from a
single alphabet. In the case of lossy compression, we have to deal with two alphabets, the
source alphabet and the reconstruction alphabet. These two alphabets are generally different
from each other.

Example 8 . 4 . 1:

A simple lossy compression approach is to drop a certain number of the least significant
bits from the source output. We might use such a scheme between a source that generates
monochrome images at 8 bits per pixel and a user whose display facility can display only 64
different shades of gray. We could drop the two least significant bits from each pixel before
transmitting the image to the user. There are other methods we can use in this situation that
are much more effective, but this is certainly simple.

Suppose our source output consists of 4-bit words �0� 1� 2� � � � � 15�. The source encoder
encodes each value by shifting out the least significant bit. The output alphabet for the source
coder is �0� 1� 2� � � � � 7�. At the receiver we cannot recover the original value exactly. However,

202 8 L O S S Y C O D I N G

we can get an approximation by shifting in a 0 as the least significant bit, or in other words, multi-
plying the source encoder output by two. Thus, the reconstruction alphabet is �0� 2� 4� � � � � 14�,
and the source and reconstruction do not take values from the same alphabet. �

As the source and reconstruction alphabets can be distinct, we need to be able to talk
about the information relationships between two random variables that take on values from
two different alphabets.

8 . 4 . 1 Condi t ional Ent ropy

Let X be a random variable that takes values from the source alphabet � = �x0� x1� � � � � xN−1�.
Let Y be a random variable that takes on values from the reconstruction alphabet � =
�y0� y1� � � � � yM−1�. From Chapter 2 we know that the entropy of the source and the recon-
struction are given by

H�X� = −
N−1∑

i=0

P�xi� log2 P�xi�

and

H�Y� = −
M−1∑

j=0

P�yj� log2 P�yj��

A measure of the relationship between two random variables is the conditional entropy
(the average value of the conditional self-information). Recall that the self-information for
an event A was defined as

i�A� = log
1

P�A�
= − log P�A��

In a similar manner, the conditional self-information of an event A, given that another event
B has occurred, can be defined as

i�A�B� = log
1

P�A�B�
= − log P�A�B��

Suppose B is the event “Frazer has not drunk anything in two days,” and A is the event
“Frazer is thirsty.” Then P�A�B� should be close to one, which means that the conditional
self-information i�A�B� would be close to zero. This makes sense from an intuitive point
of view as well. If we know that Frazer has not drunk anything in two days, then the
statement that Frazer is thirsty would not be at all surprising to us and would contain very
little information.

As in the case of self-information, we are generally interested in the average value of
the conditional self-information. This average value is called the conditional entropy. The
conditional entropies of the source and reconstruction alphabets are given as

H�X�Y� = −
N−1∑

i=0

M−1∑

j=0

P�xi�yj�P�yj� log2 P�xi�yj� (8.9)

8.4 Information Theory Revisited � 203

and

H�Y �X� = −
N−1∑

i=0

M−1∑

j=0

P�xi�yj�P�yj� log2 P�yj�xi�� (8.10)

The conditional entropy H�X�Y� can be interpreted as the amount of uncertainty remaining
about the random variable X, or the source output, given that we know what value the
reconstruction Y took. The additional knowledge of Y should reduce the uncertainty about
X, and we can show that

H�X�Y� ≤ H�X� (8.11)

(see Problem 5).

Example 8 . 4 . 2:

Suppose we have the 4-bits-per-symbol source and compression scheme described in Exam-
ple 8.4.1. Assume that the source is equally likely to select any letter from its alphabet. Let
us calculate the various entropies for this source and compression scheme.

As the source outputs are all equally likely, P�X = i� = 1
16 for all i ∈ �0� 1� 2� � � � � 15�,

and therefore

H�X� = −∑
i

1
16

log
1

16
= log 16 = 4 bits� (8.12)

We can calculate the probabilities of the reconstruction alphabet:

P�Y = j� = P�X = j�+P�X = j +1� = 1
16

+ 1
16

= 1
8

� (8.13)

Therefore, H�Y� = 3 bits. To calculate the conditional entropy H�X�Y�, we need the condi-
tional probabilities �P�xi�yj��. From our construction of the source encoder, we see that

P�X = i�Y = j� =
{

1
2 if i = j or i = j +1, for j = 0� 2� 4� � � � � 14

0 otherwise.
(8.14)

Substituting this in the expression for H�X�Y� in Equation (8.9), we get

H�X�Y� = −∑
i

∑

j

P�X = i�Y = j�P�Y = j� log P�X = i�Y = j�

= −∑
j

�P�X = j�Y = j�P�Y = j� log P�X = j�Y = j�

+P�X = j +1�Y = j�P�Y = j� log P�X = j +1�Y = j�

= −8
[

1
2

· 1
8

log
1
2

+ 1
2

· 1
8

log
1
2

]

(8.15)

= 1� (8.16)

Let us compare this answer to what we would have intuitively expected the uncertainty to
be, based on our knowledge of the compression scheme. With the coding scheme described

204 8 L O S S Y C O D I N G

here, knowledge of Y means that we know the first 3 bits of the input X. The only thing
about the input that we are uncertain about is the value of the last bit. In other words, if
we know the value of the reconstruction, our uncertainty about the source output is 1 bit.
Therefore, at least in this case, our intuition matches the mathematical definition.

To obtain H�Y �X�, we need the conditional probabilities �P�yj�xi��. From our knowledge
of the compression scheme, we see that

P�Y = j�X = i� =
{

1 if i = j or i = j +1, for j = 0� 2� 4� � � � � 14

0 otherwise.
(8.17)

If we substitute these values into Equation (8.10), we get H�Y �X� = 0 bits (note that
0 log 0 = 0). This also makes sense. For the compression scheme described here, if we know
the source output, we know 4 bits, the first 3 of which are the reconstruction. Therefore,
in this example, knowledge of the source output at a specific time completely specifies the
corresponding reconstruction. �

8 . 4 . 2 Average Mutual In format ion

We make use of one more quantity that relates the uncertainty or entropy of two random
variables. This quantity is called the mutual information and is defined as

i�xk� yj� = log
[

P�xk�yj�

P�xk�

]

� (8.18)

We will use the average value of this quantity, appropriately called the average mutual
information, which is given by

I�X�Y� =
N−1∑

i=0

M−1∑

j=0

P�xi� yj� log
[

P�xi�yj�

P�xi�

]

(8.19)

=
N−1∑

i=0

M−1∑

j=0

P�xi�yj�P�yj� log
[

P�xi�yj�

P�xi�

]

� (8.20)

We can write the average mutual information in terms of the entropy and the conditional
entropy by expanding the argument of the logarithm in Equation (8.20).

I�X�Y� =
N−1∑

i=0

M−1∑

j=0

P�xi� yj� log
[

P�xi�yj�

P�xi�

]

(8.21)

=
N−1∑

i=0

M−1∑

j=0

P�xi� yj� log P�xi�yj�−
N−1∑

i=0

M−1∑

j=0

P�xi� yj� log P�xi� (8.22)

= H�X�−H�X�Y� (8.23)

where the second term in Equation (8.22) is H�X�, and the first term is −H�X�Y�. Thus, the
average mutual information is the entropy of the source minus the uncertainty that remains

8.4 Information Theory Revisited � 205

about the source output after the reconstructed value has been received. The average mutual
information can also be written as

I�X�Y� = H�Y�−H�Y �X� = I�Y�X�� (8.24)

Example 8 . 4 . 3:

For the source coder of Example 8.4.2, H�X� = 4 bits, and H�X�Y� = 1 bit. Therefore, using
Equation (8.23), the average mutual information I�X�Y� is 3 bits. If we wish to use Equation
(8.24) to compute I�X�Y�, we would need H�Y� and H�Y �X�, which from Example 8.4.2
are 3 and 0, respectively. Thus, the value of I�X�Y� still works out to be 3 bits. �

8 . 4 . 3 Di f ferent ia l Ent ropy

Up to this point we have assumed that the source picks its outputs from a discrete alphabet.
When we study lossy compression techniques, we will see that for many sources of interest
to us this assumption is not true. In this section, we will extend some of the information
theoretic concepts defined for discrete random variables to the case of random variables with
continuous distributions.

Unfortunately, we run into trouble from the very beginning. Recall that the first quantity
we defined was self-information, which was given by log 1

P�xi�
, where P�xi� is the probability

that the random variable will take on the value xi. For a random variable with a continuous
distribution, this probability is zero. Therefore, if the random variable has a continuous
distribution, the “self-information” associated with any value is infinity.

If we do not have the concept of self-information, how do we go about defining entropy,
which is the average value of the self-information? We know that many continuous functions
can be written as limiting cases of their discretized version. We will try to take this route
in order to define the entropy of a continuous random variable X with probability density
function (pdf) fX�x�.

While the random variable X cannot generally take on a particular value with nonzero
probability, it can take on a value in an interval with nonzero probability. Therefore, let us
divide the range of the random variable into intervals of size
. Then, by the mean value
theorem, in each interval ��i−1�
� i
�, there exists a number xi, such that

fX�xi�
 =
∫ i

�i−1�

fX�x�dx� (8.25)

Let us define a discrete random variable Xd with pdf

P�Xd = xi� = fX�xi�
� (8.26)

Then we can obtain the entropy of this random variable as

H�Xd� = −
�∑

i=−�
P�xi� log P�xi� (8.27)

= −
�∑

i=−�
fX�xi�
 log fX�xi�
 (8.28)

206 8 L O S S Y C O D I N G

= −
�∑

i=−�
fX�xi�
 log fX�xi�−

�∑

i=−�
fX�xi�
 log
 (8.29)

= −
�∑

i=−�
�fX�xi� log fX�xi�
− log
� (8.30)

Taking the limit as
 → 0 of Equation (8.30), the first term goes to − ∫ �
−� fX�x� log fX�x�dx,

which looks like the analog to our definition of entropy for discrete sources. However, the
second term is − log
, which goes to plus infinity when
 goes to zero. It seems there is
not an analog to entropy as defined for discrete sources. However, the first term in the limit
serves some functions similar to that served by entropy in the discrete case and is a useful
function in its own right. We call this term the differential entropy of a continuous source
and denote it by h�X�.

Example 8 . 4 . 4:

Suppose we have a random variable X that is uniformly distributed in the interval �a� b�.
The differential entropy of this random variable is given by

h�X� = −
∫ �

−�
fX�x� log fX�x�dx (8.31)

= −
∫ b

a

1
b−a

log
1

b−a
dx (8.32)

= log�b−a�� (8.33)

Notice that when b −a is less than one, the differential entropy will become negative—in
contrast to the entropy, which never takes on negative values. �

Later in this chapter, we will find particular use for the differential entropy of the
Gaussian source.

Example 8 . 4 . 5:

Suppose we have a random variable X that has a Gaussian pdf,

fX�x� = 1√
2�	2

exp− �x−��2

2	2
� (8.34)

The differential entropy is given by

h�X� = −
∫ �

−�
1√

2�	2
exp− �x−��2

2	2
log

[
1√

2�	2
exp− �x−��2

2	2

]

dx (8.35)

= − log
1√

2�	2

∫ �

−�
fX�x�dx+

∫ �

−�
�x−��2

2	2
log efX�x�dx (8.36)

8.4 Information Theory Revisited � 207

= 1
2

log 2�	2 + 1
2

log e (8.37)

= 1
2

log 2�e	2� (8.38)

Thus, the differential entropy of a Gaussian random variable is directly proportional to its
variance. �

The differential entropy for the Gaussian distribution has the added distinction that it is
larger than the differential entropy for any other continuously distributed random variable
with the same variance. That is, for any random variable X, with variance 	2

h�X� ≤ 1
2

log 2�e	2� (8.39)

The proof of this statement depends on the fact that for any two continuous distributions
fX�X� and gX�X�

−
∫ �

−�
fX�x� log fX�x�dx ≤ −

∫ �

−�
fX�x� log gX�x�dx� (8.40)

We will not prove Equation (8.40) here, but you may refer to [99] for a simple proof. To
obtain Equation (8.39), we substitute the expression for the Gaussian distribution for gX�x�.
Noting that the left-hand side of Equation (8.40) is simply the differential entropy of the
random variable X, we have

h�X� ≤ −
∫ �

−�
fX�x� log

1√
2�	2

exp− �x−��2

2	2
dx

= 1
2

log �2�	2�+ log e
∫ �

−�
fX�x�

�x−��2

2	2
dx

= 1
2

log �2�	2�+ log e

2	2

∫ �

−�
fX�x��x−��2dx

= 1
2

log �2�e	2�� (8.41)

We seem to be striking out with continuous random variables. There is no analog for
self-information and really none for entropy either. However, the situation improves when
we look for an analog for the average mutual information. Let us define the random variable
Yd in a manner similar to the random variable Xd, as the discretized version of a continuous
valued random variable Y . Then we can show (see Problem 4)

H�Xd�Yd� = −
�∑

i=−�

�∑

j=−�

[
fX�Y �xi�yj�fY �yj� log fX�Y �xi�yj�

]

− log
� (8.42)

208 8 L O S S Y C O D I N G

Therefore, the average mutual information for the discretized random variables is given by

I�Xd�Yd� = H�Xd�−H�Xd�Yd� (8.43)

= −
�∑

i=−�
fX�xi�
 log fX�xi� (8.44)

−
�∑

i=−�

[�∑

j=−�
fX�Y �xi�yj�fY �yj� log fX�Y �xi�yj�

]

� (8.45)

Notice that the two log
s in the expression for H�Xd� and H�Xd�Yd� cancel each other out,
and as long as h�X� and h�X�Y� are not equal to infinity, when we take the limit as
 → 0
of I�Xd�Yd� we get

I�X�Y� = h�X�−h�X�Y�� (8.46)

The average mutual information in the continuous case can be obtained as a limiting case of
the average mutual information for the discrete case and has the same physical significance.

We have gone through a lot of mathematics in this section. But the information will be
used immediately to define the rate distortion function for a random source.

8.5 Rate Distort ion Theory �

Rate distortion theory is concerned with the trade-offs between distortion and rate in lossy
compression schemes. Rate is defined as the average number of bits used to represent
each sample value. One way of representing the trade-offs is via a rate distortion function
R(D). The rate distortion function R�D� specifies the lowest rate at which the output of a
source can be encoded while keeping the distortion less than or equal to D. On our way to
mathematically defining the rate distortion function, let us look at the rate and distortion for
some different lossy compression schemes.

In Example 8.4.2, knowledge of the value of the input at time k completely specifies the
reconstructed value at time k. In this situation,

P�yj�xi� =
{

1 for some j = ji

0 otherwise.
(8.47)

Therefore,

D =
N−1∑

i=0

M−1∑

j=0

P�yj�xi�P�xi�d�xi� yj� (8.48)

=
N−1∑

i=0

P�xi�d�xi� yji
� (8.49)

where we used the fact that P�xi� yj� = P�yj�xi�P�xi� in Equation (8.48). The rate for this
source coder is the output entropy H�Y� of the source decoder. If this were always the
case, the task of obtaining a rate distortion function would be relatively simple. Given a

8.5 Rate Distortion Theory � 209

distortion constraint D∗, we could look at all encoders with distortion less than D∗ and
pick the one with the lowest output entropy. This entropy would be the rate corresponding
to the distortion D∗. However, the requirement that knowledge of the input at time k
completely specifies the reconstruction at time k is very restrictive, and there are many
efficient compression techniques that would have to be excluded under this requirement.
Consider the following example.

Example 8 . 5 . 1:

With a data sequence that consists of height and weight measurements, obviously height and
weight are quite heavily correlated. In fact, after studying a long sequence of data, we find
that if we plot the height along the x axis and the weight along the y axis, the data points
cluster along the line y = 2�5x. In order to take advantage of this correlation, we devise the
following compression scheme. For a given pair of height and weight measurements, we
find the orthogonal projection on the y = 2�5x line as shown in Figure 8.3. The point on
this line can be represented as the distance to the nearest integer from the origin. Thus, we
encode a pair of values into a single value. At the time of reconstruction, we simply map
this value back into a pair of height and weight measurements.

For instance, suppose somebody is 72 inches tall and weighs 200 pounds (point A in
Figure 8.3). This corresponds to a point at a distance of 212 along the y = 2�5x line. The
reconstructed values of the height and weight corresponding to this value are 79 and 197.
Notice that the reconstructed values differ from the original values. Suppose we now have

72

190

200

W
ei

gh
t

(l
b)

 Height (in)

A

B

F IGURE 8. 3 Compression scheme for encoding height-weight pairs.

210 8 L O S S Y C O D I N G

another individual who is also 72 inches tall but weighs 190 pounds (point B in Figure 8.3).
The source coder output for this pair would be 203, and the reconstructed values for height
and weight are 75 and 188, respectively. Notice that while the height value in both cases was
the same, the reconstructed value is different. The reason for this is that the reconstructed
value for the height depends on the weight. Thus, for this particular source coder, we
do not have a conditional probability density function �P�yj�xi�� of the form shown in
Equation (8.47). �

Let us examine the distortion for this scheme a little more closely. As the conditional
probability for this scheme is not of the form of Equation (8.47), we can no longer write the
distortion in the form of Equation (8.49). Recall that the general form of the distortion is

D =
N−1∑

i=0

M−1∑

j=0

d�xi� yj�P�xi�P�yj�xi�� (8.50)

Each term in the summation consists of three factors: the distortion measure d�xi� yj�, the
source density P�xi�, and the conditional probability P�yj�xi�. The distortion measure is a
measure of closeness of the original and reconstructed versions of the signal and is generally
determined by the particular application. The source probabilities are solely determined by
the source. The third factor, the set of conditional probabilities, can be seen as a description
of the compression scheme.

Therefore, for a given source with some pdf �P�xi�� and a specified distortion measure
d�·� ·�, the distortion is a function only of the conditional probabilities �P�yj�xi��; that is,

D = D��P�yj�xi���� (8.51)

Therefore, we can write the constraint that the distortion D be less than some value D∗ as a
requirement that the conditional probabilities for the compression scheme belong to a set of
conditional probabilities � that have the property that

� = ��P�yj�xi� such that D��P�yj�xi��� ≤ D∗�� (8.52)

Once we know the set of compression schemes to which we have to confine ourselves,
we can start to look at the rate of these schemes. In Example 8.4.2, the rate was the entropy
of Y . However, that was a result of the fact that the conditional probability describing that
particular source coder took on only the values 0 and 1. Consider the following trivial
situation.

Example 8 . 5 . 2:

Suppose we have the same source as in Example 8.4.2 and the same reconstruction alphabet.
Suppose the distortion measure is

d�xi� yj� = �xi −yj�
2

8.5 Rate Distortion Theory � 211

and D∗ = 225. One compression scheme that satisfies the distortion constraint randomly
maps the input to any one of the outputs; that is,

P�yj�xi� = 1
8

for i = 0� 1� � � � � 15 and j = 0� 2� � � � � 14�

We can see that this conditional probability assignment satisfies the distortion constraint. As
each of the eight reconstruction values is equally likely, H�Y� is 3 bits. However, we are not
transmitting any information. We could get exactly the same results by transmitting 0 bits
and randomly picking Y at the receiver. �

Therefore, the entropy of the reconstruction H�Y� cannot be a measure of the rate. In
his 1959 paper on source coding [100], Shannon showed that the minimum rate for a given
distortion is given by

R�D� = min
�P�yj �xi��∈�

I�X�Y�� (8.53)

To prove this is beyond the scope of this book. (Further information can be found in [3]
and [4].) However, we can at least convince ourselves that defining the rate as an average
mutual information gives sensible answers when used for the examples shown here. Consider
Example 8.4.2. The average mutual information in this case is 3 bits, which is what we said
the rate was. In fact, notice that whenever the conditional probabilities are constrained to be
of the form of Equation (8.47),

H�Y �X� = 0�

then

I�X�Y� = H�Y��

which had been our measure of rate.
In Example 8.5.2, the average mutual information is 0 bits, which accords with our

intuitive feeling of what the rate should be. Again, whenever

H�Y �X� = H�Y��

that is, knowledge of the source gives us no knowledge of the reconstruction,

I�X�Y� = 0�

which seems entirely reasonable. We should not have to transmit any bits when we are not
sending any information.

At least for the examples here, it seems that the average mutual information does
represent the rate. However, earlier we had said that the average mutual information between
the source output and the reconstruction is a measure of the information conveyed by the
reconstruction about the source output. Why are we then looking for compression schemes
that minimize this value? To understand this, we have to remember that the process of finding
the performance of the optimum compression scheme had two parts. In the first part we

212 8 L O S S Y C O D I N G

specified the desired distortion. The entire set of conditional probabilities over which the
average mutual information is minimized satisfies the distortion constraint. Therefore, we
can leave the question of distortion, or fidelity, aside and concentrate on minimizing the rate.

Finally, how do we find the rate distortion function? There are two ways: one is a
computational approach developed by Arimoto [101] and Blahut [102]. While the derivation
of the algorithm is beyond the scope of this book, the algorithm itself is relatively simple.
The other approach is to find a lower bound for the average mutual information and then
show that we can achieve this bound. We use this approach to find the rate distortion
functions for two important sources.

Example 8 . 5 . 3: Rate dis tor t ion func t ion for the
binary source

Suppose we have a source alphabet �0� 1�, with P�0� = p. The reconstruction alphabet is
also binary. Given the distortion measure

d�xi� yj� = xi ⊕yj� (8.54)

where ⊕ is modulo 2 addition, let us find the rate distortion function. Assume for the moment
that p < 1

2 . For D > p an encoding scheme that would satisfy the distortion criterion would
be not to transmit anything and fix Y = 1. So for D ≥ p

R�D� = 0� (8.55)

We will find the rate distortion function for the distortion range 0 ≤ D < p.
Find a lower bound for the average mutual information:

I�X�Y� = H�X�−H�X�Y� (8.56)

= H�X�−H�X ⊕Y �Y� (8.57)

≥ H�X�−H�X ⊕Y� from Equation (8.11). (8.58)

In the second step we have used the fact that if we know Y , then knowing X we can obtain
X ⊕Y and vice versa as X ⊕Y ⊕Y = X.

Let us look at the terms on the right-hand side of (8.11):

H�X� = −p log2 p− �1−p� log2�1−p� = Hb�p�� (8.59)

where Hb�p� is called the binary entropy function and is plotted in Figure 8.4. Note that
Hb�p� = Hb�1−p�.

Given that H�X� is completely specified by the source probabilities, our task now is
to find the conditional probabilities �P�xi�yj�� such that H�X ⊕ Y� is maximized while
the average distortion E�d�xi� yj� ≤ D. H�X ⊕ Y� is simply the binary entropy function
Hb�P�X ⊕Y = 1��, where

P�X ⊕Y = 1� = P�X = 0� Y = 1�+P�X = 1� Y = 0�� (8.60)

8.5 Rate Distortion Theory � 213

Hb(p)

p

1.0

0.5 1.0

F IGURE 8. 4 The binary entropy function.

Therefore, to maximize H�X ⊕Y�, we would want P�X ⊕Y = 1� to be as close as possible
to one-half. However, the selection of P�X ⊕Y� also has to satisfy the distortion constraint.
The distortion is given by

E�d�xi� yj� = 0×P�X = 0� Y = 0�+1×P�X = 0� Y = 1�

+1×P�X = 1� Y = 0�+0×P�X = 1� Y = 1�

= P�X = 0� Y = 1�+P�X = 1� Y = 0�

= P�Y = 1�X = 0�p+P�Y = 0�X = 1��1−p�� (8.61)

But this is simply the probability that X ⊕ Y = 1. Therefore, the maximum value that
P�X ⊕Y = 1� can have is D. Our assumptions were that D < p and p ≤ 1

2 , which means that
D < 1

2 . Therefore, P�X ⊕Y = 1� is closest to 1
2 while being less than or equal to D when

P�X ⊕Y = 1� = D. Therefore,

I�X�Y� ≥ Hb�p�−Hb�D�� (8.62)

We can show that for P�X = 0�Y = 1� = P�X = 1�Y = 0� = D, this bound is achieved.
That is, if P�X = 0�Y = 1� = P�X = 1�Y = 0� = D, then

I�X�Y� = Hb�p�−Hb�D�� (8.63)

Therefore, for D < p and p ≤ 1
2 ,

R�D� = Hb�p�−Hb�D�� (8.64)

214 8 L O S S Y C O D I N G

Finally, if p > 1
2 , then we simply switch the roles of p and 1−p. Putting all this together,

the rate distortion function for a binary source is

R�D� =
{

Hb�p�−Hb�D� for D < min�p� 1−p�

0 otherwise.
(8.65)

�

Example 8 . 5 . 4: Rate dis tor t ion func t ion for the
Gauss ian source

Suppose we have a continuous amplitude source that has a zero mean Gaussian pdf with
variance 	2. If our distortion measure is given by

d�x� y� = �x−y�2� (8.66)

our distortion constraint is given by

E
[
�X −Y�2

]≤ D� (8.67)

Our approach to finding the rate distortion function will be the same as in the previous
example; that is, find a lower bound for I�X�Y� given a distortion constraint, and then show
that this lower bound can be achieved.

First we find the rate distortion function for D < 	2.

I�X�Y� = h�X�−h�X�Y� (8.68)

= h�X�−h�X −Y �Y� (8.69)

≥ h�X�−h�X −Y� (8.70)

In order to minimize the right-hand side of Equation (8.70), we have to maximize the second
term subject to the constraint given by Equation (8.67). This term is maximized if X −Y is
Gaussian, and the constraint can be satisfied if E

[
�X −Y�2

]= D. Therefore, h�X −Y� is the
differential entropy of a Gaussian random variable with variance D, and the lower bound
becomes

I�X�Y� ≥ 1
2

log�2�e	2�− 1
2

log�2�eD� (8.71)

= 1
2

log
	2

D
� (8.72)

This average mutual information can be achieved if Y is zero mean Gaussian with variance
	2 −D, and

fX�Y �x�y� = 1√
2�D

exp
−x2

2D
� (8.73)

For D > 	2 , if we set Y = 0, then

I�X�Y� = 0 (8.74)

8.6 Models 215

and

E
[
�X −Y�2

]= 	2 < D� (8.75)

Therefore, the rate distortion function for the Gaussian source can be written as

R�D� =
{

1
2 log 	2

D
for D < 	2

0 for D > 	2.
(8.76)

�

Like the differential entropy for the Gaussian source, the rate distortion function for the
Gaussian source also has the distinction of being larger than the rate distortion function for
any other source with a continuous distribution and the same variance. This is especially
valuable because for many sources it can be very difficult to calculate the rate distortion
function. In these situations, it is helpful to have an upper bound for the rate distortion
function. It would be very nice if we also had a lower bound for the rate distortion function
of a continuous random variable. Shannon described such a bound in his 1948 paper [7],
and it is appropriately called the Shannon lower bound. We will simply state the bound here
without derivation (for more information, see [4]).

The Shannon lower bound for a random variable X and the magnitude error criterion

d�x� y� = �x−y� (8.77)

is given by

RSLB�D� = h�X�− log�2eD�� (8.78)

If we used the squared error criterion, the Shannon lower bound is given by

RSLB�D� = h�X�− 1
2

log�2�eD�� (8.79)

In this section we have defined the rate distortion function and obtained the rate distortion
function for two important sources. We have also obtained upper and lower bounds on the
rate distortion function for an arbitrary iid source. These functions and bounds are especially
useful when we want to know if it is possible to design compression schemes to provide a
specified rate and distortion given a particular source. They are also useful in determining the
amount of performance improvement that we could obtain by designing a better compression
scheme. In these ways the rate distortion function plays the same role for lossy compression
that entropy plays for lossless compression.

8.6 Models

As in the case of lossless compression, models play an important role in the design of lossy
compression algorithms; there are a variety of approaches available. The set of models we
can draw on for lossy compression is much wider than the set of models we studied for

216 8 L O S S Y C O D I N G

lossless compression. We will look at some of these models in this section. What is presented
here is by no means an exhaustive list of models. Our only intent is to describe those models
that will be useful in the following chapters.

8 . 6 . 1 Probabi l i ty Models

An important method for characterizing a particular source is through the use of probability
models. As we shall see later, knowledge of the probability model is important for the design
of a number of compression schemes.

Probability models used for the design and analysis of lossy compression schemes
differ from those used in the design and analysis of lossless compression schemes. When
developing models in the lossless case, we tried for an exact match. The probability of each
symbol was estimated as part of the modeling process. When modeling sources in order
to design or analyze lossy compression schemes, we look more to the general rather than
exact correspondence. The reasons are more pragmatic than theoretical. Certain probability
distribution functions are more analytically tractable than others, and we try to match the
distribution of the source with one of these “nice” distributions.

Uniform, Gaussian, Laplacian, and Gamma distribution are four probability models
commonly used in the design and analysis of lossy compression systems:

� Uniform Distribution: As for lossless compression, this is again our ignorance model.
If we do not know anything about the distribution of the source output, except possibly
the range of values, we can use the uniform distribution to model the source. The
probability density function for a random variable uniformly distributed between
a and b is

fX�x� =
{

1
b−a

for a ≤ x ≤ b

0 otherwise.
(8.80)

� Gaussian Distribution: The Gaussian distribution is one of the most commonly used
probability models for two reasons: it is mathematically tractable and, by virtue of the
central limit theorem, it can be argued that in the limit the distribution of interest goes
to a Gaussian distribution. The probability density function for a random variable with
a Gaussian distribution and mean � and variance 	2 is

fX�x� = 1√
2�	2

exp− �x−��2

2	2
� (8.81)

� Laplacian Distribution: Many sources that we deal with have distributions that are
quite peaked at zero. For example, speech consists mainly of silence. Therefore,
samples of speech will be zero or close to zero with high probability. Image pixels
themselves do not have any attraction to small values. However, there is a high degree
of correlation among pixels. Therefore, a large number of the pixel-to-pixel differences
will have values close to zero. In these situations, a Gaussian distribution is not a very
close match to the data. A closer match is the Laplacian distribution, which is peaked

8.6 Models 217

at zero. The distribution function for a zero mean random variable with Laplacian
distribution and variance 	2 is

fX�x� = 1√
2	2

exp
−√

2 �x�
	

� (8.82)

� Gamma Distribution: A distribution that is even more peaked, though considerably
less tractable, than the Laplacian distribution is the Gamma distribution. The distribu-
tion function for a Gamma distributed random variable with zero mean and variance
	2 is given by

fX�x� =
4
√

3
√

8�	 �x� exp
−√

3 �x�
2	

� (8.83)

The shapes of these four distributions, assuming a mean of zero and a variance of one, are
shown in Figure 8.5.

One way of obtaining the estimate of the distribution of a particular source is to divide
the range of outputs into “bins” or intervals Ik. We can then find the number of values nk

that fall into each interval. A plot of nk

nT
, where nT is the total number of source outputs

being considered, should give us some idea of what the input distribution looks like. Be
aware that this is a rather crude method and can at times be misleading. For example, if we
were not careful in our selection of the source output, we might end up modeling some local
peculiarities of the source. If the bins are too large, we might effectively filter out some
important properties of the source. If the bin sizes are too small, we may miss out on some
of the gross behavior of the source.

0

0.2

0.8

1.0

0.4

0.6

1.2

−4−6 −2 0 2 4 6

Uniform
Gaussian

Laplacian
Gamma

F IGURE 8. 5 Uniform, Gaussian, Laplacian, and Gamma distributions.

218 8 L O S S Y C O D I N G

Once we have decided on some candidate distributions, we can select between them
using a number of sophisticated tests. These tests are beyond the scope of this book but are
described in [103].

Many of the sources that we deal with when we design lossy compression schemes have
a great deal of structure in the form of sample-to-sample dependencies. The probability
models described here capture none of these dependencies. Fortunately, we have a lot of
models that can capture most of this structure. We describe some of these models in the
next section.

8 . 6 . 2 L inear Sys tem Models

A large class of processes can be modeled in the form of the following difference equation:

xn =
N∑

i=1

aixn−i +
M∑

j=1

bj�n−j + �n� (8.84)

where �xn� are samples of the process we wish to model, and ��n� is a white noise sequence.
We will assume throughout this book that we are dealing with real valued samples. Recall that
a zero-mean wide-sense-stationary noise sequence ��n� is a sequence with autocorrelation
function

R���k� =
{

	2
� for k = 0

0 otherwise.
(8.85)

In digital signal-processing terminology, Equation (8.84) represents the output of a linear
discrete time invariant filter with N poles and M zeros. In the statistical literature, this model
is called an autoregressive moving average model of order (N,M), or an ARMA (N,M)
model. The autoregressive label is because of the first summation in Equation (8.84), while
the second summation gives us the moving average portion of the name.

If all the bj were zero in Equation (8.84), only the autoregressive part of the ARMA
model would remain:

xn =
N∑

i=1

aixn−i + �n� (8.86)

This model is called an N th-order autoregressive model and is denoted by AR(N). In digital
signal-processing terminology, this is an all pole filter. The AR(N) model is the most popular
of all the linear models, especially in speech compression, where it arises as a natural
consequence of the speech production model. We will look at it a bit more closely.

First notice that for the AR(N) process, knowing all the past history of the process gives
no more information than knowing the last N samples of the process; that is,

P�xn�xn−1� xn−2� � � � � = P�xn�xn−1� xn−2� � � � � xn−N �� (8.87)

which means that the AR(N) process is a Markov model of order N .
The autocorrelation function of a process can tell us a lot about the sample-to-sample

behavior of a sequence. A slowly decaying autocorrelation function indicates a high sample-
to-sample correlation, while a fast decaying autocorrelation denotes low sample-to-sample

8.6 Models 219

correlation. In the case of no sample-to-sample correlation, such as white noise, the auto-
correlation function is zero for lags greater than zero, as seen in Equation (8.85). The
autocorrelation function for the AR(N) process can be obtained as follows:

Rxx�k� = E �xnxn−k (8.88)

= E

[(N∑

i=1

aixn−i + �n

)

�xn−k�

]

(8.89)

= E

[N∑

i=1

aixn−ixn−k

]

+E ��nxn−k (8.90)

=
{∑N

i=1 aiRxx�k− i� for k > 0
∑N

i=1 aiRxx�i�+	2
� for k = 0.

(8.91)

Example 8 . 6 . 1:

Suppose we have an AR(3) process. Let us write out the equations for the autocorrelation
coefficient for lags 1, 2, 3:

Rxx�1� = a1Rxx�0�+a2Rxx�1�+a3Rxx�2�

Rxx�2� = a1Rxx�1�+a2Rxx�0�+a3Rxx�1�

Rxx�3� = a1Rxx�2�+a2Rxx�1�+a3Rxx�0��

If we know the values of the autocorrelation function Rxx�k�, for k = 0� 1� 2� 3, we can use
this set of equations to find the AR(3) coefficients �a1� a2� a3�. On the other hand, if we
know the model coefficients and 	2

� , we can use the above equations along with the equation
for Rxx�0� to find the first four autocorrelation coefficients. All the other autocorrelation
values can be obtained by using Equation (8.91). �

To see how the autocorrelation function is related to the temporal behavior of the
sequence, let us look at the behavior of a simple AR(1) source.

Example 8 . 6 . 2:

An AR(1) source is defined by the equation

xn = a1xn−1 + �n� (8.92)

The autocorrelation function for this source (see Problem 8) is given by

Rxx�k� = 1

1−a2
1

ak
1	

2
� � (8.93)

From this we can see that the autocorrelation will decay more slowly for larger values
of a1. Remember that the value of a1 in this case is an indicator of how closely the current

220 8 L O S S Y C O D I N G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20

R(k)

k

a1 = 0.6
a1 = 0.99

F IGURE 8. 6 Autocorrelation function of an AR(1) process with two values of a1.

sample is related to the previous sample. The autocorrelation function is plotted for two
values of a1 in Figure 8.6. Notice that for a1 close to 1, the autocorrelation function decays
extremely slowly. As the value of a1 moves farther away from 1, the autocorrelation function
decays much faster.

Sample waveforms for a1 = 0�99 and a1 = 0�6 are shown in Figures 8.7 and 8.8. Notice
the slower variations in the waveform for the process with a higher value of a1. Because

4

3

2

1

0

−1

−2

−3

−4

−5
0 10 20 30 40 50 60 70 80 90 100

xn

n

F IGURE 8. 7 Sample function of an AR(1) process with a1=0.99.

8.6 Models 221

−1.0

0

1.0

2.0

3.0

–2
0 10 20 30 40 50 60 70 80 90 100

xn

n

F IGURE 8. 8 Sample function of an AR(1) process with a1=0.6.

the waveform in Figure 8.7 varies more slowly than the waveform in Figure 8.8, samples of
this waveform are much more likely to be close in value than the samples of the waveform
of Figure 8.8.

Let’s look at what happens when the AR(1) coefficient is negative. The sample wave-
forms are plotted in Figures 8.9 and 8.10. The sample-to-sample variation in these waveforms

12

−10

−8

−6

−4

−2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

xn

n

F IGURE 8. 9 Sample function of an AR(1) process with a1= −0.99.

222 8 L O S S Y C O D I N G

3

−4

−3

−2

−1

0

1

2

0 10 20 30 40 50 60 70 80 90 100

xn

n

F IGURE 8. 10 Sample function of an AR(1) process with a1= −0.6.

1.0

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1.0
0 2 4 6 8 10 12 14 16 18 20

R(k)

k

a1 = −0.99
a1 = −0.6

F IGURE 8. 11 Autocorrelation function of an AR(1) process with two negative
values of a1.

is much higher than in the waveforms shown in Figures 8.7 and 8.8. However, if we were
to look at the variation in magnitude, we can see that the higher value of a1 results in
magnitude values that are closer together.

This behavior is also reflected in the autocorrelation function, shown in Figure 8.11, as
we might expect from looking at Equation (8.93). �

8.6 Models 223

In Equation (8.84), instead of setting all the �bj� coefficients to zero, if we set all the
�ai� coefficients to zero, we are left with the moving average part of the ARMA process:

xn =
M∑

j=1

bj�n−j + �n� (8.94)

This process is called an Mth-order moving average process. This is a weighted average of
the current and M past samples. Because of the form of this process, it is most useful when
modeling slowly varying processes.

8 . 6 . 3 Phys i ca l Models

Physical models are based on the physics of the source output production. The physics are
generally complicated and not amenable to a reasonable mathematical approximation. An
exception to this rule is speech generation.

Spee ch P rodu c t i on

There has been a significant amount of research conducted in the area of speech production
[104], and volumes have been written about it. We will try to summarize some of the
pertinent aspects in this section.

Speech is produced by forcing air first through an elastic opening, the vocal cords, and
then through cylindrical tubes with nonuniform diameter (the laryngeal, oral, nasal, and
pharynx passages), and finally through cavities with changing boundaries such as the mouth
and the nasal cavity. Everything past the vocal cords is generally referred to as the vocal
tract. The first action generates the sound, which is then modulated into speech as it traverses
through the vocal tract.

We will often be talking about filters in the coming chapters. We will try to describe
filters more precisely at that time. For our purposes at present, a filter is a system that has
an input and an output, and a rule for converting the input to the output, which we will call
the transfer function. If we think of speech as the output of a filter, the sound generated by
the air rushing past the vocal cords can be viewed as the input, while the rule for converting
the input to the output is governed by the shape and physics of the vocal tract.

The output depends on the input and the transfer function. Let’s look at each in turn.
There are several different forms of input that can be generated by different conformations
of the vocal cords and the associated cartilages. If the vocal cords are stretched shut and we
force air through, the vocal cords vibrate, providing a periodic input. If a small aperture is left
open, the input resembles white noise. By opening an aperture at different locations along
the vocal cords, we can produce a white-noise–like input with certain dominant frequencies
that depend on the location of the opening. The vocal tract can be modeled as a series of
tubes of unequal diameter. If we now examine how an acoustic wave travels through this
series of tubes, we find that the mathematical model that best describes this process is an
autoregressive model. We will often encounter the autoregressive model when we discuss
speech compression algorithms.

224 8 L O S S Y C O D I N G

8.7 Summary

In this chapter we have looked at a variety of topics that will be useful to us when we
study various lossy compression techniques, including distortion and its measurement, some
new concepts from information theory, average mutual information and its connection to
the rate of a compression scheme, and the rate distortion function. We have also briefly
looked at some of the properties of the human visual system and the auditory system—
most importantly, visual and auditory masking. The masking phenomena allow us to incur
distortion in such a way that the distortion is not perceptible to the human observer. We also
presented a model for speech production.

Fu r t he r Read ing

There are a number of excellent books available that delve more deeply in the area of
information theory:

1. Information Theory, by R.B. Ash [15].

2. Information Transmission, by R.M. Fano [16].

3. Information Theory and Reliable Communication, by R.G. Gallagher [11].

4. Entropy and Information Theory, by R.M. Gray [17].

5. Elements of Information Theory, by T.M. Cover and J.A. Thomas [3].

6. The Theory of Information and Coding, by R.J. McEliece [6].

The subject of rate distortion theory is discussed in very clear terms in Rate Distortion
Theory, by T. Berger [4].

For an introduction to the concepts behind speech perception, see Voice and Speech
Processing, by T. Parsons [105].

8.8 Projects and Problems

1. Although SNR is a widely used measure of distortion, it often does not correlate with
perceptual quality. In order to see this we conduct the following experiment. Using
one of the images provided, generate two “reconstructed” images. For one of the
reconstructions add a value of 10 to each pixel. For the other reconstruction, randomly
add either +10 or −10 to each pixel.

(a) What is the SNR for each of the reconstructions? Do the relative values reflect
the difference in the perceptual quality?

(b) Devise a mathematical measure that will better reflect the difference in perceptual
quality for this particular case.

2. Consider the following lossy compression scheme for binary sequences. We divide
the binary sequence into blocks of size M . For each block we count the number

8.8 Projects and Problems 225

of 0s. If this number is greater than or equal to M/2, we send a 0; otherwise, we
send a 1.

(a) If the sequence is random with P�0� = 0�8, compute the rate and distortion
(use Equation (8.54)) for M = 1� 2� 4� 8� 16. Compare your results with the rate
distortion function for binary sources.

(b) Repeat assuming that the output of the encoder is encoded at a rate equal to the
entropy of the output.

3. Write a program to implement the compression scheme described in the previous
problem.

(a) Generate a random binary sequence with P�0� = 0�8, and compare your simula-
tion results with the analytical results.

(b) Generate a binary first-order Markov sequence with P�0�0� = 0�9, and P�1�1� =
0�9. Encode it using your program. Discuss and comment on your results.

4. Show that

H�Xd�Yd� = −
�∑

j=−�

�∑

i=−�
fX�Y �xi�yj�fY �yj�

 log fX�Y �xi�yj�− log
� (8.95)

5. For two random variables X and Y , show that

H�X�Y� ≤ H�X�

with equality if X is independent of Y .
Hint: E�log�f�x�� ≤ log�E�f�x�� (Jensen’s inequality).

6. Given two random variables X and Y , show that I�X�Y� = I�Y�X�.

7. For a binary source with P�0� = p, P�X = 0�Y = 1� = P�X = 1�Y = 0� = D, and
distortion measure

d�xi� yj� = xi ⊕yj�

show that

I�X�Y� = Hb�p�−Hb�D�� (8.96)

8. Find the autocorrelation function in terms of the model coefficients and 	2
� for

(a) an AR(1) process,

(b) an MA(1) process, and

(c) an AR(2) process.

9
Scalar Quantization

9.1 Overview

I
n this chapter we begin our study of quantization, one of the simplest and most
general ideas in lossy compression. We will look at scalar quantization in this
chapter and continue with vector quantization in the next chapter. First, the
general quantization problem is stated, then various solutions are examined,
starting with the simpler solutions, which require the most assumptions, and

proceeding to more complex solutions that require fewer assumptions. We describe uniform
quantization with fixed-length codewords, first assuming a uniform source, then a source
with a known probability density function (pdf) that is not necessarily uniform, and finally
a source with unknown or changing statistics. We then look at pdf-optimized nonuniform
quantization, followed by companded quantization. Finally, we return to the more general
statement of the quantizer design problem and study entropy-coded quantization.

9.2 Introduct ion

In many lossy compression applications we are required to represent each source output
using one of a small number of codewords. The number of possible distinct source output
values is generally much larger than the number of codewords available to represent them.
The process of representing a large—possibly infinite—set of values with a much smaller
set is called quantization.

Consider a source that generates numbers between −10�0 and 10.0. A simple quantization
scheme would be to represent each output of the source with the integer value closest to it.
(If the source output is equally close to two integers, we will randomly pick one of them.)
For example, if the source output is 2.47, we would represent it as 2, and if the source output
is 3.1415926, we would represent it as 3.

228 9 S C A L A R Q U A N T I Z A T I O N

This approach reduces the size of the alphabet required to represent the source output; the
infinite number of values between −10�0 and 10.0 are represented with a set that contains
only 21 values (�−10� � � � � 0� � � � � 10�). At the same time we have also forever lost the
original value of the source output. If we are told that the reconstruction value is 3, we
cannot tell whether the source output was 2.95, 3.16, 3.057932, or any other of an infinite
set of values. In other words, we have lost some information. This loss of information is the
reason for the use of the word “lossy” in many lossy compression schemes.

The set of inputs and outputs of a quantizer can be scalars or vectors. If they are
scalars, we call the quantizers scalar quantizers. If they are vectors, we call the quantizers
vector quantizers. We will study scalar quantizers in this chapter and vector quantizers in
Chapter 10.

9.3 The Quantizat ion Problem

Quantization is a very simple process. However, the design of the quantizer has a significant
impact on the amount of compression obtained and loss incurred in a lossy compression
scheme. Therefore, we will devote a lot of attention to issues related to the design of
quantizers.

In practice, the quantizer consists of two mappings: an encoder mapping and a decoder
mapping. The encoder divides the range of values that the source generates into a number of
intervals. Each interval is represented by a distinct codeword. The encoder represents all the
source outputs that fall into a particular interval by the codeword representing that interval.
As there could be many—possibly infinitely many—distinct sample values that can fall in
any given interval, the encoder mapping is irreversible. Knowing the code only tells us the
interval to which the sample value belongs. It does not tell us which of the many values
in the interval is the actual sample value. When the sample value comes from an analog
source, the encoder is called an analog-to-digital (A/D) converter.

The encoder mapping for a quantizer with eight reconstruction values is shown in
Figure 9.1. For this encoder, all samples with values between −1 and 0 would be assigned
the code 011. All values between 0 and 1.0 would be assigned the codeword 100, and so on.
On the two boundaries, all inputs with values greater than 3 would be assigned the code 111,
and all inputs with values less than −3�0 would be assigned the code 000. Thus, any input

3.02.01.00−1.0−2.0−3.0

110 111101100011010001000

Input

Codes

F IGURE 9. 1 Mapping for a 3-bit encoder.

9.3 The Quantization Problem 229

Input Codes Output
000 −3�5
001 −2�5
010 −1�5
011 −0�5
100 0�5
101 1�5
110 2�5
111 3�5

F IGURE 9. 2 Mapping for a 3-bit D/A converter.

that we receive will be assigned a codeword depending on the interval in which it falls. As
we are using 3 bits to represent each value, we refer to this quantizer as a 3-bit quantizer.

For every codeword generated by the encoder, the decoder generates a reconstruction
value. Because a codeword represents an entire interval, and there is no way of knowing
which value in the interval was actually generated by the source, the decoder puts out a
value that, in some sense, best represents all the values in the interval. Later, we will see
how to use information we may have about the distribution of the input in the interval to
obtain a representative value. For now, we simply use the midpoint of the interval as the
representative value generated by the decoder. If the reconstruction is analog, the decoder is
often referred to as a digital-to-analog (D/A) converter. A decoder mapping corresponding
to the 3-bit encoder shown in Figure 9.1 is shown in Figure 9.2.

Example 9 . 3 . 1:

Suppose a sinusoid 4 cos�2�t� was sampled every 0.05 second. The sample was digitized
using the A/D mapping shown in Figure 9.1 and reconstructed using the D/A mapping
shown in Figure 9.2. The first few inputs, codewords, and reconstruction values are given
in Table 9.1. Notice the first two samples in Table 9.1. Although the two input values
are distinct, they both fall into the same interval in the quantizer. The encoder, therefore,
represents both inputs with the same codeword, which in turn leads to identical reconstruction
values.

TAB L E 9 . 1 Digitizing a sine wave.

t 4 cos�2�t� A/D Output D/A Output Error

0.05 3.804 111 3.5 0.304
0.10 3.236 111 3.5 −0�264
0.15 2.351 110 2.5 −0�149
0.20 1.236 101 1.5 −0�264

�

230 9 S C A L A R Q U A N T I Z A T I O N

Construction of the intervals (their location, etc.) can be viewed as part of the design of
the encoder. Selection of reconstruction values is part of the design of the decoder. However,
the fidelity of the reconstruction depends on both the intervals and the reconstruction values.
Therefore, when designing or analyzing encoders and decoders, it is reasonable to view them
as a pair. We call this encoder-decoder pair a quantizer. The quantizer mapping for the 3-bit
encoder-decoder pair shown in Figures 9.1 and 9.2 can be represented by the input-output
map shown in Figure 9.3. The quantizer accepts sample values, and depending on the interval
in which the sample values fall, it provides an output codeword and a representation value.
Using the map of Figure 9.3, we can see that an input to the quantizer of 1.7 will result in
an output of 1.5, and an input of −0�3 will result in an output of −0�5.

From Figures 9.1–9.3 we can see that we need to know how to divide the input range
into intervals, assign binary codes to these intervals, and find representation or output values
for these intervals in order to specify a quantizer. We need to do all of this while satisfying
distortion and rate criteria. In this chapter we will define distortion to be the average squared
difference between the quantizer input and output. We call this the mean squared quantization
error (msqe) and denote it by 	2

q . The rate of the quantizer is the average number of bits

−4.0 −3.0 −2.0 −1.0
0.5

−0.5

−1.5

−2.5

−3.5

1.5

2.5

3.5
Output

Input

1.0 2.0 3.0 4.0

F IGURE 9. 3 Quantizer input-output map.

9.3 The Quantization Problem 231

required to represent a single quantizer output. We would like to get the lowest distortion
for a given rate, or the lowest rate for a given distortion.

Let us pose the design problem in precise terms. Suppose we have an input modeled by
a random variable X with pdf fX�x�. If we wished to quantize this source using a quan-
tizer with M intervals, we would have to specify M + 1 endpoints for the intervals, and a
representative value for each of the M intervals. The endpoints of the intervals are known
as decision boundaries, while the representative values are called reconstruction levels. We
will often model discrete sources with continuous distributions. For example, the difference
between neighboring pixels is often modeled using a Laplacian distribution even though the
differences can only take on a limited number of discrete values. Discrete processes are
modeled with continuous distributions because it can simplify the design process consider-
ably, and the resulting designs perform well in spite of the incorrect assumption. Several
of the continuous distributions used to model source outputs are unbounded—that is, the
range of values is infinite. In these cases, the first and last endpoints are generally chosen
to be ±�.

Let us denote the decision boundaries by �bi�
M
i=0, the reconstruction levels by �yi�

M
i=1,

and the quantization operation by Q�·�. Then

Q�x� = yi iff bi−1 < x ≤ bi� (9.1)

The mean squared quantization error is then given by

	2
q =

∫ �

−�
�x−Q�x��2fX�x�dx (9.2)

=
M∑

i=1

∫ bi

bi−1

�x−yi�
2fX�x�dx� (9.3)

The difference between the quantizer input x and output y = Q�x�, besides being referred
to as the quantization error, is also called the quantizer distortion or quantization noise. But
the word “noise” is somewhat of a misnomer. Generally, when we talk about noise we mean
a process external to the source process. Because of the manner in which the quantization
error is generated, it is dependent on the source process and, therefore, cannot be regarded as
external to the source process. One reason for the use of the word “noise” in this context is
that from time to time we will find it useful to model the quantization process as an additive
noise process as shown in Figure 9.4.

If we use fixed-length codewords to represent the quantizer output, then the size of the
output alphabet immediately specifies the rate. If the number of quantizer outputs is M , then
the rate is given by

R = �log2 M�� (9.4)

For example, if M = 8, then R = 3. In this case, we can pose the quantizer design problem
as follows:

Given an input pdf fx�x� and the number of levels M in the quantizer, find the
decision boundaries �bi� and the reconstruction levels �yi� so as to minimize the
mean squared quantization error given by Equation (9.3).

232 9 S C A L A R Q U A N T I Z A T I O N

Quantization noise

Quantizer outputQuantizer input +

F IGURE 9. 4 Additive noise model of a quantizer.

TAB L E 9 . 2 Codeword assignment
for an eight-level
quantizer.

y1 1110
y2 1100
y3 100
y4 00
y5 01
y6 101
y7 1101
y8 1111

However, if we are allowed to use variable-length codes, such as Huffman codes or
arithmetic codes, along with the size of the alphabet, the selection of the decision boundaries
will also affect the rate of the quantizer. Consider the codeword assignment for the output
of an eight-level quantizer shown in Table 9.2.

According to this codeword assignment, if the output y4 occurs, we use 2 bits to encode
it, while if the output y1 occurs, we need 4 bits to encode it. Obviously, the rate will depend
on how often we have to encode y4 versus how often we have to encode y1. In other words,
the rate will depend on the probability of occurrence of the outputs. If li is the length of the
codeword corresponding to the output yi, and P�yi� is the probability of occurrence of yi,
then the rate is given by

R =
M∑

i=1

liP�yi�� (9.5)

However, the probabilities �P�yi�� depend on the decision boundaries �bi�. For example,
the probability of yi occurring is given by

P�yi� =
∫ bi

bi−1

fX�x�dx�

9.4 Uniform Quantizer 233

Therefore, the rate R is a function of the decision boundaries and is given by the expression

R =
M∑

i=1

li

∫ bi

bi−1

fX�x�dx� (9.6)

From this discussion and Equations (9.3) and (9.6), we see that for a given source
input, the partitions we select and the representation for those partitions will determine the
distortion incurred during the quantization process. The partitions we select and the binary
codes for the partitions will determine the rate for the quantizer. Thus, the problem of
finding the optimum partitions, codes, and representation levels are all linked. In light of
this information, we can restate our problem statement:

Given a distortion constraint

	2
q ≤ D∗ (9.7)

find the decision boundaries, reconstruction levels, and binary codes that mini-
mize the rate given by Equation (9.6), while satisfying Equation (9.7).

Or, given a rate constraint

R ≤ R∗ (9.8)

find the decision boundaries, reconstruction levels, and binary codes that mini-
mize the distortion given by Equation (9.3), while satisfying Equation (9.8).

This problem statement of quantizer design, while more general than our initial statement,
is substantially more complex. Fortunately, in practice there are situations in which we can
simplify the problem. We often use fixed-length codewords to encode the quantizer output.
In this case, the rate is simply the number of bits used to encode each output, and we can
use our initial statement of the quantizer design problem. We start our study of quantizer
design by looking at this simpler version of the problem, and later use what we have learned
in this process to attack the more complex version.

9.4 Uniform Quantizer

The simplest type of quantizer is the uniform quantizer. All intervals are the same size in the
uniform quantizer, except possibly for the two outer intervals. In other words, the decision
boundaries are spaced evenly. The reconstruction values are also spaced evenly, with the
same spacing as the decision boundaries; in the inner intervals, they are the midpoints of
the intervals. This constant spacing is usually referred to as the step size and is denoted by

. The quantizer shown in Figure 9.3 is a uniform quantizer with
 = 1. It does not have
zero as one of its representation levels. Such a quantizer is called a midrise quantizer. An
alternative uniform quantizer could be the one shown in Figure 9.5. This is called a midtread
quantizer. As the midtread quantizer has zero as one of its output levels, it is especially
useful in situations where it is important that the zero value be represented—for example,

234 9 S C A L A R Q U A N T I Z A T I O N

−3.5 −2.5 −1.5 −0.5

−1.0

−2.0

−3.0

1.0

2.0

3.0

Output

Input

0.5 1.5 2.5 3.5

F IGURE 9. 5 A midtread quantizer.

control systems in which it is important to represent a zero value accurately, and audio
coding schemes in which we need to represent silence periods. Notice that the midtread
quantizer has only seven intervals or levels. That means that if we were using a fixed-length
3-bit code, we would have one codeword left over.

Usually, we use a midrise quantizer if the number of levels is even and a midtread
quantizer if the number of levels is odd. For the remainder of this chapter, unless we
specifically mention otherwise, we will assume that we are dealing with midrise quantizers.
We will also generally assume that the input distribution is symmetric around the origin
and the quantizer is also symmetric. (The optimal minimum mean squared error quantizer
for a symmetric distribution need not be symmetric [106].) Given all these assumptions, the
design of a uniform quantizer consists of finding the step size
 that minimizes the distortion
for a given input process and number of decision levels.

Un i f o rm Quan t i za t i on o f a Un i f o rm l y D i s t r i bu t ed Sou r ce

We start our study of quantizer design with the simplest of all cases: design of a uniform
quantizer for a uniformly distributed source. Suppose we want to design an M-level uniform
quantizer for an input that is uniformly distributed in the interval �−Xmax�Xmax�. This means

9.4 Uniform Quantizer 235

we need to divide the �−Xmax�Xmax� interval into M equally sized intervals. In this case, the
step size
 is given by

 = 2Xmax

M
� (9.9)

The distortion in this case becomes

	2
q = 2

M
2∑

i=1

∫ i

�i−1�

(

x− 2i−1
2

)2 1
2Xmax

dx� (9.10)

If we evaluate this integral (after some suffering), we find that the msqe is
2/12.
The same result can be more easily obtained if we examine the behavior of the quanti-

zation error q given by

q = x−Q�x�� (9.11)

In Figure 9.6 we plot the quantization error versus the input signal for an eight-level
uniform quantizer, with an input that lies in the interval �−Xmax�Xmax�. Notice that the
quantization error lies in the interval �−

2 �

2 �. As the input is uniform, it is not difficult to

establish that the quantization error is also uniform over this interval. Thus, the mean squared
quantization error is the second moment of a random variable uniformly distributed in the
interval �−

2 �

2 �:

	2
q = 1

∫

2

−

2

q2dq (9.12)

=
2

12
� (9.13)

Let us also calculate the signal-to-noise ratio for this case. The signal variance 	2
s for

a uniform random variable, which takes on values in the interval �−Xmax�Xmax�, is �2Xmax�2

12 .

−4Δ −3Δ −2Δ −Δ

−Δ/2

Δ/2

x − Q(x)

Xmax x–Xmax

 2ΔΔ 3Δ 4Δ

F IGURE 9. 6 Quantization error for a uniform midrise quantizer with a uniformly
distributed input.

236 9 S C A L A R Q U A N T I Z A T I O N

The value of the step size
 is related to Xmax and the number of levels M by

 = 2Xmax

M
�

For the case where we use a fixed-length code, with each codeword being made up of n
bits, the number of codewords or the number of reconstruction levels M is 2n. Combining
all this, we have

SNR�dB� = 10 log10

(
	2

s

	2
q

)

(9.14)

= 10 log10

(
�2Xmax�

2

12
· 12

2

)

(9.15)

= 10 log10

(
�2Xmax�

2

12
12

� 2Xmax
M

�2

)

(9.16)

= 10 log10�M
2�

= 20 log10�2n�

= 6�02n dB� (9.17)

This equation says that for every additional bit in the quantizer, we get an increase in the
signal-to-noise ratio of 6.02 dB. This is a well-known result and is often used to get an
indication of the maximum gain available if we increase the rate. However, remember that
we obtained this result under some assumptions about the input. If the assumptions are not
true, this result will not hold true either.

Example 9 . 4 . 1: Image compress ion

A probability model for the variations of pixels in an image is almost impossible to obtain
because of the great variety of images available. A common approach is to declare the pixel
values to be uniformly distributed between 0 and 2b −1, where b is the number of bits per
pixel. For most of the images we deal with, the number of bits per pixel is 8; therefore, the
pixel values would be assumed to vary uniformly between 0 and 255. Let us quantize our
test image Sena using a uniform quantizer.

If we wanted to use only 1 bit per pixel, we would divide the range [0, 255] into two
intervals, [0, 127] and [128, 255]. The first interval would be represented by the value 64,
the midpoint of the first interval; the pixels in the second interval would be represented by
the pixel value 196, the midpoint of the second interval. In other words, the boundary values
are �0� 128� 255�, while the reconstruction values are �64� 196�. The quantized image is
shown in Figure 9.7. As expected, almost all the details in the image have disappeared. If we
were to use a 2-bit quantizer, with boundary values �0� 64� 128� 196� 255� and reconstruction
levels �32� 96� 160� 224�, we get considerably more detail. The level of detail increases as
the use of bits increases until at 6 bits per pixel, the reconstructed image is indistinguishable
from the original, at least to a casual observer. The 1-, 2-, and 3-bit images are shown in
Figure 9.7.

9.4 Uniform Quantizer 237

F IGURE 9. 7 Top left: original Sena image; top right: 1bit/pixel image; bottom
left: 2bits/pixel; bottorm right: 3bits/pixel.

Looking at the lower-rate images, we notice a couple of things. First, the lower-rate
images are darker than the original, and the lowest-rate reconstructions are the darkest. The
reason for this is that the quantization process usually results in scaling down of the dynamic
range of the input. For example, in the 1-bit-per-pixel reproduction, the highest pixel value
is 196, as opposed to 255 for the original image. As higher gray values represent lighter
shades, there is a corresponding darkening of the reconstruction. The other thing to notice
in the low-rate reconstruction is that wherever there were smooth changes in gray values
there are now abrupt transitions. This is especially evident in the face and neck area, where
gradual shading has been transformed to blotchy regions of constant values. This is because
a range of values is being mapped to the same value, as was the case for the first two samples
of the sinusoid in Example 9.3.1. For obvious reasons, this effect is called contouring. The
perceptual effect of contouring can be reduced by a procedure called dithering [107]. �

238 9 S C A L A R Q U A N T I Z A T I O N

Un i f o rm Quan t i za t i on o f Nonun i f o rm Sou r ce s

Quite often the sources we deal with do not have a uniform distribution; however, we still
want the simplicity of a uniform quantizer. In these cases, even if the sources are bounded,
simply dividing the range of the input by the number of quantization levels does not produce
a very good design.

Example 9 . 4 . 2:

Suppose our input fell within the interval �−1� 1� with probability 0.95, and fell in the
intervals �−100� 1�, (1, 100] with probability 0.05. Suppose we wanted to design an eight-
level uniform quantizer. If we followed the procedure of the previous section, the step size
would be 25. This means that inputs in the �−1� 0� interval would be represented by the
value −12�5, and inputs in the interval [0, 1) would be represented by the value 12.5. The
maximum quantization error that can be incurred is 12.5. However, at least 95% of the
time, the minimum error that will be incurred is 11.5. Obviously, this is not a very good
design. A much better approach would be to use a smaller step size, which would result in
better representation of the values in the �−1� 1� interval, even if it meant a larger maximum
error. Suppose we pick a step size of 0.3. In this case, the maximum quantization error goes
from 12.5 to 98.95. However, 95% of the time the quantization error will be less than 0.15.
Therefore, the average distortion, or msqe, for this quantizer would be substantially less than
the msqe for the first quantizer. �

We can see that when the distribution is no longer uniform, it is not a good idea to
obtain the step size by simply dividing the range of the input by the number of levels. This
approach becomes totally impractical when we model our sources with distributions that are
unbounded, such as the Gaussian distribution. Therefore, we include the pdf of the source
in the design process.

Our objective is to find the step size that, for a given value of M , will minimize the
distortion. The simplest way to do this is to write the distortion as a function of the step size,
and then minimize this function. An expression for the distortion, or msqe, for an M-level
uniform quantizer as a function of the step size can be found by replacing the bis and yis in
Equation (9.3) with functions of
. As we are dealing with a symmetric condition, we need
only compute the distortion for positive values of x; the distortion for negative values of x
will be the same.

From Figure 9.8, we see that the decision boundaries are integral multiples of
, and the
representation level for the interval ��k−1�
�k
� is simply 2k−1

2
. Therefore, the expression
for msqe becomes

	2
q = 2

M
2 −1∑

i=1

∫ i

�i−1�

(

x− 2i−1
2

)2

fX�x�dx

+2
∫ �

� M
2 −1�

(

x− M −1
2

)2

fX�x�dx� (9.18)

9.4 Uniform Quantizer 239

−3Δ −2Δ −Δ

−7Δ/2

−5Δ/2

−3Δ/2

−Δ/2

7Δ/2

5Δ/2

3Δ/2

Δ/2

Output

Input

Δ 2Δ 3Δ

F IGURE 9. 8 A uniform midrise quantizer.

To find the optimal value of
, we simply take a derivative of this equation and set it
equal to zero [108] (see Problem 1).

	2
q

= −

M
2 −1∑

i=1

�2i−1�
∫ i

�i−1�

�x− 2i−1

2

�fX�x�dx

−�M −1�
∫ �

� M
2 −1�

(

x− M −1
2

)

fX�x�dx = 0� (9.19)

This is a rather messy-looking expression, but given the pdf fX�x�, it is easy to solve using
any one of a number of numerical techniques (see Problem 2). In Table 9.3, we list step sizes
found by solving (9.19) for nine different alphabet sizes and three different distributions.

Before we discuss the results in Table 9.3, let’s take a look at the quantization noise
for the case of nonuniform sources. Nonuniform sources are often modeled by pdfs with
unbounded support. That is, there is a nonzero probability of getting an unbounded input.
In practical situations, we are not going to get inputs that are unbounded, but often it is very
convenient to model the source process with an unbounded distribution. The classic example
of this is measurement error, which is often modeled as having a Gaussian distribution,

240 9 S C A L A R Q U A N T I Z A T I O N

TAB L E 9 . 3 Optimum step size and SNR for uniform quantizers for different
distributions and alphabet sizes [108, 109].

Alphabet Uniform Gaussian Laplacian
Size Step Size SNR Step Size SNR Step Size SNR

2 1.732 6.02 1.596 4.40 1.414 3.00
4 0.866 12.04 0.9957 9.24 1.0873 7.05
6 0.577 15.58 0.7334 12.18 0.8707 9.56
8 0.433 18.06 0.5860 14.27 0.7309 11.39

10 0.346 20.02 0.4908 15.90 0.6334 12.81
12 0.289 21.60 0.4238 17.25 0.5613 13.98
14 0.247 22.94 0.3739 18.37 0.5055 14.98
16 0.217 24.08 0.3352 19.36 0.4609 15.84
32 0.108 30.10 0.1881 24.56 0.2799 20.46

−4Δ −3Δ −2Δ −Δ Δ

−Δ/2

Granular noise

Overload noise

Δ/2

x − Q(x)

x

 2Δ 3Δ 4Δ

F IGURE 9. 9 Quantization error for a uniform midrise quantizer.

even when the measurement error is known to be bounded. If the input is unbounded, the
quantization error is no longer bounded either. The quantization error as a function of input
is shown in Figure 9.9. We can see that in the inner intervals the error is still bounded by

2 ; however, the quantization error in the outer intervals is unbounded. These two types of
quantization errors are given different names. The bounded error is called granular error
or granular noise, while the unbounded error is called overload error or overload noise. In
the expression for the msqe in Equation (9.18), the first term represents the granular noise,
while the second term represents the overload noise. The probability that the input will fall
into the overload region is called the overload probability (Figure 9.10).

9.4 Uniform Quantizer 241

−4Δ −3Δ −2Δ −Δ

Overload probability

Granular probability

Δ 2Δ 3Δ

x

4Δ

F IGURE 9. 10 Overload and granular regions for a 3-bit uniform quantizer.

The nonuniform sources we deal with have probability density functions that are generally
peaked at zero and decay as we move away from the origin. Therefore, the overload
probability is generally much smaller than the probability of the input falling in the granular
region. As we see from Equation (9.19), an increase in the size of the step size
 will result in
an increase in the value of

(
M
2 −1

)

, which in turn will result in a decrease in the overload

probability and the second term in Equation (9.19). However, an increase in the step size

will also increase the granular noise, which is the first term in Equation (9.19). The design
process for the uniform quantizer is a balancing of these two effects. An important parameter
that describes this trade-off is the loading factor fl, defined as the ratio of the maximum
value the input can take in the granular region to the standard deviation. A common value
of the loading factor is 4. This is also referred to as 4	 loading.

Recall that when quantizing an input with a uniform distribution, the SNR and bit rate
are related by Equation (9.17), which says that for each bit increase in the rate there is an
increase of 6.02 dB in the SNR. In Table 9.3, along with the step sizes, we have also listed
the SNR obtained when a million input values with the appropriate pdf are quantized using
the indicated quantizer.

From this table, we can see that, although the SNR for the uniform distribution follows
the rule of a 6.02 dB increase in the signal-to-noise ratio for each additional bit, this is
not true for the other distributions. Remember that we made some assumptions when we
obtained the 6�02n rule that are only valid for the uniform distribution. Notice that the more
peaked a distribution is (that is, the further away from uniform it is), the more it seems to
vary from the 6.02 dB rule.

We also said that the selection of
 is a balance between the overload and granular
errors. The Laplacian distribution has more of its probability mass away from the origin in

242 9 S C A L A R Q U A N T I Z A T I O N

its tails than the Gaussian distribution. This means that for the same step size and number of
levels there is a higher probability of being in the overload region if the input has a Laplacian
distribution than if the input has a Gaussian distribution. The uniform distribution is the
extreme case, where the overload probability is zero. For the same number of levels, if we
increase the step size, the size of the overload region (and hence the overload probability) is
reduced at the expense of granular noise. Therefore, for a given number of levels, if we were
picking the step size to balance the effects of the granular and overload noise, distributions
that have heavier tails will tend to have larger step sizes. This effect can be seen in Table 9.3.
For example, for eight levels the step size for the uniform quantizer is 0.433. The step size
for the Gaussian quantizer is larger (0.586), while the step size for the Laplacian quantizer
is larger still (0.7309).

Misma t ch E f f e c t s

We have seen that for a result to hold, the assumptions we used to obtain the result have
to hold. When we obtain the optimum step size for a particular uniform quantizer using
Equation (9.19), we make some assumptions about the statistics of the source. We assume
a certain distribution and certain parameters of the distribution. What happens when our
assumptions do not hold? Let’s try to answer this question empirically.

We will look at two types of mismatches. The first is when the assumed distribution
type matches the actual distribution type, but the variance of the input is different from the
assumed variance. The second mismatch is when the actual distribution type is different
from the distribution type assumed when obtaining the value of the step size. Throughout
our discussion, we will assume that the mean of the input distribution is zero.

In Figure 9.11, we have plotted the signal-to-noise ratio as a function of the ratio of
the actual to assumed variance of a 4-bit Gaussian uniform quantizer, with a Gaussian

20

−2
0

2

4

6

8

10
SNR (dB)

14

12

18

16

0 0.5 1.0 1.5 2.0
Ratio of input variance to design variance

2.5 3.0 3.5 4.0

F IGURE 9. 11 Effect of variance mismatch on the performance of a 4-bit uniform
quantizer.

9.4 Uniform Quantizer 243

input. (To see the effect under different conditions, see Problem 5.) Remember that for a
distribution with zero mean, the variance is given by 	2

x = E�X2�, which is also a measure
of the power in the signal X. As we can see from the figure, the signal-to-noise ratio is
maximum when the input signal variance matches the variance assumed when designing the
quantizer. From the plot we also see that there is an asymmetry; the SNR is considerably
worse when the input variance is lower than the assumed variance. This is because the
SNR is a ratio of the input variance and the mean squared quantization error. When the
input variance is smaller than the assumed variance, the mean squared quantization error
actually drops because there is less overload noise. However, because the input variance is
low, the ratio is small. When the input variance is higher than the assumed variance, the
msqe increases substantially, but because the input power is also increasing, the ratio does
not decrease as dramatically. To see this more clearly, we have plotted the mean squared
error versus the signal variance separately in Figure 9.12. We can see from these figures
that the decrease in signal-to-noise ratio does not always correlate directly with an increase
in msqe.

The second kind of mismatch is where the input distribution does not match the distribu-
tion assumed when designing the quantizer. In Table 9.4 we have listed the SNR when inputs
with different distributions are quantized using several different eight-level quantizers. The
quantizers were designed assuming a particular input distribution.

Notice that as we go from left to right in the table, the designed step size becomes
progressively larger than the “correct” step size. This is similar to the situation where the
input variance is smaller than the assumed variance. As we can see when we have a mismatch
that results in a smaller step size relative to the optimum step size, there is a greater drop in
performance than when the quantizer step size is larger than its optimum value.

2.0

0

0.2

0.4

0.6

0.8

1.0msqe

1.4

1.2

1.8

1.6

0 1 2 3 4
Ratio of input variance to design variance

5 6 7 8 9 10

F IGURE 9. 12 The msqe as a function of variance mismatch with a 4-bit uniform
quantizer.

244 9 S C A L A R Q U A N T I Z A T I O N

TAB L E 9 . 4 Demonstration of the effect of mismatch using
eight- level quantizers (dB).

Input Uniform Gaussian Laplacian Gamma
Distribution Quantizer Quantizer Quantizer Quantizer

Uniform 18.06 15.56 13.29 12.41
Gaussian 12.40 14.27 13.37 12.73
Laplacian 8.80 10.79 11.39 11.28
Gamma 6.98 8.06 8.64 8.76

9.5 Adaptive Quantizat ion

One way to deal with the mismatch problem is to adapt the quantizer to the statistics of the
input. Several things might change in the input relative to the assumed statistics, including
the mean, the variance, and the pdf. The strategy for handling each of these variations can
be different, though certainly not exclusive. If more than one aspect of the input statistics
changes, it is possible to combine the strategies for handling each case separately. If the
mean of the input is changing with time, the best strategy is to use some form of differential
encoding (discussed in some detail in Chapter 11). For changes in the other statistics, the
common approach is to adapt the quantizer parameters to the input statistics.

There are two main approaches to adapting the quantizer parameters: an off-line or
forward adaptive approach, and an on-line or backward adaptive approach. In forward
adaptive quantization, the source output is divided into blocks of data. Each block is analyzed
before quantization, and the quantizer parameters are set accordingly. The settings of the
quantizer are then transmitted to the receiver as side information. In backward adaptive
quantization, the adaptation is performed based on the quantizer output. As this is available
to both transmitter and receiver, there is no need for side information.

9 . 5 . 1 Forward Adapt ive Quant izat ion

Let us first look at approaches for adapting to changes in input variance using the forward
adaptive approach. This approach necessitates a delay of at least the amount of time required
to process a block of data. The insertion of side information in the transmitted data stream
may also require the resolution of some synchronization problems. The size of the block
of data processed also affects a number of other things. If the size of the block is too
large, then the adaptation process may not capture the changes taking place in the input
statistics. Furthermore, large block sizes mean more delay, which may not be tolerable in
certain applications. On the other hand, small block sizes mean that the side information
has to be transmitted more often, which in turn means the amount of overhead per sample
increases. The selection of the block size is a trade-off between the increase in side infor-
mation necessitated by small block sizes and the loss of fidelity due to large block sizes
(see Problem 7).

9.5 Adaptive Quantization 245

The variance estimation procedure is rather simple. At time n we use a block of N future
samples to compute an estimate of the variance

	̂2
q = 1

N

N−1∑

i=0

x2
n+i� (9.20)

Note that we are assuming that our input has a mean of zero. The variance information also
needs to be quantized so that it can be transmitted to the receiver. Usually, the number of
bits used to quantize the value of the variance is significantly larger than the number of bits
used to quantize the sample values.

Example 9 . 5 . 1:

In Figure 9.13 we show a segment of speech quantized using a fixed 3-bit quantizer. The
step size of the quantizer was adjusted based on the statistics of the entire sequence. The
sequence was the testm.raw sequence from the sample data sets, consisting of about
4000 samples of a male speaker saying the word “test.” The speech signal was sampled at
8000 samples per second and digitized using a 16-bit A/D.

2.5

−2.0

0

1.0

1.5

2.0

0.5

−0.5

−1.0

−1.5

180 200 220 240 260 280 300 320

Original
Reconstructed

F IGURE 9. 13 Original 16-bit speech and compressed 3-bit speech sequences.

We can see from the figure that, as in the case of the example of the sinusoid earlier
in this chapter, there is a considerable loss in amplitude resolution. Sample values that are
close together have been quantized to the same value.

The same sequence quantized with a forward adaptive quantizer is shown in Figure 9.14.
For this example, we divided the input into blocks of 128 samples. Before quantizing the
samples in a block, the standard deviation for the samples in the block was obtained. This
value was quantized using an 8-bit quantizer and sent to both the transmitter and receiver.

246 9 S C A L A R Q U A N T I Z A T I O N

2.5

−2.5

−0.5

0.5

1.0

1.5

2.0

0

−1.0

−1.5

−2.0

180 200 220 240 260 280 300 320

Original
Reconstructed

F IGURE 9. 14 Original 16-bit speech sequence and sequence obtained using an
eight-level forward adaptive quantizer.

The samples in the block were then normalized using this value of the standard deviation.
Notice that the reconstruction follows the input much more closely, though there seems to
be room for improvement, especially in the latter half of the displayed samples. �

Example 9 . 5 . 2:

In Example 9.4.1, we used a uniform quantizer with the assumption that the input is uniformly
distributed. Let us refine this source model a bit and say that while the source is uniformly
distributed over different regions, the range of the input changes. In a forward adaptive
quantization scheme, we would obtain the minimum and maximum values for each block of
data, which would be transmitted as side information. In Figure 9.15, we see the Sena image
quantized with a block size of 8×8 using 3-bit forward adaptive uniform quantization. The
side information consists of the minimum and maximum values in each block, which require
8 bits each. Therefore, the overhead in this case is 16

8×8 or 0.25 bits per pixel, which is quite
small compared to the number of bits per sample used by the quantizer.

The resulting image is hardly distinguishable from the original. Certainly at higher rates,
forward adaptive quantization seems to be a very good alternative. �

9 . 5 . 2 Backward Adapt ive Quant izat ion

In backward adaptive quantization, only the past quantized samples are available for use in
adapting the quantizer. The values of the input are only known to the encoder; therefore,
this information cannot be used to adapt the quantizer. How can we get information about
mismatch simply by examining the output of the quantizer without knowing what the input
was? If we studied the output of the quantizer for a long period of time, we could get some
idea about mismatch from the distribution of output values. If the quantizer step size
 is

9.5 Adaptive Quantization 247

F IGURE 9. 15 Sena image quantized to 3.25 bits per pixel using forward
adaptive quantization.

well matched to the input, the probability that an input to the quantizer would land in a
particular interval would be consistent with the pdf assumed for the input. However, if the
actual pdf differs from the assumed pdf, the number of times the input falls in the different
quantization intervals will be inconsistent with the assumed pdf. If
 is smaller than what
it should be, the input will fall in the outer levels of the quantizer an excessive number of
times. On the other hand, if
 is larger than it should be for a particular source, the input
will fall in the inner levels an excessive number of times. Therefore, it seems that we should
observe the output of the quantizer for a long period of time, then expand the quantizer step
size if the input falls in the outer levels an excessive number of times, and contract the step
size if the input falls in the inner levels an excessive number of times.

Nuggehally S. Jayant at Bell Labs showed that we did not need to observe the quantizer
output over a long period of time [110]. In fact, we could adjust the quantizer step size
after observing a single output. Jayant named this quantization approach “quantization with
one word memory.” The quantizer is better known as the Jayant quantizer. The idea behind
the Jayant quantizer is very simple. If the input falls in the outer levels, the step size needs
to be expanded, and if the input falls in the inner quantizer levels, the step size needs to
be reduced. The expansions and contractions should be done in such a way that once the
quantizer is matched to the input, the product of the expansions and contractions is unity.

The expansion and contraction of the step size is accomplished in the Jayant quantizer
by assigning a multiplier Mk to each interval. If the �n−1�th input falls in the kth interval,
the step size to be used for the nth input is obtained by multiplying the step size used for the
�n−1�th input with Mk. The multiplier values for the inner levels in the quantizer are less
than one, and the multiplier values for the outer levels of the quantizer are greater than one.

248 9 S C A L A R Q U A N T I Z A T I O N

Therefore, if an input falls into the inner levels, the quantizer used to quantize the next input
will have a smaller step size. Similarly, if an input falls into the outer levels, the step size
will be multiplied with a value greater than one, and the next input will be quantized using
a larger step size. Notice that the step size for the current input is modified based on the
previous quantizer output. The previous quantizer output is available to both the transmitter
and receiver, so there is no need to send any additional information to inform the receiver
about the adaptation. Mathematically, the adaptation process can be represented as

n = Ml�n−1�
n−1 (9.21)

where l�n−1� is the quantization interval at time n−1.
In Figure 9.16 we show a 3-bit uniform quantizer. We have eight intervals represented by

the different quantizer outputs. However, the multipliers for symmetric intervals are identical
because of symmetry:

M0 = M4 M1 = M5 M2 = M6 M3 = M7

Therefore, we only need four multipliers. To see how the adaptation proceeds, let us work
through a simple example using this quantizer.

−3Δ −2Δ −Δ

−7Δ/2

−5Δ/2

−3Δ/2

–Δ/2

7Δ/2

5Δ/2

3Δ/2

Δ/2

Output

Input

Δ 2Δ 3Δ

3

2

0

1

4

5

6

7

F IGURE 9. 16 Output levels for the Jayant quantizer.

9.5 Adaptive Quantization 249

Example 9 . 5 . 3: Jayant quant izer

For the quantizer in Figure 9.16, suppose the multiplier values are M0 = M4 = 0�8, M1 =
M5 = 0�9, M2 = M6 = 1�M3 = M7 = 1�2; the initial value of the step size,
0, is 0.5; and the
sequence to be quantized is 0�1�−0�2� 0�2� 0�1�−0�3� 0�1� 0�2� 0�5� 0�9� 1�5� � � �� When the
first input is received, the quantizer step size is 0.5. Therefore, the input falls into level 0,
and the output value is 0.25, resulting in an error of 0.15. As this input fell into the quantizer
level 0, the new step size
1 is M0 ×
0 = 0�8 × 0�5 = 0�4. The next input is −0�2, which
falls into level 4. As the step size at this time is 0.4, the output is −0�2. To update, we
multiply the current step size with M4. Continuing in this fashion, we get the sequence of
step sizes and outputs shown in Table 9.5.

TAB L E 9 . 5 Operation of a Jayant quantizer.

n
n Input Output Level Output Error Update Equation

0 0�5 0�1 0 0�25 0�15
1 = M0 ×
0

1 0�4 −0�2 4 −0�2 0�0
2 = M4 ×
1

2 0�32 0�2 0 0�16 0�04
3 = M0 ×
2

3 0�256 0�1 0 0�128 0�028
4 = M0 ×
3

4 0�2048 −0�3 5 −0�3072 −0�0072
5 = M5 ×
4

5 0�1843 0�1 0 0�0922 −0�0078
6 = M0 ×
5

6 0�1475 0�2 1 0�2212 0�0212
7 = M1 ×
6

7 0�1328 0�5 3 0�4646 −0�0354
8 = M3 ×
7

8 0�1594 0�9 3 0�5578 −0�3422
9 = M3 ×
8

9 0�1913 1�5 3 0�6696 −0�8304
10 = M3 ×
9

10 0�2296 1�0 3 0�8036 0�1964
11 = M3 ×
10

11 0�2755 0�9 3 0�9643 0�0643
12 = M3 ×
11

Notice how the quantizer adapts to the input. In the beginning of the sequence, the
input values are mostly small, and the quantizer step size becomes progressively smaller,
providing better and better estimates of the input. At the end of the sample sequence, the
input values are large and the step size becomes progressively bigger. However, the size
of the error is quite large during the transition. This means that if the input was changing
rapidly, which would happen if we had a high-frequency input, such transition situations
would be much more likely to occur, and the quantizer would not function very well.
However, in cases where the statistics of the input change slowly, the quantizer could adapt
to the input. As most natural sources such as speech and images tend to be correlated, their
values do not change drastically from sample to sample. Even when some of this structure
is removed through some transformation, the residual structure is generally enough for the
Jayant quantizer (or some variation of it) to function quite effectively. �

The step size in the initial part of the sequence in this example is progressively getting
smaller. We can easily conceive of situations where the input values would be small for a
long period. Such a situation could occur during a silence period in speech-encoding systems,

250 9 S C A L A R Q U A N T I Z A T I O N

or while encoding a dark background in image-encoding systems. If the step size continues
to shrink for an extended period of time, in a finite precision system it would result in a
value of zero. This would be catastrophic, effectively replacing the quantizer with a zero
output device. Usually, a minimum value
min is defined, and the step size is not allowed to
go below this value to prevent this from happening. Similarly, if we get a sequence of large
values, the step size could increase to a point that, when we started getting smaller values,
the quantizer would not be able to adapt fast enough. To prevent this from happening, a
maximum value
max is defined, and the step size is not allowed to increase beyond this
value.

The adaptivity of the Jayant quantizer depends on the values of the multipliers. The
further the multiplier values are from unity, the more adaptive the quantizer. However, if the
adaptation algorithm reacts too fast, this could lead to instability. So how do we go about
selecting the multipliers?

First of all, we know that the multipliers correponding to the inner levels are less than one,
and the multipliers for the outer levels are greater than one. If the input process is stationary
and Pk represents the probability of being in quantizer interval k (generally estimated by
using a fixed quantizer for the input data), then we can impose a stability criterion for the
Jayant quantizer based on our requirement that once the quantizer is matched to the input,
the product of the expansions and contractions are equal to unity. That is, if nk is the number
of times the input falls in the kth interval,

M∏

k=0

M
nk

k = 1� (9.22)

Taking the N th root of both sides (where N is the total number of inputs) we obtain

M∏

k=0

M
nk
N

k = 1�

or

M∏

k=0

M
Pk

k = 1 (9.23)

where we have assumed that Pk = nk/N .
There are an infinite number of multiplier values that would satisfy Equation (9.23). One

way to restrict this number is to impose some structure on the multipliers by requiring them
to be of the form

Mk = �lk (9.24)

where � is a number greater than one and lk takes on only integer values [111, 112]. If we
substitute this expression for Mk into Equation (9.23), we get

M∏

k=0

�lkPk = 1� (9.25)

9.5 Adaptive Quantization 251

which implies that

M∑

k=0

lkPk = 0� (9.26)

The final step is the selection of �, which involves a significant amount of creativity. The
value we pick for � determines how fast the quantizer will respond to changing statistics.
A large value of � will result in faster adaptation, while a smaller value of � will result in
greater stability.

Example 9 . 5 . 4:

Suppose we have to obtain the multiplier functions for a 2-bit quantizer with input proba-
bilities P0 = 0�8, P1 = 0�2. First, note that the multiplier value for the inner level has to be
less than 1. Therefore, l0 is less than 0. If we pick l0 = −1 and l1 = 4, this would satisfy
Equation (9.26), while making M0 less than 1 and M1 greater than 1. Finally, we need to
pick a value for �.

In Figure 9.17 we see the effect of using different values of � in a rather extreme
example. The input is a square wave that switches between 0 and 1 every 30 samples. The
input is quantized using a 2-bit Jayant quantizer. We have used l0 = −1 and l1 = 2. Notice
what happens when the input switches from 0 to 1. At first the input falls in the outer level
of the quantizer, and the step size increases. This process continues until
 is just greater
than 1. If � is close to 1,
 has been increasing quite slowly and should have a value close
to 1 right before its value increases to greater than 1. Therefore, the output at this point is
close to 1.5. When
 becomes greater than 1, the input falls in the inner level, and if � is
close to 1, the output suddenly drops to about 0.5. The step size now decreases until it is just

1.2

0

0.2

0.4

0.6Amplitude

0.8

1.0

0 10 20 30 40 50
Time

60 70 80 90

F IGURE 9. 17 Effect of � on the performance of the Jayant quantizer.

252 9 S C A L A R Q U A N T I Z A T I O N

below 1, and the process repeats, causing the “ringing” seen in Figure 9.17. As � increases,
the quantizer adapts more rapidly, and the magnitude of the ringing effect decreases. The
reason for the decrease is that right before the value of
 increases above 1, its value is
much smaller than 1, and subsequently the output value is much smaller than 1.5. When

increases beyond 1, it may increase by a significant amount, so the inner level may be much
greater than 0.5. These two effects together compress the ringing phenomenon. Looking at
this phenomenon, we can see that it may have been better to have two adaptive strategies,
one for when the input is changing rapidly, as in the case of the transitions between 0 and 1,
and one for when the input is constant, or nearly so. We will explore this approach further
when we describe the quantizer used in the CCITT standard G.726. �

When selecting multipliers for a Jayant quantizer, the best quantizers expand more rapidly
than they contract. This makes sense when we consider that, when the input falls into the
outer levels of the quantizer, it is incurring overload error, which is essentially unbounded.
This situation needs to be mitigated with dispatch. On the other hand, when the input falls in
the inner levels, the noise incurred is granular noise, which is bounded and therefore may be
more tolerable. Finally, the discussion of the Jayant quantizer was motivated by the need for
robustness in the face of changing input statistics. Let us repeat the earlier experiment with
changing input variance and distributions and see the performance of the Jayant quantizer
compared to the pdf-optimized quantizer. The results for these experiments are presented in
Figure 9.18.

Notice how flat the performance curve is. While the performance of the Jayant quantizer
is much better than the nonadaptive uniform quantizer over a wide range of input variances,
at the point where the input variance and design variance agree, the performance of the
nonadaptive quantizer is significantly better than the performance of the Jayant quantizer.

20

15

10SNR (dB)

5

0
0 1 2 3 4 5

Ratio of input variance to design variance
6 7 8 9 10

F IGURE 9. 18 Performance of the Jayant quantizer for different input variances.

9.6 Nonuniform Quantization 253

This means that if we know the input statistics and we are reasonably certain that the input
statistics will not change over time, it is better to design for those statistics than to design
an adaptive system.

9.6 Nonuniform Quantizat ion

As we can see from Figure 9.10, if the input distribution has more mass near the origin,
the input is more likely to fall in the inner levels of the quantizer. Recall that in lossless
compression, in order to minimize the average number of bits per input symbol, we assigned
shorter codewords to symbols that occurred with higher probability and longer codewords
to symbols that occurred with lower probability. In an analogous fashion, in order to
decrease the average distortion, we can try to approximate the input better in regions of high
probability, perhaps at the cost of worse approximations in regions of lower probability. We
can do this by making the quantization intervals smaller in those regions that have more
probability mass. If the source distribution is like the distribution shown in Figure 9.10, we
would have smaller intervals near the origin. If we wanted to keep the number of intervals
constant, this would mean we would have larger intervals away from the origin. A quantizer
that has nonuniform intervals is called a nonuniform quantizer. An example of a nonuniform
quantizer is shown in Figure 9.19.

Notice that the intervals closer to zero are smaller. Hence the maximum value that the
quantizer error can take on is also smaller, resulting in a better approximation. We pay for
this improvement in accuracy at lower input levels by incurring larger errors when the input
falls in the outer intervals. However, as the probability of getting smaller input values is
much higher than getting larger signal values, on the average the distortion will be lower
than if we had a uniform quantizer. While a nonuniform quantizer provides lower average
distortion, the design of nonuniform quantizers is also somewhat more complex. However,
the basic idea is quite straightforward: find the decision boundaries and reconstruction levels
that minimize the mean squared quantization error. We look at the design of nonuniform
quantizers in more detail in the following sections.

9 . 6 . 1 pdf -Opt imized Quant izat ion

A direct approach for locating the best nonuniform quantizer, if we have a probability model
for the source, is to find the �bi� and �yi� that minimize Equation (9.3). Setting the derivative
of Equation (9.3) with respect to yj to zero, and solving for yj , we get

yj =
∫ bj

bj−1
xfX�x�dx

∫ bj

bj−1
fX�x�dx

� (9.27)

The output point for each quantization interval is the centroid of the probability mass in
that interval. Taking the derivative with respect to bj and setting it equal to zero, we get an
expression for bj as

bj = yj+1 +yj

2
� (9.28)

254 9 S C A L A R Q U A N T I Z A T I O N

b1 b2 b3 b4

y1

y4

y8

y7

y3

y2

y6

y5

Output

Inputb5 b6 b7

F IGURE 9. 19 A nonuniform midrise quantizer.

The decision boundary is simply the midpoint of the two neighboring reconstruction
levels. Solving these two equations will give us the values for the reconstruction levels and
decision boundaries that minimize the mean squared quantization error. Unfortunately, to
solve for yj , we need the values of bj and bj−1, and to solve for bj , we need the values
of yj+1 and yj . In a 1960 paper, Joel Max [108] showed how to solve the two equations
iteratively. The same approach was described by Stuart P. Lloyd in a 1957 internal Bell
Labs memorandum. Generally, credit goes to whomever publishes first, but in this case,
because much of the early work in quantization was done at Bell Labs, Lloyd’s work was
given due credit and the algorithm became known as the Lloyd-Max algorithm. However,
the story does not end (begin?) there. Allen Gersho [113] points out that the same algorithm
was published by Lukaszewicz and Steinhaus in a Polish journal in 1955 [114]! Lloyd’s
paper remained unpublished until 1982, when it was finally published in a special issue of
the IEEE Transactions on Information Theory devoted to quantization [115].

9.6 Nonuniform Quantization 255

To see how this algorithm works, let us apply it to a specific situation. Suppose
we want to design an M-level symmetric midrise quantizer. To define our symbols, we
will use Figure 9.20. From the figure, we see that in order to design this quantizer,
we need to obtain the reconstruction levels �y1� y2� � � � � y M

2
� and the decision boundaries

�b1� b2� � � � � b M
2 −1�. The reconstruction levels �y−1� y−2� � � � � y− M

2
� and the decision bound-

aries �b−1� b−2� � � � � b−� M
2 −1�� can be obtained through symmetry, the decision boundary b0

is zero, and the decision boundary b M
2

is simply the largest value the input can take on
(for unbounded inputs this would be �).

Let us set j equal to 1 in Equation (9.27):

y1 =
∫ b1

b0
xfX�x�dx

∫ b1

b0
fX�x�dx

� (9.29)

b−3 b−2 b−1 b0

y−4 1

−1

y−1

y4

y3

y−2

y−3

y2

y1

Output

Inputb1 b2 b3

1 2 3 4

F IGURE 9. 20 A nonuniform midrise quantizer.

256 9 S C A L A R Q U A N T I Z A T I O N

As b0 is known to be 0, we have two unknowns in this equation, b1 and y1. We make a
guess at y1 and later we will try to refine this guess. Using this guess in Equation (9.29),
we numerically find the value of b1 that satisfies Equation (9.29). Setting j equal to 1 in
Equation (9.28), and rearranging things slightly, we get

y2 = 2b1 +y1 (9.30)

from which we can compute y2. This value of y2 can then be used in Equation (9.27) with
j = 2 to find b2, which in turn can be used to find y3. We continue this process, until we
obtain a value for �y1� y2� � � � � y M

2
� and �b1� b2� � � � � b M

2 −1�. Note that the accuracy of all
the values obtained to this point depends on the quality of our initial estimate of y1. We
can check this by noting that y M

2
is the centroid of the probability mass of the interval

�b M
2 −1� b M

2
�. We know b M

2
from our knowledge of the data. Therefore, we can compute the

integral

y M
2

=
∫ b M

2
b M

2 −1
xfX�x�dx

∫ b M
2

b M
2 −1

fX�x�dx

(9.31)

and compare it with the previously computed value of y M
2

. If the difference is less than some
tolerance threshold, we can stop. Otherwise, we adjust the estimate of y1 in the direction
indicated by the sign of the difference and repeat the procedure.

Decision boundaries and reconstruction levels for various distributions and number of
levels generated using this procedure are shown in Table 9.6. Notice that the distributions
that have heavier tails also have larger outer step sizes. However, these same quantizers have
smaller inner step sizes because they are more heavily peaked. The SNR for these quantizers
is also listed in the table. Comparing these values with those for the pdf-optimized uniform
quantizers, we can see a significant improvement, especially for distributions further away
from the uniform distribution. Both uniform and nonuniform pdf-optimized, or Lloyd-Max,

TAB L E 9 . 6 Quantizer boundary and reconstruction levels for nonuniform
Gaussian and Laplacian quantizers.

Gaussian Laplacian
Levels bi yi SNR bi yi SNR

4 0.0 0.4528 0.0 0.4196
0.9816 1.510 9.3 dB 1.1269 1.8340 7.54 dB

6 0.0 0.3177 0.0 0.2998
0.6589 1.0 0.7195 1.1393
1.447 1.894 12.41 dB 1.8464 2.5535 10.51 dB

8 0.0 0.2451 0.0 0.2334
0.7560 0.6812 0.5332 0.8330
1.050 1.3440 1.2527 1.6725
1.748 2.1520 14.62 dB 2.3796 3.0867 12.64 dB

9.6 Nonuniform Quantization 257

quantizers have a number of interesting properties. We list these properties here (their proofs
can be found in [116, 117, 118]):

� Property 1: The mean values of the input and output of a Lloyd-Max quantizer are equal.

� Property 2: For a given Lloyd-Max quantizer, the variance of the output is always
less than or equal to the variance of the input.

� Property 3: The mean squared quantization error for a Lloyd-Max quantizer is
given by

	2
q = 	2

x −
M∑

j=1

y2
j P�bj−1 ≤ X < bj� (9.32)

where 	2
x is the variance of the quantizer input, and the second term on the right-hand

side is the second moment of the output (or variance if the input is zero mean).

� Property 4: Let N be the random variable corresponding to the quantization error.
Then for a given Lloyd-Max quantizer,

E�XN� = −	2
q � (9.33)

� Property 5: For a given Lloyd-Max quantizer, the quantizer output and the quantiza-
tion noise are orthogonal:

E�Q�X�N � b0� b1� � � � � bM� = 0� (9.34)

Misma t ch E f f e c t s

As in the case of uniform quantizers, the pdf-optimized nonuniform quantizers also have
problems when the assumptions underlying their design are violated. In Figure 9.21 we show
the effects of variance mismatch on a 4-bit Laplacian nonuniform quantizer.

This mismatch effect is a serious problem because in most communication systems the
input variance can change considerably over time. A common example of this is the telephone
system. Different people speak with differing amounts of loudness into the telephone. The
quantizer used in the telephone system needs to be quite robust to the wide range of input
variances in order to provide satisfactory service.

One solution to this problem is the use of adaptive quantization to match the quantizer
to the changing input characteristics. We have already looked at adaptive quantization for
the uniform quantizer. Generalizing the uniform adaptive quantizer to the nonuniform case
is relatively straightforward, and we leave that as a practice exercise (see Problem 8).
A somewhat different approach is to use a nonlinear mapping to flatten the performance
curve shown in Figure 9.21. In order to study this approach, we need to view the nonuniform
quantizer in a slightly different manner.

9 . 6 . 2 Companded Quant izat ion

Instead of making the step size small, we could make the interval in which the input lies
with high probability large—that is, expand the region in which the input lands with high

258 9 S C A L A R Q U A N T I Z A T I O N

18.5

13.5

15.5

16.5

17.0

17.5

18.0

16.0SNR (dB)

15.0

14.5

14.0

0.5 1.0 1.5

Ratio of input variance to assumed variance

2.0 2.5 3.0

F IGURE 9. 21 Effect of mismatch on nonuniform quantization.

probability in proportion to the probability with which the input lands in this region. This
is the idea behind companded quantization. This quantization approach can be represented
by the block diagram shown in Figure 9.22. The input is first mapped through a compressor
function. This function “stretches” the high-probability regions close to the origin, and cor-
respondingly “compresses” the low-probability regions away from the origin. Thus, regions
close to the origin in the input to the compressor occupy a greater fraction of the total
region covered by the compressor. If the output of the compressor function is quantized
using a uniform quantizer, and the quantized value transformed via an expander function,

Input

Output

Expander

Input

Output

Uniform quantizer

Input

Output

Compressor

F IGURE 9. 22 Block diagram for log companded quantization.

9.6 Nonuniform Quantization 259

the overall effect is the same as using a nonuniform quantizer. To see this, we devise a
simple compander and see how the process functions.

Example 9 . 6 . 1:

Suppose we have a source that can be modeled as a random variable taking values in the
interval �−4� 4� with more probability mass near the origin than away from it. We want to
quantize this using the quantizer of Figure 9.3. Let us try to flatten out this distribution using
the following compander, and then compare the companded quantization with straightforward
uniform quantization. The compressor characteristic we will use is given by the following
equation:

c�x� =

⎧
⎪⎨

⎪⎩

2x if −1 ≤ x ≤ 1
2x
3 + 4

3 x > 1
2x
3 − 4

3 x < −1�

(9.35)

The mapping is shown graphically in Figure 9.23. The inverse mapping is given by

c−1�x� =

⎧
⎪⎨

⎪⎩

x
2 if −2 ≤ x ≤ 2
3x
2 −2 x > 2

3x
2 +2 x < −2�

(9.36)

The inverse mapping is shown graphically in Figure 9.24.

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

c(x)

3

2

1

x

4

F IGURE 9. 23 Compressor mapping.

260 9 S C A L A R Q U A N T I Z A T I O N

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

c−1(x)

3

2

1

x

4

F IGURE 9. 24 Expander mapping.

Let’s see how using these mappings affects the quantization error both near and far
from the origin. Suppose we had an input of 0.9. If we quantize directly with the uniform
quantizer, we get an output of 0.5, resulting in a quantization error of 0.4. If we use the
companded quantizer, we first use the compressor mapping, mapping the input value of 0.9
to 1.8. Quantizing this with the same uniform quantizer results in an output of 1.5, with
an apparent error of 0.3. The expander then maps this to the final reconstruction value of
0.75, which is 0.15 away from the input. Comparing 0.15 with 0.4, we can see that relative
to the input we get a substantial reduction in the quantization error. In fact, for all values
in the interval �−1� 1�, we will not get any increase in the quantization error, and for most
values we will get a decrease in the quantization error (see Problem 6 at the end of this
chapter). Of course, this will not be true for the values outside the �−1� 1� interval. Suppose
we have an input of 2.7. If we quantized this directly with the uniform quantizer, we would
get an output of 2.5, with a corresponding error of 0.2. Applying the compressor mapping,
the value of 2.7 would be mapped to 3.13, resulting in a quantized value of 3.5. Mapping
this back through the expander, we get a reconstructed value of 3.25, which differs from the
input by 0.55.

As we can see, the companded quantizer effectively works like a nonuniform quantizer
with smaller quantization intervals in the interval �−1� 1� and larger quantization intervals
outside this interval. What is the effective input-output map of this quantizer? Notice that
all inputs in the interval [0, 0.5] get mapped into the interval [0, 1], for which the quantizer
output is 0.5, which in turn corresponds to the reconstruction value of 0.25. Essentially,
all values in the interval [0, 0.5] are represented by the value 0.25. Similarly, all values in

9.6 Nonuniform Quantization 261

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

Output

3

2

1

Input

4

F IGURE 9. 25 Nonuniform companded quantizer.

the interval [0.5, 1] are represented by the value 0.75, and so on. The effective quantizer
input-output map is shown in Figure 9.25. �

If we bound the source output by some value xmax, any nonuniform quantizer can always
be represented as a companding quantizer. Let us see how we can use this fact to come up
with quantizers that are robust to mismatch. First we need to look at some of the properties
of high-rate quantizers, or quantizers with a large number of levels.

Define

k = bk −bk−1� (9.37)

If the number of levels is high, then the size of each quantization interval will be small, and
we can assume that the pdf of the input fX�x� is essentially constant in each quantization
interval. Then

fX�x� = fX�yk� if bk−1 ≤ x < bk� (9.38)

Using this we can rewrite Equation (9.3) as

	2
q =

M∑

i=1

fX�yi�
∫ bi

bi−1

�x−yi�
2dx (9.39)

= 1
12

M∑

i=1

fX�yi�

3
i � (9.40)

262 9 S C A L A R Q U A N T I Z A T I O N

xmax

c(bk)

c(bk − 1)

xmaxΔk

. . .

. . .

F IGURE 9. 26 A compressor function.

Armed with this result, let us return to companded quantization. Let c�x� be a companding
characteristic for a symmetric quantizer, and let c′�x� be the derivative of the compressor
characteristic with respect to x. If the rate of the quantizer is high, that is, if there are a
large number of levels, then within the kth interval, the compressor characteristic can be
approximated by a straight line segment (see Figure 9.26), and we can write

c′�yk� = c�bk�− c�bk−1�

k

� (9.41)

From Figure 9.26 we can also see that c�bk�−c�bk−1� is the step size of a uniform M-level
quantizer. Therefore,

c�bk�− c�bk−1� = 2xmax

M
� (9.42)

Substituting this into Equation (9.41) and solving for
k, we get

k = 2xmax

Mc′�yk�
� (9.43)

9.6 Nonuniform Quantization 263

Finally, substituting this expression for
k into Equation (9.40), we get the following
relationship between the quantizer distortion, the pdf of the input, and the compressor
characteristic:

	2
q = 1

12

M∑

i=1

fX�yi�

(
2xmax

Mc′�yi�

)3

= x2
max

3M2

M∑

i=1

fX�yi�

c′2�yi�
· 2xmax

Mc′�yi�

= x2
max

3M2

M∑

i=1

fX�yi�

c′2�yi�

i (9.44)

which for small
i can be written as

	2
q = x2

max

3M2

∫ xmax

−xmax

fX�x�

�c′�x��2
dx� (9.45)

This is a famous result, known as the Bennett integral after its discoverer, W.R. Bennett
[119], and it has been widely used to analyze quantizers. We can see from this integral that
the quantizer distortion is dependent on the pdf of the source sequence. However, it also
tells us how to get rid of this dependence. Define

c′�x� = xmax

� �x� � (9.46)

where � is a constant. From the Bennett integral we get

	2
q = x2

max

3M2

�2

x2
max

∫ xmax

−xmax

x2fX�x�dx (9.47)

= �2

3M2
	2

x (9.48)

where

	2
x =

∫ xmax

−xmax

x2fX�x�dx� (9.49)

Substituting the expression for 	2
q into the expression for SNR, we get

SNR = 10 log10

	2
x

	2
q

(9.50)

= 10 log10�3M2�−20 log10 � (9.51)

which is independent of the input pdf. This means that if we use a compressor characteristic
whose derivative satisfies Equation (9.46), then regardless of the input variance, the signal-
to-noise ratio will remain constant. This is an impressive result. However, we do need some
caveats.

Notice that we are not saying that the mean squared quantization error is independent
of the quantizer input. It is not, as is clear from Equation (9.48). Remember also that this

264 9 S C A L A R Q U A N T I Z A T I O N

result is valid as long as the underlying assumptions are valid. When the input variance is
very small, our assumption about the pdf being constant over the quantization interval is
no longer valid, and when the variance of the input is very large, our assumption about the
input being bounded by xmax may no longer hold.

With fair warning, let us look at the resulting compressor characteristic. We can obtain
the compressor characteristic by integrating Equation (9.46):

c�x� = xmax +� log
�x�
xmax

(9.52)

where � is a constant. The only problem with this compressor characteristic is that it becomes
very large for small x. Therefore, in practice we approximate this characteristic with a
function that is linear around the origin and logarithmic away from it.

Two companding characteristics that are widely used today are �-law companding and
A-law companding. The �-law compressor function is given by

c�x� = xmax

ln
(

1+� �x�
xmax

)

ln�1+��
sgn�x�� (9.53)

The expander function is given by

c−1�x� = xmax

�
��1+��

�x�
xmax −1�sgn�x�� (9.54)

This companding characteristic with � = 255 is used in the telephone systems in North
America and Japan. The rest of the world uses the A-law characteristic, which is given by

c�x� =
⎧
⎨

⎩

A�x�
1+ln A

sgn�x� 0 ≤ �x�
xmax

≤ 1
A

xmax
1+ln A�x�

xmax
1+ln A

sgn�x� 1
A

≤ �x�
xmax

≤ 1
(9.55)

and

c−1�x� =
{ �x�

A
�1+ ln A� 0 ≤ �x�

xmax
≤ 1

1+ln A

xmax
A

exp
[

�x�
xmax

�1+ ln A�−1
]

1
1+ln A

≤ �x�
xmax

≤ 1�
(9.56)

9.7 Entropy-Coded Quantizat ion

In Section 9.3 we mentioned three tasks: selection of boundary values, selection of recon-
struction levels, and selection of codewords. Up to this point we have talked about accom-
plishment of the first two tasks, with the performance measure being the mean squared
quantization error. In this section we will look at accomplishing the third task, assigning
codewords to the quantization interval. Recall that this becomes an issue when we use
variable-length codes. In this section we will be looking at the latter situation, with the rate
being the performance measure.

We can take two approaches to the variable-length coding of quantizer outputs. We
can redesign the quantizer by taking into account the fact that the selection of the deci-
sion boundaries will affect the rate, or we can keep the design of the quantizer the same

9.7 Entropy-Coded Quantization 265

(i.e., Lloyd-Max quantization) and simply entropy-code the quantizer output. Since the latter
approach is by far the simpler one, let’s look at it first.

9 . 7 . 1 Entropy Coding of L loyd-Max Quant izer
Outputs

The process of trying to find the optimum quantizer for a given number of levels and rate
is a rather difficult task. An easier approach to incorporating entropy coding is to design
a quantizer that minimizes the msqe, that is, a Lloyd-Max quantizer, then entropy-code its
output.

In Table 9.7 we list the output entropies of uniform and nonuniform Lloyd-Max quan-
tizers. Notice that while the difference in rate for lower levels is relatively small, for a
larger number of levels, there can be a substantial difference between the fixed-rate and
entropy-coded cases. For example, for 32 levels a fixed-rate quantizer would require 5 bits
per sample. However, the entropy of a 32-level uniform quantizer for the Laplacian case
is 3.779 bits per sample, which is more than 1 bit less. Notice that the difference between
the fixed rate and the uniform quantizer entropy is generally greater than the difference
between the fixed rate and the entropy of the output of the nonuniform quantizer. This is
because the nonuniform quantizers have smaller step sizes in high-probability regions and
larger step sizes in low-probability regions. This brings the probability of an input falling
into a low-probability region and the probability of an input falling in a high-probability
region closer together. This, in turn, raises the output entropy of the nonuniform quantizer
with respect to the uniform quantizer. Finally, the closer the distribution is to being uniform,
the less difference in the rates. Thus, the difference in rates is much less for the quantizer
for the Gaussian source than the quantizer for the Laplacian source.

9 . 7 . 2 Entropy-Cons t ra ined Quant izat ion �

Although entropy coding the Lloyd-Max quantizer output is certainly simple, it is easy to
see that we could probably do better if we take a fresh look at the problem of quantizer

TAB L E 9 . 7 Output entropies in bits per sample
for minimum mean squared error
quantizers.

Number of Gaussian Laplacian
Levels Uniform Nonuniform Uniform Nonuniform

4 1.904 1.911 1.751 1.728
6 2.409 2.442 2.127 2.207
8 2.759 2.824 2.394 2.479

16 3.602 3.765 3.063 3.473
32 4.449 4.730 3.779 4.427

266 9 S C A L A R Q U A N T I Z A T I O N

design, this time with the entropy as a measure of rate rather than the alphabet size. The
entropy of the quantizer output is given by

H�Q� = −
M∑

i=1

Pi log2 Pi (9.57)

where Pi is the probability of the input to the quantizer falling in the ith quantization interval
and is given by

Pi =
∫ bi

bi−1

fX�x�dx� (9.58)

Notice that the selection of the representation values �yj� has no effect on the rate.
This means that we can select the representation values solely to minimize the distortion.
However, the selection of the boundary values affects both the rate and the distortion.
Initially, we found the reconstruction levels and decision boundaries that minimized the
distortion, while keeping the rate fixed by fixing the quantizer alphabet size and assuming
fixed-rate coding. In an analogous fashion, we can now keep the entropy fixed and try to
minimize the distortion. Or, more formally:

For a given Ro, find the decision boundaries �bj� that minimize 	2
q given by

Equation (9.3), subject to H�Q� ≤ Ro.

The solution to this problem involves the solution of the following M − 1 nonlinear
equations [120]:

ln
Pl+1

Pl

= ��yk+1 −yk��yk+1 +yk −2bk� (9.59)

where � is adjusted to obtain the desired rate, and the reconstruction levels are obtained
using Equation (9.27). A generalization of the method used to obtain the minimum mean
squared error quantizers can be used to obtain solutions for this equation [121]. The process
of finding optimum entropy-constrained quantizers looks complex. Fortunately, at higher
rates we can show that the optimal quantizer is a uniform quantizer, simplifying the problem.
Furthermore, while these results are derived for the high-rate case, it has been shown that
the results also hold for lower rates [121].

9 . 7 . 3 High-Rate Opt imum Quant izat ion �

At high rates, the design of optimum quantizers becomes simple, at least in theory. Gish
and Pierce’s work [122] says that at high rates the optimum entropy-coded quantizer is a
uniform quantizer. Recall that any nonuniform quantizer can be represented by a compander
and a uniform quantizer. Let us try to find the optimum compressor function at high rates
that minimizes the entropy for a given distortion. Using the calculus of variations approach,
we will construct the functional

J = H�Q�+�	2
q � (9.60)

then find the compressor characteristic to minimize it.

9.7 Entropy-Coded Quantization 267

For the distortion 	2
q , we will use the Bennett integral shown in Equation (9.45). The

quantizer entropy is given by Equation (9.57). For high rates, we can assume (as we
did before) that the pdf fX�x� is constant over each quantization interval
i, and we can
replace Equation (9.58) by

Pi = fX�yi�
i� (9.61)

Substituting this into Equation (9.57), we get

H�Q� = −∑fX�yi�
i log�fX�yi�
i� (9.62)

= −∑fX�yi� log�fX�yi��
i −
∑

fX�yi� log�
i�
i (9.63)

= −∑fX�yi� log�fX�yi��
i −
∑

fX�yi� log
2xmax/M

c′�yi�

i (9.64)

where we have used Equation (9.43) for
i. For small
i we can write this as

H�Q� = −
∫

fX�x� log fX�x�dx−
∫

fX�x� log
2xmax/M

c′�x�
dx (9.65)

= −
∫

fX�x� log fX�x�dx− log
2xmax

M
+
∫

fX�x� log c′�x�dx (9.66)

where the first term is the differential entropy of the source h�X�. Let’s define g = c′�x�.
Then substituting the value of H�Q� into Equation (9.60) and differentiating with respect to
g, we get

∫
fX�x��g−1 −2�

x2
max

3M2
g−3�dx = 0� (9.67)

This equation is satisfied if the integrand is zero, which gives us

g =
√

2�

3
xmax

M
= K�constant�� (9.68)

Therefore,

c′�x� = K (9.69)

and

c�x� = Kx+�� (9.70)

If we now use the boundary conditions c�0� = 0 and c�xmax� = xmax, we get c�x� = x,
which is the compressor characteristic for a uniform quantizer. Thus, at high rates the
optimum quantizer is a uniform quantizer.

Substituting this expression for the optimum compressor function in the Bennett integral,
we get an expression for the distortion for the optimum quantizer:

	2
q = x2

max

3M2
� (9.71)

268 9 S C A L A R Q U A N T I Z A T I O N

Substituting the expression for c�x� in Equation (9.66), we get the expression for the entropy
of the optimum quantizer:

H�Q� = h�X�− log
2xmax

M
� (9.72)

Note that while this result provides us with an easy method for designing optimum
quantizers, our derivation is only valid if the source pdf is entirely contained in the interval
�−xmax� xmax�, and if the step size is small enough that we can reasonably assume the pdf
to be constant over a quantization interval. Generally, these conditions can only be satisfied
if we have an extremely large number of quantization intervals. While theoretically this is
not much of a problem, most of these reconstruction levels will be rarely used. In practice,
as mentioned in Chapter 3, entropy coding a source with a large output alphabet is very
problematic. One way we can get around this is through the use of a technique called
recursive indexing.

Recursive indexing is a mapping of a countable set to a collection of sequences of
symbols from another set with finite size [76]. Given a countable set A = �a0� a1� � � � � and
a finite set B = �b0� b1� � � � � bM� of size M + 1, we can represent any element in A by a
sequence of elements in B in the following manner:

1. Take the index i of element ai of A.

2. Find the quotient m and remainder r of the index i such that

i = mM + r�

3. Generate the sequence: bMbM · · ·bM︸ ︷︷ ︸
m times

br .

B is called the representation set. We can see that given any element in A we will have a
unique sequence from B representing it. Furthermore, no representative sequence is a prefix
of any other sequence. Therefore, recursive indexing can be viewed as a trivial, uniquely
decodable prefix code. The inverse mapping is given by

bMbM · · ·bM︸ ︷︷ ︸
m times

br 	→ amM+r �

Since it is one-to-one, if it is used at the output of the quantizer to convert the index sequence
of the quantizer output into the sequence of the recursive indices, the former can be recovered
without error from the latter. Furthermore, when the size M + 1 of the representation set
B is chosen appropriately, in effect we can achieve the reduction in the size of the output
alphabets that are used for entropy coding.

Example 9 . 7 . 1:

Suppose we want to represent the set of nonnegative integers A = �0� 1� 2� � � � � with the rep-
resentation set B = �0� 1� 2� 3� 4� 5�. Then the value 12 would be represented by the sequence
5, 5, 2, and the value 16 would be represented by the sequence 5, 5, 5, 1. Whenever the

9.8 Summary 269

decoder sees the value 5, it simply adds on the next value until the next value is smaller than 5.
For example, the sequence 3, 5, 1, 2, 5, 5, 1, 5, 0 would be decoded as 3, 6, 2, 11, 5. �

Recursive indexing is applicable to any representation of a large set by a small set. One
way of applying recursive indexing to the problem of quantization is as follows: For a given
step size
 > 0 and a positive integer K, define xl and xh as follows:

xl = −
⌊

K −1
2

⌋

xh = xl + �K −1�

where �x� is the largest integer not exceeding x. We define a recursively indexed quantizer
of size K to be a uniform quantizer with step size
 and with xl and xh being its smallest and
largest output levels. (Q defined this way also has 0 as its output level.) The quantization
rule Q, for a given input value x, is as follows:

1. If x falls in the interval �xl +

2 � xh −

2 �, then Q�x� is the nearest output level.

2. If x is greater than xh −

2 , see if x1

= x − xh ∈ �xl +

2 � xh −

2 �. If so, Q�x� =
�xh�Q�x1��� If not, form x2 = x−2xh and do the same as for x1� This process continues
until for some m, xm = x−mxh falls in �xl +

2 � xh −

2 �, which will be quantized into

Q�x� = �xh� xh� � � � � xh︸ ︷︷ ︸
m times

�Q�xm��� (9.73)

3. If x is smaller than xl +

2 , a similar procedure to the above is used; that is, form xm =

x+mxl so that it falls in �xl +

2 � xh −

2 �, and quantize it to �xl� xl� � � � � xl�Q�xm��.

In summary, the quantizer operates in two modes: one when the input falls in the range
�xl� xh�, the other when it falls outside of the specified range. The recursive nature in the
second mode gives it the name.

We pay for the advantage of encoding a larger set by a smaller set in several ways. If we
get a large input to our quantizer, the representation sequence may end up being intolerably
large. We also get an increase in the rate. If H�Q� is the entropy of the quantizer output,
and � is the average number of representation symbols per input symbol, then the minimum
rate for the recursively indexed quantizer is �H�Q�.

In practice, neither cost is too large. We can avoid the problem of intolerably large
sequences by adopting some simple strategies for representing these sequences, and the
value of � is quite close to one for reasonable values of M . For Laplacian and Gaussian
quantizers, a typical value for M would be 15 [76].

9.8 Summary

The area of quantization is a well-researched area and much is known about the subject. In
this chapter, we looked at the design and performance of uniform and nonuniform quantizers
for a variety of sources, and how the performance is affected when the assumptions used

270 9 S C A L A R Q U A N T I Z A T I O N

in the design process are not correct. When the source statistics are not well known or
change with time, we can use an adaptive strategy. One of the more popular approaches to
adaptive quantization is the Jayant quantizer. We also looked at the issues involved with
entropy-coded quantization.

Fu r t he r Read ing

With an area as broad as quantization, we had to keep some of the coverage rather cursory.
However, there is a wealth of information on quantization available in the published literature.
The following sources are especially useful for a general understanding of the area:

1. A very thorough coverage of quantization can be found in Digital Coding of Wave-
forms, by N.S. Jayant and P. Noll [123].

2. The paper “Quantization,” by A. Gersho, in IEEE Communication Magazine, Septem-
ber 1977 [113], provides an excellent tutorial coverage of many of the topics listed
here.

3. The original paper by J. Max, “Quantization for Minimum Distortion,” IRE Transac-
tions on Information Theory [108], contains a very accessible description of the design
of pdf-optimized quantizers.

4. A thorough study of the effects of mismatch is provided by W. Mauersberger in [124].

9.9 Projects and Problems

1. Show that the derivative of the distortion expression in Equation (9.18) results in the
expression in Equation (9.19). You will have to use a result called Leibnitz’s rule
and the idea of a telescoping series. Leibnitz’s rule states that if a�t� and b�t� are
monotonic, then

t

∫ b�t�

a�t�
f�x� t�dx =

∫ b�t�

a�t�

f�x� t�

t
dx+f�b�t�� t�

b�t�

t
−f�a�t�� t�

a�t�

t
� (9.74)

2. Use the program falspos to solve Equation (9.19) numerically for the Gaussian and
Laplacian distributions. You may have to modify the function func in order to do this.

3. Design a 3-bit uniform quantizer (specify the decision boundaries and representa-
tion levels) for a source with a Laplacian pdf, with a mean of 3 and a variance of 4.

4. The pixel values in the Sena image are not really distributed uniformly. Obtain a
histogram of the image (you can use the hist_image routine), and using the fact
that the quantized image should be as good an approximation as possible for the
original, design 1-, 2-, and 3-bit quantizers for this image. Compare these with the
results displayed in Figure 9.7. (For better comparison, you can reproduce the results
in the book using the program uquan_img.)

9.9 Projects and Problems 271

5. Use the program misuquan to study the effect of mismatch between the input and
assumed variances. How do these effects change with the quantizer alphabet size and
the distribution type?

6. For the companding quantizer of Example 9.6.1, what are the outputs for the
following inputs: −0�8� 1�2� 0�5� 0�6� 3�2�−0�3? Compare your results with the case
when the input is directly quantized with a uniform quantizer with the same number
of levels. Comment on your results.

7. Use the test images Sena and Bookshelf1 to study the trade-offs involved in the
selection of block sizes in the forward adaptive quantization scheme described in
Example 9.5.2. Compare this with a more traditional forward adaptive scheme in
which the variance is estimated and transmitted. The variance information should be
transmitted using a uniform quantizer with differing number of bits.

8. Generalize the Jayant quantizer to the nonuniform case. Assume that the input is from a
known distribution with unknown variance. Simulate the performance of this quantizer
over the same range of ratio of variances as we have done for the uniform case. Com-
pare your results to the fixed nonuniform quantizer and the adaptive uniform quantizer.
To get a start on your program, you may wish to use misnuq.c and juquan.c.

9. Let’s look at the rate distortion performance of the various quanitzers.

(a) Plot the rate-distortion function R�D� for a Gaussian source with mean zero and
variance 	2

X = 2.

(b) Assuming fixed length codewords, compute the rate and distortion for 1, 2, and
3 bit pdf-optimized nonuniform quantizers. Also, assume that X is a Gaussian
random variable with mean zero and 	2

X = 2. Plot these values on the same
graph with x’s.

(c) For the 2 and 3 bit quantizers, compute the rate and distortion assuming that the
quantizer outputs are entropy coded. Plot these on the graph with o’s.

10
Vector Quantization

10.1 Overview

B
y grouping source outputs together and encoding them as a single block, we can
obtain efficient lossy as well as lossless compression algorithms. Many of the
lossless compression algorithms that we looked at took advantage of this fact.
We can do the same with quantization. In this chapter, several quantization
techniques that operate on blocks of data are described. We can view these

blocks as vectors, hence the name “vector quantization.” We will describe several different
approaches to vector quantization. We will explore how to design vector quantizers and how
these quantizers can be used for compression.

10.2 Introduct ion

In the last chapter, we looked at different ways of quantizing the output of a source. In all
cases the quantizer inputs were scalar values, and each quantizer codeword represented a
single sample of the source output. In Chapter 2 we saw that, by taking longer and longer
sequences of input samples, it is possible to extract the structure in the source coder output.
In Chapter 4 we saw that, even when the input is random, encoding sequences of samples
instead of encoding individual samples separately provides a more efficient code. Encoding
sequences of samples is more advantageous in the lossy compression framework as well.
By “advantageous” we mean a lower distortion for a given rate, or a lower rate for a given
distortion. As in the previous chapter, by “rate” we mean the average number of bits per
input sample, and the measures of distortion will generally be the mean squared error and
the signal-to-noise ratio.

The idea that encoding sequences of outputs can provide an advantage over the encoding
of individual samples was first put forward by Shannon, and the basic results in information

274 10 V E C T O R Q U A N T I Z A T I O N

theory were all proved by taking longer and longer sequences of inputs. This indicates that
a quantization strategy that works with sequences or blocks of output would provide some
improvement in performance over scalar quantization. In other words, we wish to generate
a representative set of sequences. Given a source output sequence, we would represent it
with one of the elements of the representative set.

In vector quantization we group the source output into blocks or vectors. For example,
we can treat L consecutive samples of speech as the components of an L-dimensional
vector. Or, we can take a block of L pixels from an image and treat each pixel value as
a component of a vector of size or dimension L. This vector of source outputs forms the
input to the vector quantizer. At both the encoder and decoder of the vector quantizer, we
have a set of L-dimensional vectors called the codebook of the vector quantizer. The vectors
in this codebook, known as code-vectors, are selected to be representative of the vectors
we generate from the source output. Each code-vector is assigned a binary index. At the
encoder, the input vector is compared to each code-vector in order to find the code-vector
closest to the input vector. The elements of this code-vector are the quantized values of the
source output. In order to inform the decoder about which code-vector was found to be the
closest to the input vector, we transmit or store the binary index of the code-vector. Because
the decoder has exactly the same codebook, it can retrieve the code-vector given its binary
index. A pictorial representation of this process is shown in Figure 10.1.

Although the encoder may have to perform a considerable amount of computations in
order to find the closest reproduction vector to the vector of source outputs, the decoding
consists of a table lookup. This makes vector quantization a very attractive encoding scheme
for applications in which the resources available for decoding are considerably less than
the resources available for encoding. For example, in multimedia applications, considerable

Source
output

Group
into

vectors

Find
closest

code-vector

Codebook Index

Unblock

ReconstructionDecoderEncoder

Table
lookup

CodebookIndex

. . .

F IGURE 10. 1 The vector quantization procedure.

10.2 Introduction 275

computational resources may be available for the encoding operation. However, if the
decoding is to be done in software, the amount of computational resources available to the
decoder may be quite limited.

Even though vector quantization is a relatively new area, it has developed very rapidly,
and now even some of the subspecialties are broad areas of research. If this chapter we will
try to introduce you to as much of this fascinating area as we can. If your appetite is whetted
by what is available here and you wish to explore further, there is an excellent book by
Gersho and Gray [5] devoted to the subject of vector quantization.

Our approach in this chapter is as follows: First, we try to answer the question of why we
would want to use vector quantization over scalar quantization. There are several answers
to this question, each illustrated through examples. In our discussion, we assume that you
are familiar with the material in Chapter 9. We will then turn to one of the most important
elements in the design of a vector quantizer, the generation of the codebook. While there are
a number of ways of obtaining the vector quantizer codebook, most of them are based on one
particular approach, popularly known as the Linde-Buzo-Gray (LBG) algorithm. We devote
a considerable amount of time in describing some of the details of this algorithm. Our intent
here is to provide you with enough information so that you can write your own programs for
design of vector quantizer codebooks. In the software accompanying this book, we have also
included programs for designing codebooks that are based on the descriptions in this chapter.
If you are not currently thinking of implementing vector quantization routines, you may wish
to skip these sections (Sections 10.4.1 and 10.4.2). We follow our discussion of the LBG
algorithm with some examples of image compression using codebooks designed with this
algorithm, and then with a brief sampling of the many different kinds of vector quantizers.
Finally, we describe another quantization strategy, called trellis-coded quantization (TCQ),
which, though different in implementation from the vector quantizers, also makes use of the
advantage to be gained from operating on sequences.

Before we begin our discussion of vector quantization, let us define some of the ter-
minology we will be using. The amount of compression will be described in terms of the
rate, which will be measured in bits per sample. Suppose we have a codebook of size K,
and the input vector is of dimension L. In order to inform the decoder of which code-vector
was selected, we need to use �log2 K� bits. For example, if the codebook contained 256
code-vectors, we would need 8 bits to specify which of the 256 code-vectors had been
selected at the encoder. Thus, the number of bits per vector is �log2 K� bits. As each code-
vector contains the reconstruction values for L source output samples, the number of bits
per sample would be �log2 K�

L
. Thus, the rate for an L-dimensional vector quantizer with a

codebook of size K is �log2 K�
L

. As our measure of distortion we will use the mean squared
error. When we say that in a codebook � , containing the K code-vectors �Yi�, the input
vector X is closest to Yj , we will mean that

∥
∥X −Yj

∥
∥2 ≤ �X −Yi�2 for allYi ∈ � (10.1)

where X = �x1x2 · · ·xL� and

�X�2 =
L∑

i=1

x2
i � (10.2)

276 10 V E C T O R Q U A N T I Z A T I O N

The term sample will always refer to a scalar value. Thus, when we are discussing
compression of images, a sample refers to a single pixel. Finally, the output points of the
quantizer are often referred to as levels. Thus, when we wish to refer to a quantizer with K
output points or code-vectors, we may refer to it as a K-level quantizer.

10.3 Advantages of Vector Quantizat ion over
Scalar Quantizat ion

For a given rate (in bits per sample), use of vector quantization results in a lower distortion
than when scalar quantization is used at the same rate, for several reasons. In this section we
will explore these reasons with examples (for a more theoretical explanation, see [3, 4, 17]).

If the source output is correlated, vectors of source output values will tend to fall in
clusters. By selecting the quantizer output points to lie in these clusters, we have a more
accurate representation of the source output. Consider the following example.

Example 10 . 3 . 1:

In Example 8.5.1, we introduced a source that generates the height and weight of individuals.
Suppose the height of these individuals varied uniformly between 40 and 80 inches, and the
weight varied uniformly between 40 and 240 pounds. Suppose we were allowed a total of 6
bits to represent each pair of values. We could use 3 bits to quantize the height and 3 bits to
quantize the weight. Thus, the weight range between 40 and 240 pounds would be divided
into eight intervals of equal width of 25 and with reconstruction values �52� 77� � � � � 227�.
Similarly, the height range between 40 and 80 inches can be divided into eight intervals of
width five, with reconstruction levels �42� 47� � � � � 77�. When we look at the representation
of height and weight separately, this approach seems reasonable. But let’s look at this
quantization scheme in two dimensions. We will plot the height values along the x-axis
and the weight values along the y-axis. Note that we are not changing anything in the
quantization process. The height values are still being quantized to the same eight different
values, as are the weight values. The two-dimensional representation of these two quantizers
is shown in Figure 10.2.

From the figure we can see that we effectively have a quantizer output for a person who
is 80 inches (6 feet 8 inches) tall and weighs 40 pounds, as well as a quantizer output for
an individual whose height is 42 inches but weighs more than 200 pounds. Obviously, these
outputs will never be used, as is the case for many of the other outputs. A more sensible
approach would be to use a quantizer like the one shown in Figure 10.3, where we take
account of the fact that the height and weight are correlated. This quantizer has exactly the
same number of output points as the quantizer in Figure 10.2; however, the output points are
clustered in the area occupied by the input. Using this quantizer, we can no longer quantize
the height and weight separately. We have to consider them as the coordinates of a point
in two dimensions in order to find the closest quantizer output point. However, this method
provides a much finer quantization of the input.

10.3 Advantages of Vector Quantization over Scalar Quantization 277

40

65

90

115

140Weight (lb)

165

190

215

40 50 60
Height-weight quantizerWeight quantizer

70 Height (in)

40 50 60
Height quantizer

70

65

90

115

140

165

190

215

Quantizer
output

F IGURE 10. 2 The height/weight scalar quantizers when viewed in
two dimensions.

Note that we have not said how we would obtain the locations of the quantizer outputs
shown in Figure 10.3. These output points make up the codebook of the vector quantizer,
and we will be looking at codebook design in some detail later in this chapter. �

We can see from this example that, as in lossless compression, looking at longer
sequences of inputs brings out the structure in the source output. This structure can then be
used to provide more efficient representations.

We can easily see how structure in the form of correlation between source outputs
can make it more efficient to look at sequences of source outputs rather than looking at
each sample separately. However, the vector quantizer is also more efficient than the scalar
quantizer when the source output values are not correlated. The reason for this is actually

278 10 V E C T O R Q U A N T I Z A T I O N

165

40

190

215

Weight (lb)

140

115

90

65

40 50 60 70 Height (in)

F IGURE 10. 3 The height-weight vector quantizer.

quite simple. As we look at longer and longer sequences of source outputs, we are afforded
more flexibility in terms of our design. This flexibility in turn allows us to match the design
of the quantizer to the source characteristics. Consider the following example.

Example 10 . 3 . 2:

Suppose we have to design a uniform quantizer with eight output values for a Laplacian
input. Using the information from Table 9.3 in Chapter 9, we would obtain the quantizer
shown in Figure 10.4, where 	 is equal to 0.7309. As the input has a Laplacian distribution,
the probability of the source output falling in the different quantization intervals is not the
same. For example, the probability that the input will fall in the interval
0�	� is 0.3242,
while the probability that a source output will fall in the interval
3	��� is 0.0225. Let’s
look at how this quantizer will quantize two consecutive source outputs. As we did in the
previous example, let’s plot the first sample along the x-axis and the second sample along
the y-axis. We can represent this two-dimensional view of the quantization process as shown
in Figure 10.5. Note that, as in the previous example, we have not changed the quantization
process; we are simply representing it differently. The first quantizer input, which we have
represented in the figure as x1, is quantized to the same eight possible output values as
before. The same is true for the second quantizer input, which we have represented in the

10.3 Advantages of Vector Quantization over Scalar Quantization 279

−3Δ −2Δ −Δ

−7Δ/2

−5Δ/2

−3Δ/2

−Δ/2

7Δ/2

5Δ/2

3Δ/2

Δ/2

Output

Input

Δ 2Δ 3Δ

−3Δ −2Δ −Δ

Quantizer
output

Δ0 2Δ 3Δ

F IGURE 10. 4 Two representations of an eight-level scalar quantizer.

figure as x2. This two-dimensional representation allows us to examine the quantization
process in a slightly different manner. Each filled-in circle in the figure represents a sequence
of two quantizer outputs. For example, the top rightmost circle represents the two quantizer
outputs that would be obtained if we had two consecutive source outputs with a value
greater than 3	. We computed the probability of a single source output greater than 3	 to
be 0.0225. The probability of two consecutive source outputs greater than 2.193 is simply
0�0225×0�0225 = 0�0005, which is quite small. Given that we do not use this output point
very often, we could simply place it somewhere else where it would be of more use. Let
us move this output point to the origin, as shown in Figure 10.6. We have now modified
the quantization process. Now if we get two consecutive source outputs with values greater
than 3	, the quantizer output corresponding to the second source output may not be the
same as the first source output.

280 10 V E C T O R Q U A N T I Z A T I O N

−3Δ −2Δ −Δ

−3Δ

−2Δ

−Δ

3Δ

2Δ

Δ

x2

x1

Δ 2Δ 3Δ

Quantizer
output

F IGURE 10. 5 Input-output map for consecutive quantization of two inputs using
an eight-level scalar quantizer.

If we compare the rate distortion performance of the two vector quantizers, the SNR
for the first vector quantizer is 11.44 dB, which agrees with the result in Chapter 9 for
the uniform quantizer with a Laplacian input. The SNR for the modified vector quantizer,
however, is 11.73 dB, an increase of about 0.3 dB. Recall that the SNR is a measure of the
average squared value of the source output samples and the mean squared error. As the
average squared value of the source output is the same in both cases, an increase in SNR
means a decrease in the mean squared error. Whether this increase in SNR is significant will
depend on the particular application. What is important here is that by treating the source
output in groups of two we could effect a positive change with only a minor modification.
We could argue that this modification is really not that minor since the uniform characteristic
of the original quantizer has been destroyed. However, if we begin with a nonuniform
quantizer and modify it in a similar way, we get similar results.

Could we do something similar with the scalar quantizer? If we move the output point at
7	
2 to the origin, the SNR drops from 11.44 dB to 10.8 dB. What is it that permits us to make

10.3 Advantages of Vector Quantization over Scalar Quantization 281

F IGURE 10. 6 Modified two-dimensional vector quantizer.

modifications in the vector case, but not in the scalar case? This advantage is caused by the
added flexibility we get by viewing the quantization process in higher dimensions. Consider
the effect of moving the output point from 7	

2 to the origin in terms of two consecutive
inputs. This one change in one dimension corresponds to moving 15 output points in two
dimensions. Thus, modifications at the scalar quantizer level are gross modifications when
viewed from the point of view of the vector quantizer. Remember that in this example we
have only looked at two-dimensional vector quantizers. As we block the input into larger
and larger blocks or vectors, these higher dimensions provide even greater flexibility and
the promise of further gains to be made. �

In Figure 10.6, notice how the quantization regions have changed for the outputs around
the origin, as well as for the two neighbors of the output point that were moved. The
decision boundaries between the reconstruction levels can no longer be described as easily
as in the case for the scalar quantizer. However, if we know the distortion measure, simply
knowing the output points gives us sufficent information to implement the quantization

282 10 V E C T O R Q U A N T I Z A T I O N

process. Instead of defining the quantization rule in terms of the decision boundary, we can
define the quantization rule as follows:

Q�X� = Yj iff d�X�Yj� < d�X�Yi� ∀i 	= j� (10.3)

For the case where the input X is equidistant from two output points, we can use a simple
tie-breaking rule such as “use the output point with the smaller index.” The quantization
regions Vj can then be defined as

Vj = �X � d�X�Yj� < d�X�Yi� ∀i 	= j�� (10.4)

Thus, the quantizer is completely defined by the output points and a distortion measure.
From a multidimensional point of view, using a scalar quantizer for each input restricts

the output points to a rectangular grid. Observing several source output values at once allows
us to move the output points around. Another way of looking at this is that in one dimension
the quantization intervals are restricted to be intervals, and the only parameter that we can
manipulate is the size of these intervals. When we divide the input into vectors of some
length n, the quantization regions are no longer restricted to be rectangles or squares. We
have the freedom to divide the range of the inputs in an infinite number of ways.

These examples have shown two ways in which the vector quantizer can be used to
improve performance. In the first case, we exploited the sample-to-sample dependence of
the input. In the second case, there was no sample-to-sample dependence; the samples were
independent. However, looking at two samples together still improved performance.

These two examples can be used to motivate two somewhat different approaches toward
vector quantization. One approach is a pattern-matching approach, similar to the process
used in Example 10.3.1, while the other approach deals with the quantization of random
inputs. We will look at both of these approaches in this chapter.

10.4 The Linde-Buzo-Gray Algori thm

In Example 10.3.1 we saw that one way of exploiting the structure in the source output is
to place the quantizer output points where the source output (blocked into vectors) are most
likely to congregate. The set of quantizer output points is called the codebook of the quantizer,
and the process of placing these output points is often referred to as codebook design. When
we group the source output in two-dimensional vectors, as in the case of Example 10.3.1,
we might be able to obtain a good codebook design by plotting a representative set of source
output points and then visually locate where the quantizer output points should be. However,
this approach to codebook design breaks down when we design higher-dimensional vector
quantizers. Consider designing the codebook for a 16-dimensional quantizer. Obviously, a
visual placement approach will not work in this case. We need an automatic procedure for
locating where the source outputs are clustered.

This is a familiar problem in the field of pattern recognition. It is no surprise, there-
fore, that the most popular approach to designing vector quantizers is a clustering pro-
cedure known as the k-means algorithm, which was developed for pattern recognition
applications.

10.4 The Linde-Buzo-Gray Algorithm 283

The k-means algorithm functions as follows: Given a large set of output vectors from
the source, known as the training set, and an initial set of k representative patterns, assign
each element of the training set to the closest representative pattern. After an element is
assigned, the representative pattern is updated by computing the centroid of the training set
vectors assigned to it. When the assignment process is complete, we will have k groups of
vectors clustered around each of the output points.

Stuart Lloyd [115] used this approach to generate the pdf-optimized scalar quantizer,
except that instead of using a training set, he assumed that the distribution was known. The
Lloyd algorithm functions as follows:

1. Start with an initial set of reconstruction values
{
y

�0�
i

}M

i=1
. Set k = 0�D�0� = 0. Select

threshold �.

2. Find decision boundaries

b
�k�
j = y

�k�
j+1 +y

�k�
j

2
j = 1� 2� � � � �M −1�

3. Compute the distortion

D�k� =
M∑

i=1

∫ b
�k�
i

b
�k�
i−1

�x−yi�
2fX�x�dx�

4. If D�k� −D�k−1� < �, stop; otherwise, continue.

5. k = k+1. Compute new reconstruction values

y
�k�
j =

∫ b
�k−1�
j

b
�k−1�
j−1

xfX�x�dx

∫ b
�k−1�
j

b
�k−1�
j−1

fX�x�dx

�

Go to Step 2.

Linde, Buzo, and Gray generalized this algorithm to the case where the inputs are no
longer scalars [125]. For the case where the distribution is known, the algorithm looks very
much like the Lloyd algorithm described above.

1. Start with an initial set of reconstruction values
{
Y

�0�
i

}M

i=1
. Set k = 0�D�0� = 0. Select

threshold �.

2. Find quantization regions

V
�k�
i = �X � d�X�Yi� < d�X�Yj� ∀j 	= i� j = 1� 2� � � � �M�

3. Compute the distortion

D�k� =
M∑

i=1

∫

V
�k�
i

∥
∥X −Y

�k�
i

∥
∥2

fX�X�dX�

284 10 V E C T O R Q U A N T I Z A T I O N

4. If �D�k�−D�k−1��

D�k� < �, stop; otherwise, continue.

5. k = k+1. Find new reconstruction values
{
Y

�k�
i

}M

i=1
that are the centroids of

{
V

�k−1�
i

}
.

Go to Step 2.

This algorithm is not very practical because the integrals required to compute the distor-
tions and centroids are over odd-shaped regions in n dimensions, where n is the dimension
of the input vectors. Generally, these integrals are extremely difficult to compute, making
this particular algorithm more of an academic interest.

Of more practical interest is the algorithm for the case where we have a training set
available. In this case, the algorithm looks very much like the k-means algorithm.

1. Start with an initial set of reconstruction values
{
Y

�0�
i

}M

i=1
and a set of training vectors

�Xn�
N
n=1. Set k = 0�D�0� = 0. Select threshold �.

2. The quantization regions
{
V

�k�
i

}M

i=1
are given by

V
�k�
i = �Xn � d�Xn�Yi� < d�Xn�Yj� ∀j 	= i� i = 1� 2� � � � �M�

We assume that none of the quantization regions are empty. (Later we will deal with
the case where V

�k�
i is empty for some i and k.)

3. Compute the average distortion D�k� between the training vectors and the representative
reconstruction value.

4. If �D�k�−D�k−1��

D�k� < �, stop; otherwise, continue.

5. k = k+1. Find new reconstruction values
{
Y

�k�
i

}M

i=1
that are the average value of the

elements of each of the quantization regions V
�k−1�
i . Go to Step 2.

This algorithm forms the basis of most vector quantizer designs. It is popularly known as
the Linde-Buzo-Gray or LBG algorithm, or the generalized Lloyd algorithm (GLA) [125].
Although the paper of Linde, Buzo, and Gray [125] is a starting point for most of the work
on vector quantization, the latter algorithm had been used several years prior by Edward E.
Hilbert at the NASA Jet Propulsion Laboratories in Pasadena, California. Hilbert’s starting
point was the idea of clustering, and although he arrived at the same algorithm as described
above, he called it the cluster compression algorithm [126].

In order to see how this algorithm functions, consider the following example of a two-
dimensional vector quantizer codebook design.

Example 10 . 4 . 1:

Suppose our training set consists of the height and weight values shown in Table 10.1. The
initial set of output points is shown in Table 10.2. (For ease of presentation, we will always
round the coordinates of the output points to the nearest integer.) The inputs, outputs, and
quantization regions are shown in Figure 10.7.

10.4 The Linde-Buzo-Gray Algorithm 285

TAB L E 10 . 1 Training set for designing
vector quantizer codebook.

Height Weight

72 180
65 120
59 119
64 150
65 162
57 88
72 175
44 41
62 114
60 110
56 91
70 172

TAB L E 10 . 2 Initial set of output points
for codebook design.

Height Weight

45 50
75 117
45 117
80 180

The input (44, 41) has been assigned to the first output point; the inputs (56, 91), (57,
88), (59, 119), and (60, 110) have been assigned to the second output point; the inputs
(62, 114), and (65, 120) have been assigned to the third output; and the five remaining
vectors from the training set have been assigned to the fourth output. The distortion for
this assignment is 387.25. We now find the new output points. There is only one vector in
the first quantization region, so the first output point is (44, 41). The average of the four
vectors in the second quantization region (rounded up) is the vector (58, 102), which is the
new second output point. In a similar manner, we can compute the third and fourth output
points as (64, 117) and (69, 168). The new output points and the corresponding quantization
regions are shown in Figure 10.8. From Figure 10.8, we can see that, while the training
vectors that were initially part of the first and fourth quantization regions are still in the same
quantization regions, the training vectors (59,115) and (60,120), which were in quantization
region 2, are now in quantization region 3. The distortion corresponding to this assignment
of training vectors to quantization regions is 89, considerably less than the original 387.25.
Given the new assignments, we can obtain a new set of output points. The first and fourth
output points do not change because the training vectors in the corresponding regions have
not changed. However, the training vectors in regions 2 and 3 have changed. Recomputing
the output points for these regions, we get (57, 90) and (62, 116). The final form of the

286 10 V E C T O R Q U A N T I Z A T I O N

40

60

80

100

120

140

160

180Weight (lb)

Height (in)70605040

4

32

1

x

x

x
x
x

x
x

x

x

x
x

x

F IGURE 10. 7 Initial state of the vector quantizer.

40

60

80

100

120

140

160

180Weight (lb)

Height (in)70605040

4

3

2

1

x

x

x
x
x

x
x

x

x

x
x

x

F IGURE 10. 8 The vector quantizer after one iteration.

10.4 The Linde-Buzo-Gray Algorithm 287

40

60

80

100

120

140

160

180Weight (lb)

Height (in)70605040

4

3

2

1

x

x

x
x
x

x
x

x

x

x
x

x

F IGURE 10. 9 Final state of the vector quantizer.

quantizer is shown in Figure 10.9. The distortion corresponding to the final assignments
is 60.17. �

The LBG algorithm is conceptually simple, and as we shall see later, the resulting vector
quantizer is remarkably effective in the compression of a wide variety of inputs, both by
itself and in conjunction with other schemes. In the next two sections we will look at some
of the details of the codebook design process. While these details are important to consider
when designing codebooks, they are not necessary for the understanding of the quantization
process. If you are not currently interested in these details, you may wish to proceed directly
to Section 10.4.3.

10 . 4 . 1 In i t ia l i z ing the LBG Algor i thm

The LBG algorithm guarantees that the distortion from one iteration to the next will not
increase. However, there is no guarantee that the procedure will converge to the optimal
solution. The solution to which the algorithm converges is heavily dependent on the initial
conditions. For example, if our initial set of output points in Example 10.4 had been those

288 10 V E C T O R Q U A N T I Z A T I O N

TAB L E 10 . 3 An alternate initial
set of output points.

Height Weight

75 50
75 117
75 127
80 180

TAB L E 10 . 4 Final codebook obtained
using the alternative
initial codebook.

Height Weight

44 41
60 107
64 150
70 172

shown in Table 10.3 instead of the set in Table 10.2, by using the LBG algorithm we would
get the final codebook shown in Table 10.4.

The resulting quantization regions and their membership are shown in Figure 10.10.
This is a very different quantizer than the one we had previously obtained. Given this
heavy dependence on initial conditions, the selection of the initial codebook is a matter of
some importance. We will look at some of the better-known methods of initialization in the
following section.

Linde, Buzo, and Gray described a technique in their original paper [125] called the
splitting technique for initializing the design algorithm. In this technique, we begin by
designing a vector quantizer with a single output point; in other words, a codebook of size
one, or a one-level vector quantizer. With a one-element codebook, the quantization region
is the entire input space, and the output point is the average value of the entire training
set. From this output point, the initial codebook for a two-level vector quantizer can be
obtained by including the output point for the one-level quantizer and a second output point
obtained by adding a fixed perturbation vector �. We then use the LBG algorithm to obtain
the two-level vector quantizer. Once the algorithm has converged, the two codebook vectors
are used to obtain the initial codebook of a four-level vector quantizer. This initial four-level
codebook consists of the two codebook vectors from the final codebook of the two-level
vector quantizer and another two vectors obtained by adding � to the two codebook vectors.
The LBG algorithm can then be used until this four-level quantizer converges. In this manner
we keep doubling the number of levels until we reach the desired number of levels. By
including the final codebook of the previous stage at each “splitting,” we guarantee that the
codebook after splitting will be at least as good as the codebook prior to splitting.

10.4 The Linde-Buzo-Gray Algorithm 289

40

60

80

100

120

140

160

180Weight (lb)

Height (in)70605040

4

3

2

1

x

x

x
x
x

x
x

x

x

x
x

x

F IGURE 10. 10 Final state of the vector quantizer.

Example 10 . 4 . 2:

Let’s revisit Example 10.4.1. This time, instead of using the initial codewords used in
Example 10.4.1, we will use the splitting technique. For the perturbations, we will use a
fixed vector � = �10� 10�. The perturbation vector is usually selected randomly; however,
for purposes of explanation it is more useful to use a fixed perturbation vector.

We begin with a single-level codebook. The codeword is simply the average value of
the training set. The progression of codebooks is shown in Table 10.5.

The perturbed vectors are used to initialize the LBG design of a two-level vector quan-
tizer. The resulting two-level vector quantizer is shown in Figure 10.11. The resulting
distortion is 468.58. These two vectors are perturbed to get the initial output points for
the four-level design. Using the LBG algorithm, the final quantizer obtained is shown in
Figure 10.12. The distortion is 156.17. The average distortion for the training set for this
quantizer using the splitting algorithm is higher than the average distortion obtained pre-
viously. However, because the sample size used in this example is rather small, this is no
indication of relative merit. �

290 10 V E C T O R Q U A N T I Z A T I O N

TAB L E 10 . 5 Progression of codebooks using
splitting.

Codebook Height Weight

One-level 62 127
Initial two-level 62 127

72 137
Final two-level 58 98

69 168
Initial four-level 58 98

68 108
69 168
79 178

Final four-level 52 73
62 116
65 156
71 176

40

60

80

100

120

140

160

180Weight (lb)

Height (in)70605040

2

1x

x

x
x
x

x
x

x

x

x
x

x

F IGURE 10. 11 Two-level vector quantizer using splitting approach.

10.4 The Linde-Buzo-Gray Algorithm 291

40

60

80

100

120

140

160

180Weight (lb)

Height (in)70605040

1

2

x

x

x
x
x

x
x

x

x

x
x

x

F IGURE 10. 12 Final design using the splitting approach.

If the desired number of levels is not a power of two, then in the last step, instead of
generating two initial points from each of the output points of the vector quantizer designed
previously, we can perturb as many vectors as necessary to obtain the desired number of
vectors. For example, if we needed an eleven-level vector quantizer, we would generate a
one-level vector quantizer first, then a two-level, then a four-level, and then an eight-level
vector quantizer. At this stage, we would perturb only three of the eight vectors to get the
eleven initial output points of the eleven-level vector quantizer. The three points should be
those with the largest number of training set vectors, or the largest distortion.

The approach used by Hilbert [126] to obtain the initial output points of the vector
quantizer was to pick the output points randomly from the training set. This approach
guarantees that, in the initial stages, there will always be at least one vector from the training
set in each quantization region. However, we can still get different codebooks if we use
different subsets of the training set as our initial codebook.

Example 10 . 4 . 3:

Using the training set of Example 10.4.1, we selected different vectors of the training set
as the initial codebook. The results are summarized in Table 10.6. If we pick the codebook
labeled “Initial Codebook 1,” we obtain the codebook labeled “Final Codebook 1.” This

292 10 V E C T O R Q U A N T I Z A T I O N

TAB L E 10 . 6 Effect of using different subsets of the
training sequence as the initial codebook.

Codebook Height Weight

Initial Codebook 1 72 180
72 175
65 120
59 119

Final Codebook 1 71 176
65 156
62 116
52 73

Initial Codebook 2 65 120
44 41
59 119
57 88

Final Codebook 2 69 168
44 41
62 116
57 90

codebook is identical to the one obtained using the split algorithm. The set labeled “Initial
Codebook 2” results in the codebook labeled “Final Codebook 2.” This codebook is identical
to the quantizer we obtained in Example 10.4.1. In fact, most of the other selections result
in one of these two quantizers. �

Notice that by picking different subsets of the input as our initial codebook, we can
generate different vector quantizers. A good approach to codebook design is to initialize the
codebook randomly several times, and pick the one that generates the least distortion in the
training set from the resulting quantizers.

In 1989, Equitz [127] introduced a method for generating the initial codebook called
the pairwise nearest neighbor (PNN) algorithm. In the PNN algorithm, we start with as
many clusters as there are training vectors and end with the initial codebook. At each stage,
we combine the two closest vectors into a single cluster and replace the two vectors by
their mean. The idea is to merge those clusters that would result in the smallest increase
in distortion. Equitz showed that when we combine two clusters Ci and Cj , the increase in
distortion is

ninj

ni +nj

∥
∥Yi −Yj

∥
∥2

� (10.5)

where ni is the number of elements in the cluster Ci, and Yi is the corresponding output
point. In the PNN algorithm, we combine clusters that cause the smallest increase in the
distortion.

10.4 The Linde-Buzo-Gray Algorithm 293

72,180
72,175
65,120
44,41
59,119
62,114
64,150
60,110
65,162
56,91
57,88
70,172

72,180
71,174 (2)
65,120
44,41
61,117 (2)

65,156 (2)
60,110

57,90 (2)

71,176 (3)

65,120
44,41
61,117 (2)

65,156 (2)
60,110

57,90 (2)

71,176 (3)

65,120
44,41
60,114 (3)

65,156 (2)

57,90 (2)

69,168 (5)

65,120
44,41
60,114 (3)

57,90 (2)

69,168 (5)

62,116 (4)
44,41

57,90 (2)

F IGURE 10. 13 Obtaining initial output points using the PNN approach.

Example 10 . 4 . 4:

Using the PNN algorithm, we combine the elements in the training set as shown in
Figure 10.13. At each step we combine the two clusters that are closest in the sense of
Equation (10.5). If we use these values to initialize the LBG algorithm, we get a vector
quantizer shown with output points (70, 172), (60, 107), (44, 41), (64, 150), and a distortion
of 104.08. �

Although it was a relatively easy task to generate the initial codebook using the PNN
algorithm in Example 10.4.4, we can see that, as the size of the training set increases, this
procedure becomes progressively more time-consuming. In order to avoid this cost, we can
use a fast PNN algorithm that does not attempt to find the absolute smallest cost at each
step (see [127] for details).

Finally, a simple initial codebook is the set of output points from the corresponding scalar
quantizers. In the beginning of this chapter we saw how scalar quantization of a sequence
of inputs can be viewed as vector quantization using a rectangular vector quantizer. We can
use this rectangular vector quantizer as the initial set of outputs.

Example 10 . 4 . 5:

Return once again to the quantization of the height-weight data set. If we assume that the
heights are uniformly distributed between 40 and 180, then a two-level scalar quantizer would
have reconstruction values 75 and 145. Similarly, if we assume that the weights are uniformly
distributed between 40 and 80, the reconstruction values would be 50 and 70. The initial
reconstruction values for the vector quantizer are (50, 75), (50, 145), (70, 75), and (70, 145).
The final design for this initial set is the same as the one obtained in Example 10.4.1 with
a distortion of 60.17. �

294 10 V E C T O R Q U A N T I Z A T I O N

We have looked at four different ways of initializing the LBG algorithm. Each has its own
advantages and drawbacks. The PNN initialization has been shown to result in better designs,
producing a lower distortion for a given rate than the splitting approach [127]. However,
the procedure for obtaining the initial codebook is much more involved and complex. We
cannot make any general claims regarding the superiority of any one of these initialization
techniques. Even the PNN approach cannot be proven to be optimal. In practice, if we are
dealing with a wide variety of inputs, the effect of using different initialization techniques
appears to be insignificant.

10 . 4 . 2 The Empty Ce l l Prob lem

Let’s take a closer look at the progression of the design in Example 10.4.5. When we assign
the inputs to the initial output points, no input point gets assigned to the output point at
(70, 75). This is a problem because in order to update an output point, we need to take the
average value of the input vectors. Obviously, some strategy is needed. The strategy that we
actually used in Example 10.4.5 was not to update the output point if there were no inputs
in the quantization region associated with it. This strategy seems to have worked in this
particular example; however, there is a danger that we will end up with an output point that
is never used. A common approach to avoid this is to remove an output point that has no
inputs associated with it, and replace it with a point from the quantization region with the
most output points. This can be done by selecting a point at random from the region with the
highest population of training vectors, or the highest associated distortion. A more systematic
approach is to design a two-level quantizer for the training vectors in the most heavily
populated quantization region. This approach is computationally expensive and provides no
significant improvement over the simpler approach. In the program accompanying this book,
we have used the first approach. (To compare the two approaches, see Problem 3.)

10 . 4 . 3 Use of LBG for Image Compress ion

One application for which the vector quantizer described in this section has been extremely
popular is image compression. For image compression, the vector is formed by taking blocks
of pixels of size N ×M and treating them as an L = NM dimensional vector. Generally, we
take N = M . Instead of forming vectors in this manner, we could form the vector by taking
L pixels in a row of the image. However, this does not allow us to take advantage of the two-
dimensional correlations in the image. Recall that correlation between the samples provides
the clustering of the input, and the LBG algorithm takes advantage of this clustering.

Example 10 . 4 . 6:

Let us quantize the Sinan image shown in Figure 10.14 using a 16-dimensional quantizer.
The input vectors are constructed using 4 × 4 blocks of pixels. The codebook was trained
on the Sinan image.

The results of the quantization using codebooks of size 16, 64, 256, and 1024 are shown
in Figure 10.15. The rates and compression ratios are summarized in Table 10.7. To see how
these quantities were calculated, recall that if we have K vectors in a codebook, we need

10.4 The Linde-Buzo-Gray Algorithm 295

F IGURE 10. 14 Original Sinan image.

�log2 K� bits to inform the receiver which of the K vectors is the quantizer output. This
quantity is listed in the second column of Table 10.7 for the different values of K. If the
vectors are of dimension L, this means that we have used �log2 K� bits to send the quantized
value of L pixels. Therefore, the rate in bits per pixel is �log2 K�

L
. (We have assumed that the

codebook is available to both transmitter and receiver, and therefore we do not have to use
any bits to transmit the codebook from the transmitter to the receiver.) This quantity is listed
in the third column of Table 10.7. Finally, the compression ratio, given in the last column of
Table 10.7, is the ratio of the number of bits per pixel in the original image to the number
of bits per pixel in the compressed image. The Sinan image was digitized using 8 bits per
pixel. Using this information and the rate after compression, we can obtain the compression
ratios.

Looking at the images, we see that reconstruction using a codebook of size 1024 is
very close to the original. At the other end, the image obtained using a codebook with 16
reconstruction vectors contains a lot of visible artifacts. The utility of each reconstruction
depends on the demands of the particular application. �

In this example, we used codebooks trained on the image itself. Generally, this is not
the preferred approach because the receiver has to have the same codebook in order to
reconstruct the image. Either the codebook must be transmitted along with the image, or
the receiver has the same training image so that it can generate an identical codebook.
This is impractical because, if the receiver already has the image in question, much better
compression can be obtained by simply sending the name of the image to the receiver.
Sending the codebook with the image is not unreasonable. However, the transmission of

296 10 V E C T O R Q U A N T I Z A T I O N

F IGURE 10. 15 Top left: codebook size 16; top right: codebook size 64; bottom
left: codebook size 256; bottom right: codebook size 1024.

TAB L E 10 . 7 Summary of compression measures for image compression example.

Codebook Size Bits Needed to
(# of codewords) Select a Codeword Bits per Pixel Compression Ratio

16 4 0.25 32:1
64 6 0.375 21.33:1

256 8 0.50 16:1
1024 10 0.625 12.8:1

10.4 The Linde-Buzo-Gray Algorithm 297

TAB L E 10 . 8 Overhead in bits per pixel for
codebooks of different sizes.

Codebook Size K Overhead in Bits per Pixel

16 0�03125
64 0�125

256 0�50
1024 2�0

the codebook is overhead that could be avoided if a more generic codebook, one that is
available to both transmitter and receiver, were to be used.

In order to compute the overhead, we need to calculate the number of bits required
to transmit the codebook to the receiver. If each codeword in the codebook is a vector
with L elements and if we use B bits to represent each element, then in order to transmit
the codebook of a K-level quantizer we need B ×L×K bits. In our example, B = 8 and
L = 16. Therefore, we need K ×128 bits to transmit the codebook. As our image consists of
256×256 pixels, the overhead in bits per pixel is 128K/65�536. The overhead for different
values of K is summarized in Table 10.8. We can see that while the overhead for a codebook
of size 16 seems reasonable, the overhead for a codebook of size 1024 is over three times
the rate required for quantization.

Given the excessive amount of overhead required for sending the codebook along with
the vector quantized image, there has been substantial interest in the design of codebooks
that are more generic in nature and, therefore, can be used to quantize a number of images.
To investigate the issues that might arise, we quantized the Sinan image using four different
codebooks generated by the Sena, Sensin, Earth, and Omaha images. The results are shown
in Figure 10.16.

As expected, the reconstructed images from this approach are not of the same quality as
when the codebook is generated from the image to be quantized. However, this is only true
as long as the overhead required for storage or transmission of the codebook is ignored. If we
include the extra rate required to encode and transmit the codebook of output points, using
the codebook generated by the image to be quantized seems unrealistic. Although using
the codebook generated by another image to perform the quantization may be realistic, the
quality of the reconstructions is quite poor. Later in this chapter we will take a closer look
at the subject of vector quantization of images and consider a variety of ways to improve
this performance.

You may have noticed that the bit rates for the vector quantizers used in the examples are
quite low. The reason is that the size of the codebook increases exponentially with the rate.
Suppose we want to encode a source using R bits per sample; that is, the average number of
bits per sample in the compressed source output is R. By “sample” we mean a scalar element
of the source output sequence. If we wanted to use an L-dimensional quantizer, we would
group L samples together into vectors. This means that we would have RL bits available
to represent each vector. With RL bits, we can represent 2RL different output vectors. In
other words, the size of the codebook for an L-dimensional R-bits-per-sample quantizer is
2RL. From Table 10.7, we can see that when we quantize an image using 0�25 bits per
pixel and 16-dimensional quantizers, we have 16×0�25 = 4 bits available to represent each

298 10 V E C T O R Q U A N T I Z A T I O N

F IGURE 10. 16 Sinan image quantized at the rate of 0.5 bits per pixel. The
images used to obtain the codebook were (clockwise from
top left) Sensin, Sena, Earth, Omaha.

vector. Hence, the size of the codebook is 24 = 16. The quantity RL is often called the rate
dimension product. Note that the size of the codebook grows exponentially with this product.

Consider the problems. The codebook size for a 16-dimensional, 2-bits-per-sample vector
quantizer would be 216×2! (If the source output was originally represented using 8 bits per
sample, a rate of 2 bits per sample for the compressed source corresponds to a compression
ratio of 4:1.) This large size causes problems both with storage and with the quantization
process. To store 232 sixteen-dimensional vectors, assuming that we can store each component
of the vector in a single byte, requires 232 × 16 bytes—approximately 64 gigabytes of
storage. Furthermore, to quantize a single input vector would require over four billion vector

10.5 Tree-Structured Vector Quantizers 299

comparisons to find the closest output point. Obviously, neither the storage requirements
nor the computational requirements are realistic. Because of this problem, most vector
quantization applications operate at low bit rates. In many applications, such as low-rate
speech coding, we want to operate at very low rates; therefore, this is not a drawback.
However, for applications such as high-quality video coding, which requires higher rates,
this is definitely a problem.

There are several approaches to solving these problems. Each entails the introduction
of some structure in the codebook and/or the quantization process. While the introduction
of structure mitigates some of the storage and computational problems, there is generally a
trade-off in terms of the distortion performance. We will look at some of these approaches
in the following sections.

10.5 Tree-Structured Vector Quantizers

One way we can introduce structure is to organize our codebook in such a way that it is easy
to pick which part contains the desired output vector. Consider the two-dimensional vector
quantizer shown in Figure 10.17. Note that the output points in each quadrant are the mirror
image of the output points in neighboring quadrants. Given an input to this vector quantizer,
we can reduce the number of comparisons necessary for finding the closest output point by
using the sign on the components of the input. The sign on the components of the input
vector will tell us in which quadrant the input lies. Because all the quadrants are mirror
images of the neighboring quadrants, the closest output point to a given input will lie in the
same quadrant as the input itself. Therefore, we only need to compare the input to the output
points that lie in the same quadrant, thus reducing the number of required comparisons by
a factor of four. This approach can be extended to L dimensions, where the signs on the L
components of the input vector can tell us in which of the 2L hyperquadrants the input lies,
which in turn would reduce the number of comparisons by 2L.

This approach works well when the output points are distributed in a symmetrical manner.
However, it breaks down as the distribution of the output points becomes less symmetrical.

F IGURE 10. 17 A symmetrical vector quantizer in two dimensions.

300 10 V E C T O R Q U A N T I Z A T I O N

Example 10 . 5 . 1:

Consider the vector quantizer shown in Figure 10.18. This is different from the output points
in Figure 10.17; we have dropped the mirror image requirement of the previous example.
The output points are shown as filled circles, and the input point is the X. It is obvious
from the figure that while the input is in the first quadrant, the closest output point is in the
fourth quadrant. However, the quantization approach described above will force the input to
be represented by an output in the first quadrant.

x

F IGURE 10. 18 Breakdown of the method using the quadrant approach.

The situation gets worse as we lose more and more of the symmetry. Consider the
situation in Figure 10.19. In this quantizer, not only will we get an incorrect output point
when the input is close to the boundaries of the first quadrant, but also there is no significant
reduction in the amount of computation required.

F IGURE 10. 19 Breakdown of the method using the quadrant approach.

Most of the output points are in the first quadrant. Therefore, whenever the input falls
in the first quadrant, which it will do quite often if the quantizer design is reflective of the
distribution of the input, knowing that it is in the first quadrant does not lead to a great
reduction in the number of comparisons. �

10.5 Tree-Structured Vector Quantizers 301

0

1

F IGURE 10. 20 Division of output points into two groups.

The idea of using the L-dimensional equivalents of quadrants to partition the output points
in order to reduce the computational load can be extended to nonsymmetrical situations, like
those shown in Figure 10.19, in the following manner. Divide the set of output points into
two groups, group0 and group1, and assign to each group a test vector such that output
points in each group are closer to the test vector assigned to that group than to the test vector
assigned to the other group (Figure 10.20). Label the two test vectors 0 and 1. When we
get an input vector, we compare it against the test vectors. Depending on the outcome, the
input is compared to the output points associated with the test vector closest to the input.
After these two comparisons, we can discard half of the output points. Comparison with the
test vectors takes the place of looking at the signs of the components to decide which set of
output points to discard from contention. If the total number of output points is K, with this
approach we have to make K

2 +2 comparisons instead of K comparisons.
This process can be continued by splitting the output points in each group into two

groups and assigning a test vector to the subgroups. So group0 would be split into group00
and group01, with associated test vectors labeled 00 and 01, and group1 would be split into
group10 and group11, with associated test vectors labeled 10 and 11. Suppose the result of
the first set of comparisons was that the output point would be searched for in group1. The
input would be compared to the test vectors 10 and 11. If the input was closer to the test
vector 10, then the output points in group11 would be discarded, and the input would be
compared to the output points in group10. We can continue the procedure by successively
dividing each group of output points into two, until finally, if the number of output points
is a power of two, the last set of groups would consist of single points. The number of
comparisons required to obtain the final output point would be 2 log K instead of K. Thus,
for a codebook of size 4096 we would need 24 vector comparisons instead of 4096 vector
comparisons.

This is a remarkable decrease in computational complexity. However, we pay for this
decrease in two ways. The first penalty is a possible increase in distortion. It is possible at
some stage that the input is closer to one test vector while at the same time being closest to an
output belonging to the rejected group. This is similar to the situation shown in Figure 10.18.
The other penalty is an increase in storage requirements. Now we not only have to store the
output points from the vector quantizer codebook, we also must store the test vectors. This
means almost a doubling of the storage requirement.

302 10 V E C T O R Q U A N T I Z A T I O N

01

011 010 001 000

0

0011

111 110 101 100

1

10

F IGURE 10. 21 Decision tree for quantization.

The comparisons that must be made at each step are shown in Figure 10.21. The label
inside each node is the label of the test vector that we compare the input against. This tree
of decisions is what gives tree-structured vector quantizers (TSVQ) their name. Notice also
that, as we are progressing down a tree, we are also building a binary string. As the leaves
of the tree are the output points, by the time we reach a particular leaf or, in other words,
select a particular output point, we have obtained the binary codeword corresponding to that
output point.

This process of building the binary codeword as we progress through the series of
decisions required to find the final output can result in some other interesting properties of
tree-structured vector quantizers. For instance, even if a partial codeword is transmitted, we
can still get an approximation of the input vector. In Figure 10.21, if the quantized value
was the codebook vector 5, the binary codeword would be 011. However, if only the first
two bits 01 were received by the decoder, the input can be approximated by the test vector
labeled 01.

10 . 5 . 1 Des ign of Tree-S t ruc tured Vec tor Quant izers

In the last section we saw how we could reduce the computational complexity of the design
process by imposing a tree structure on the vector quantizer. Rather than imposing this
structure after the vector quantizer has been designed, it makes sense to design the vector
quantizer within the framework of the tree structure. We can do this by a slight modification
of the splitting design approach proposed by Linde et al. [125].

We start the design process in a manner identical to the splitting technique. First, obtain
the average of all the training vectors, perturb it to obtain a second vector, and use these
vectors to form a two-level vector quantizer. Let us label these two vectors 0 and 1, and the
groups of training set vectors that would be quantized to each of these two vectors group0
and group1. We will later use these vectors as test vectors. We perturb these output points
to get the initial vectors for a four-level vector quantizer. At this point, the design procedure

10.6 Structured Vector Quantizers 303

for the tree-structured vector quantizer deviates from the splitting technique. Instead of
using the entire training set to design a four-level vector quantizer, we use the training
set vectors in group0 to design a two-level vector quantizer with output points labeled 00
and 01. We use the training set vectors in group1 to design a two-level vector quantizer
with output points labeled 10 and 11. We also split the training set vectors in group0 and
group1 into two groups each. The vectors in group0 are split, based on their proximity to
the vectors labeled 00 and 01, into group00 and group01, and the vectors in group1 are
divided in a like manner into the groups group10 and group11. The vectors labeled 00, 01,
10, and 11 will act as test vectors at this level. To get an eight-level quantizer, we use the
training set vectors in each of the four groups to obtain four two-level vector quantizers. We
continue in this manner until we have the required number of output points. Notice that in
the process of obtaining the output points, we have also obtained the test vectors required
for the quantization process.

10 . 5 . 2 Pruned Tree-S t ruc tured Vec tor Quant izers

Once we have built a tree-structured codebook, we can sometimes improve its rate distortion
performance by removing carefully selected subgroups. Removal of a subgroup, referred to
as pruning, will reduce the size of the codebook and hence the rate. It may also result in an
increase in distortion. Therefore, the objective of the pruning is to remove those subgroups
that will result in the best trade-off of rate and distortion. Chou, Lookabaugh, and Gray [128]
have developed an optimal pruning algorithm called the generalized BFOS algorithm. The
name of the algorithm derives from the fact that it is an extension of an algorithm originally
developed by Brieman, Freidman, Olshen, and Stone [129] for classification applications.
(See [128] and [5] for description and discussion of the algorithm.)

Pruning output points from the codebook has the unfortunate effect of removing the
structure that was previously used to generate the binary codeword corresponding to the
output points. If we used the structure to generate the binary codewords, the pruning would
cause the codewords to be of variable length. As the variable-length codes would correspond
to the leaves of a binary tree, this code would be a prefix code and, therefore, certainly
usable. However, it would not require a large increase in complexity to assign fixed-length
codewords to the output points using another method. This increase in complexity is generally
offset by the improvement in performance that results from the pruning [130].

10.6 Structured Vector Quantizers

The tree-structured vector quantizer solves the complexity problem, but acerbates the storage
problem. We now take an entirely different tack and develop vector quantizers that do not
have these storage problems; however, we pay for this relief in other ways.

Example 10.3.1 was our motivation for the quantizer obtained by the LBG algorithm.
This example showed that the correlation between samples of the output of a source leads
to clustering. This clustering is exploited by the LBG algorithm by placing output points at
the location of these clusters. However, in Example 10.3.2, we saw that even when there

304 10 V E C T O R Q U A N T I Z A T I O N

is no correlation between samples, there is a kind of probabilistic structure that becomes
more evident as we group the random inputs of a source into larger and larger blocks or
vectors.

In Example 10.3.2, we changed the position of the output point in the top-right corner.
All four corner points have the same probability, so we could have chosen any of these
points. In the case of the two-dimensional Laplacian distribution in Example 10.3.2, all
points that lie on the contour described by
x
+
y
 = constant have equal probability. These
are called contours of constant probability. For spherically symmetrical distributions like
the Gaussian distribution, the contours of constant probability are circles in two dimensions,
spheres in three dimensions, and hyperspheres in higher dimensions.

We mentioned in Example 10.3.2 that the points away from the origin have very little
probability mass associated with them. Based on what we have said about the contours of
constant probability, we can be a little more specific and say that the points on constant
probability contours farther away from the origin have very little probability mass associated
with them. Therefore, we can get rid of all of the points outside some contour of constant
probability without incurring much of a distortion penalty. In addition as the number of
reconstruction points is reduced, there is a decrease in rate, thus improving the rate distortion
performance.

Example 10 . 6 . 1:

Let us design a two-dimensional uniform quantizer by keeping only the output points in the
quantizer of Example 10.3.2 that lie on or within the contour of constant probability given
by
x1
+
x2
 = 5	. If we count all the points that are retained, we get 60 points. This is
close enough to 64 that we can compare it with the eight-level uniform scalar quantizer. If
we simulate this quantization scheme with a Laplacian input, and the same step size as the
scalar quantizer, that is, 	 = 0�7309, we get an SNR of 12.22 dB. Comparing this to the
11.44 dB obtained with the scalar quantizer, we see that there is a definite improvement. We
can get slightly more improvement in performance if we modify the step size. �

Notice that the improvement in the previous example is obtained only by restricting the
outer boundary of the quantizer. Unlike Example 10.3.2, we did not change the shape of
any of the inner quantization regions. This gain is referred to in the quantization literature
as boundary gain. In terms of the description of quantization noise in Chapter 8, we
reduced the overload error by reducing the overload probability, without a commensurate
increase in the granular noise. In Figure 10.22, we have marked the 12 output points that
belonged to the original 64-level quantizer, but do not belong to the 60-level quantizer, by
drawing circles around them. Removal of these points results in an increase in overload
probability. We also marked the eight output points that belong to the 60-level quantizer,
but were not part of the original 64-level quantizer, by drawing squares around them.
Adding these points results in a decrease in the overload probability. If we calculate the
increases and decreases (Problem 5), we find that the net result is a decrease in overload
probability. This overload probability is further reduced as the dimension of the vector is
increased.

10.6 Structured Vector Quantizers 305

F IGURE 10. 22 Contours of constant probability.

10 . 6 . 1 Pyramid Vec tor Quant izat ion

As the dimension of the input vector increases, something interesting happens. Suppose we
are quantizing a random variable X with pdf fX�X� and differential entropy h�X�. Suppose
we block samples of this random variable into a vector X. A result of Shannon’s, called the
asymptotic equipartition property (AEP), states that for sufficiently large L and arbitrarily
small �

∣
∣
∣
∣
log fX�X�

L
+h�X�

∣
∣
∣
∣< � (10.6)

306 10 V E C T O R Q U A N T I Z A T I O N

for all but a set of vectors with a vanishingly small probability [7]. This means that almost
all the L-dimensional vectors will lie on a contour of constant probability given by

∣
∣
∣
∣
log fX�X�

L

∣
∣
∣
∣= −h�X�� (10.7)

Given that this is the case, Sakrison [131] suggested that an optimum manner to encode
the source would be to distribute 2RL points uniformly in this region. Fischer [132] used this
insight to design a vector quantizer called the pyramid vector quantizer for the Laplacian
source that looks quite similar to the quantizer described in Example 10.6.1. The vector
quantizer consists of points of the rectangular quantizer that fall on the hyperpyramid given by

L∑

i=1

xi
 = C

where C is a constant depending on the variance of the input. Shannon’s result is asymp-
totic, and for realistic values of L, the input vector is generally not localized to a single
hyperpyramid.

For this case, Fischer first finds the distance

r =
L∑

i=1

xi
 �

This value is quantized and transmitted to the receiver. The input is normalized by this gain
term and quantized using a single hyperpyramid. The quantization process for the shape term
consists of two stages: finding the output point on the hyperpyramid closest to the scaled
input, and finding a binary codeword for this output point. (See [132] for details about the
quantization and coding process.) This approach is quite successful, and for a rate of 3 bits
per sample and a vector dimension of 16, we get an SNR value of 16.32 dB. If we increase
the vector dimension to 64, we get an SNR value of 17.03. Compared to the SNR obtained
from using a nonuniform scalar quantizer, this is an improvement of more than 4 dB.

Notice that in this approach we separated the input vector into a gain term and a pattern
or shape term. Quantizers of this form are called gain-shape vector quantizers, or product
code vector quantizers [133].

10 . 6 . 2 Polar and Spher i ca l Vec tor Quant izers

For the Gaussian distribution, the contours of constant probability are circles in two dimen-
sions and spheres and hyperspheres in three and higher dimensions. In two dimensions, we
can quantize the input vector by first transforming it into polar coordinates r and :

r =
√

x2
1 +x2

2 (10.8)

and

 = tan−1 x2

x1

� (10.9)

10.6 Structured Vector Quantizers 307

r and can then be either quantized independently [134], or we can use the quantized value
of r as an index to a quantizer for [135]. The former is known as a polar quantizer; the
latter, an unrestricted polar quantizer. The advantage to quantizing r and independently is
one of simplicity. The quantizers for r and are independent scalar quantizers. However, the
performance of the polar quantizers is not significantly higher than that of scalar quantization
of the components of the two-dimensional vector. The unrestricted polar quantizer has a
more complex implementation, as the quantization of depends on the quantization of
r. However, the performance is also somewhat better than the polar quantizer. The polar
quantizer can be extended to three or more dimensions [136].

10 . 6 . 3 Lat t i ce Vec tor Quant izers

Recall that quantization error is composed of two kinds of error, overload error and granular
error. The overload error is determined by the location of the quantization regions furthest
from the origin, or the boundary. We have seen how we can design vector quantizers to
reduce the overload probability and thus the overload error. We called this the boundary
gain of vector quantization. In scalar quantization, the granular error was determined by the
size of the quantization interval. In vector quantization, the granular error is affected by the
size and shape of the quantization interval.

Consider the square and circular quantization regions shown in Figure 10.23. We show
only the quantization region at the origin. These quantization regions need to be distributed
in a regular manner over the space of source outputs. However, for now, let us simply
consider the quantization region at the origin. Let’s assume they both have the same area
so that we can compare them. This way it would require the same number of quantization
regions to cover a given area. That is, we will be comparing two quantization regions of the
same “size.” To have an area of one, the square has to have sides of length one. As the area
of a circle is given by �r2, the radius of the circle is 1√

�
. The maximum quantization error

possible with the square quantization region is when the input is at one of the four corners of
the square. In this case, the error is 1√

2
, or about 0.707. For the circular quantization region,

the maximum error occurs when the input falls on the boundary of the circle. In this case,
the error is 1√

�
, or about 0.56. Thus, the maximum granular error is larger for the square

region than the circular region.
In general, we are more concerned with the average squared error than the maximum

error. If we compute the average squared error for the square region, we obtain
∫

Square
�X�2 dX = 0�1666̄�

F IGURE 10. 23 Possible quantization regions.

308 10 V E C T O R Q U A N T I Z A T I O N

For the circle, we obtain

∫

Circle
�X�2 dX = 0�159�

Thus, the circular region would introduce less granular error than the square region.
Our choice seems to be clear; we will use the circle as the quantization region. Unfor-

tunately, a basic requirement for the quantizer is that for every possible input vector there
should be a unique output vector. In order to satisfy this requirement and have a quantizer
with sufficient structure that can be used to reduce the storage space, a union of translates
of the quantization region should cover the output space of the source. In other words, the
quantization region should tile space. A two-dimensional region can be tiled by squares, but
it cannot be tiled by circles. If we tried to tile the space with circles, we would either get
overlaps or holes.

Apart from squares, other shapes that tile space include rectangles and hexagons. It
turns out that the best shape to pick for a quantization region in two dimensions is a
hexagon [137].

In two dimensions, it is relatively easy to find the shapes that tile space, then select the
one that gives the smallest amount of granular error. However, when we start looking at
higher dimensions, it is difficult, if not impossible, to visualize different shapes, let alone find
which ones tile space. An easy way out of this dilemma is to remember that a quantizer can
be completely defined by its output points. In order for this quantizer to possess structure,
these points should be spaced in some regular manner.

Regular arrangements of output points in space are called lattices. Mathematically, we
can define a lattice as follows:

Let �a1� a2� � � � � aL� be L independent L-dimensional vectors. Then the set

� =
{

x � x =
L∑

i=1

uiai

}

(10.10)

is a lattice if �ui� are all integers.

When a subset of lattice points is used as the output points of a vector quantizer, the
quantizer is known as a lattice vector quantizer. From this definition, the pyramid vector
quantizer described earlier can be viewed as a lattice vector quantizer. Basing a quantizer
on a lattice solves the storage problem. As any lattice point can be regenerated if we know
the basis set, there is no need to store the output points. Further, the highly structured nature
of lattices makes finding the closest output point to an input relatively simple. Note that
what we give up when we use lattice vector quantizers is the clustering property of LBG
quantizers.

Let’s take a look at a few examples of lattices in two dimensions. If we pick a1 = �1� 0�
and a2 = �0� 1�, we obtain the integer lattice—the lattice that contains all points in two
dimensions whose coordinates are integers.

10.6 Structured Vector Quantizers 309

−6−7 −4 −2−5 −3 −1

−6

−4

−2

−3

−5

−1

6

4

2

1

3

5

2 4 6 71 3 5 8−8

F IGURE 10. 24 The D2 lattice.

If we pick a1 = �1� 1� and a2 = �1�−1�, we get the lattice shown in Figure 10.24. This
lattice has a rather interesting property. Any point in the lattice is given by na1 +ma2, where
n and m are integers. But

na1 +ma2 =
[

n+m
n−m

]

and the sum of the coefficients is n+m+n−m = 2n, which is even for all n. Therefore, all
points in this lattice have an even coordinate sum. Lattices with these properties are called
D lattices.

Finally, if a1 = �1� 0� and a2 =
(
− 1

2 �
√

3
2

)
, we get the hexagonal lattice shown in

Figure 10.25. This is an example of an A lattice.
There are a large number of lattices that can be used to obtain lattice vector quantizers.

In fact, given a dimension L, there are an infinite number of possible sets of L independent
vectors. Among these, we would like to pick the lattice that produces the greatest reduction
in granular noise. When comparing the square and circle as candidates for quantization
regions, we used the integral over the shape of �X�2. This is simply the second moment of
the shape. The shape with the smallest second moment for a given volume is known to be
the circle in two dimensions and the sphere and hypersphere in higher dimensions [138].
Unfortunately, circles and spheres cannot tile space; either there will be overlap or there will

310 10 V E C T O R Q U A N T I Z A T I O N

F IGURE 10. 25 The A2 lattice.

be holes. As the ideal case is unattainable, we can try to approximate it. We can look for
ways of arranging spheres so that they cover space with minimal overlap [139], or look for
ways of packing spheres with the least amount of space left over [138]. The centers of these
spheres can then be used as the output points. The quantization regions will not be spheres,
but they may be close approximations to spheres.

The problems of sphere covering and sphere packing are widely studied in a number
of different areas. Lattices discovered in these studies have also been useful as vector
quantizers [138]. Some of these lattices, such as the A2 and D2 lattices described earlier, are
based on the root systems of Lie algebras [140]. The study of Lie algebras is beyond the
scope of this book; however, we have included a brief discussion of the root systems and
how to obtain the corresponding lattices in Appendix C.

One of the nice things about root lattices is that we can use their structural properties
to obtain fast quantization algorithms. For example, consider building a quantizer based on
the D2 lattice. Because of the way in which we described the D2 lattice, the size of the
lattice is fixed. We can change the size by picking the basis vectors as �	�	� and �	�−	�,
instead of �1� 1� and �1�−1�. We can have exactly the same effect by dividing each input
by 	 before quantization, and then multiplying the reconstruction values by 	. Suppose we
pick the latter approach and divide the components of the input vector by 	. If we wanted
to find the closest lattice point to the input, all we need to do is find the closest integer to
each coordinate of the scaled input. If the sum of these integers is even, we have a lattice
point. If not, find the coordinate that incurred the largest distortion during conversion to an
integer and then find the next closest integer. The sum of coordinates of this new vector
differs from the sum of coordinates of the previous vector by one. Therefore, if the sum of
coordinates of the previous vector was odd, the sum of the coordinates of the current vector
will be even, and we have the closest lattice point to the input.

Example 10 . 6 . 2:

Suppose the input vector is given by (2.3, 1.9). Rounding each coefficient to the nearest
integer, we get the vector (2, 2). The sum of the coordinates is even; therefore, this is the
closest lattice point to the input.

10.7 Variations on the Theme 311

Suppose the input was (3.4, 1.8). Rounding the components to the nearest integer, we
get (3, 2). The sum of the components is 5, which is odd. The differences between the
components of the input vector and the nearest integer are 0.4 and 0.2. The largest difference
was incurred by the first component, so we round it up to the next closest integer, and the
resulting vector is (4, 2). The sum of the coordinates is 6, which is even; therefore, this is
the closest lattice point. �

Many of the lattices have similar properties that can be used to develop fast algorithms
for finding the closest output point to a given input [141, 140].

To review our coverage of lattice vector quantization, overload error can be reduced by
careful selection of the boundary, and we can reduce the granular noise by selection of the
lattice. The lattice also provides us with a way to avoid storage problems. Finally, we can
use the structural properties of the lattice to find the closest lattice point to a given input.

Now we need two things: to know how to find the closest output point (remember, not
all lattice points are output points), and to find a way of assigning a binary codeword to the
output point and recovering the output point from the binary codeword. This can be done by
again making use of the specific structures of the lattices. While the procedures necessary
are simple, explanations of the procedures are lengthy and involved (see [142] and [140]
for details).

10.7 Variat ions on the Theme

Because of its capability to provide high compression with relatively low distortion, vector
quantization has been one of the more popular lossy compression techniques over the last
decade in such diverse areas as video compression and low-rate speech compression. During
this period, several people have come up with variations on the basic vector quantization
approach. We briefly look at a few of the more well-known variations here, but this is by
no means an exhaustive list. For more information, see [5] and [143].

10 . 7 . 1 Gain-Shape Vector Quant izat ion

In some applications such as speech, the dynamic range of the input is quite large. One
effect of this is that, in order to be able to represent the various vectors from the source,
we need a very large codebook. This requirement can be reduced by normalizing the
source output vectors, then quantizing the normalized vector and the normalization factor
separately [144, 133]. In this way, the variation due to the dynamic range is represented by
the normalization factor or gain, while the vector quantizer is free to do what it does best,
which is to capture the structure in the source output. Vector quantizers that function in this
manner are called gain-shape vector quantizers. The pyramid quantizer discussed earlier is
an example of a gain-shape vector quantizer.

312 10 V E C T O R Q U A N T I Z A T I O N

10 . 7 . 2 Mean-Removed Vector Quant izat ion

If we were to generate a codebook from an image, differing amounts of background illumi-
nation would result in vastly different codebooks. This effect can be significantly reduced if
we remove the mean from each vector before quantization. The mean and the mean-removed
vector can then be quantized separately. The mean can be quantized using a scalar quantiza-
tion scheme, while the mean-removed vector can be quantized using a vector quantizer. Of
course, if this strategy is used, the vector quantizer should be designed using mean-removed
vectors as well.

Example 10 . 7 . 1:

Let us encode the Sinan image using a codebook generated by the Sena image, as we did in
Figure 10.16. However, this time we will use a mean-removed vector quantizer. The result
is shown in Figure 10.26. For comparison we have also included the reconstructed image
from Figure 10.16. Notice the annoying blotches on the shoulder have disappeared. How-
ever, the reconstructed image also suffers from more blockiness. The blockiness increases
because adding the mean back into each block accentuates the discontinuity at the block
boundaries.

F IGURE 10. 26 Left: Reconstructed image using mean-removed vector
quantization and the Sena image as the training set. Right: LBG
vector quantization with the Sena image as the training set.

Each approach has its advantages and disadvantages. Which approach we use in a
particular application depends very much on the application. �

10.7 Variations on the Theme 313

10 . 7 . 3 C lass i f ied Vec tor Quant izat ion

We can sometimes divide the source output into separate classes with different spatial
properties. In these cases, it can be very beneficial to design separate vector quantizers for
the different classes. This approach, referred to as classified vector quantization, is especially
useful in image compression, where edges and nonedge regions form two distinct classes.
We can separate the training set into vectors that contain edges and vectors that do not.
A separate vector quantizer can be developed for each class. During the encoding process,
the vector is first tested to see if it contains an edge. A simple way to do this is to check
the variance of the pixels in the vector. A large variance will indicate the presence of an
edge. More sophisticated techniques for edge detection can also be used. Once the vector
is classified, the corresponding codebook can be used to quantize the vector. The encoder
transmits both the label for the codebook used and the label for the vector in the codebook
[145].

A slight variation of this strategy is to use different kinds of quantizers for the different
classes of vectors. For example, if certain classes of source outputs require quantization
at a higher rate than is possible using LBG vector quantizers, we can use lattice vector
quantizers. An example of this approach can be found in [146].

10 . 7 . 4 Mul t i s tage Vec tor Quant izat ion

Multistage vector quantization [147] is an approach that reduces both the encoding com-
plexity and the memory requirements for vector quantization, especially at high rates. In
this approach, the input is quantized in several stages. In the first stage, a low-rate vector
quantizer is used to generate a coarse approximation of the input. This coarse approximation,
in the form of the label of the output point of the vector quantizer, is transmitted to the
receiver. The error between the original input and the coarse representation is quantized by
the second-stage quantizer, and the label of the output point is transmitted to the receiver. In
this manner, the input to the nth-stage vector quantizer is the difference between the original
input and the reconstruction obtained from the outputs of the preceding n− 1 stages. The
difference between the input to a quantizer and the reconstruction value is often called the
residual, and the multistage vector quantizers are also known as residual vector quantizers
[148]. The reconstructed vector is the sum of the output points of each of the stages. Suppose
we have a three-stage vector quantizer, with the three quantizers represented by Q1� Q2, and
Q3. Then for a given input X, we find

Y1 = Q1�X�

Y2 = Q2�X −Q1�X��

Y3 = Q3�X −Q1�X�−Q2�X −Q1�X���� (10.11)

The reconstruction X̂ is given by

X̂ = Y1 +Y2 +Y3� (10.12)

This process is shown in Figure 10.27.

314 10 V E C T O R Q U A N T I Z A T I O N

Index

X Q1
Y1+

−
+

−
+

−

Index

Q2
Y2 Y3

Index

Q3

F IGURE 10. 27 A three-stage vector quantizer.

If we have K stages, and the codebook size of the nth-stage vector quantizer is Ln,
then the effective size of the overall codebook is L1 ×L2 ×· · ·×LK . However, we need to
store only L1 + L2 + · · ·+ LK vectors, which is also the number of comparisons required.
Suppose we have a five-stage vector quantizer, each with a codebook size of 32, meaning
that we would have to store 160 codewords. This would provide an effective codebook size
of 325 = 33� 554� 432. The computational savings are also of the same order.

This approach allows us to use vector quantization at much higher rates than we could
otherwise. However, at rates at which it is feasible to use LBG vector quantizers, the
performance of the multistage vector quantizers is generally lower than the LBG vector
quantizers [5]. The reason for this is that after the first few stages, much of the structure
used by the vector quantizer has been removed, and the vector quantization advantage that
depends on this structure is not available. Details on the design of residual vector quantizers
can be found in [148, 149].

There may be some vector inputs that can be well represented by fewer stages than
others. A multistage vector quantizer with a variable number of stages can be implemented
by extending the idea of recursively indexed scalar quantization to vectors. It is not possible
to do this directly because there are some fundamental differences between scalar and vector
quantizers. The input to a scalar quantizer is assumed to be iid. On the other hand, the vector
quantizer can be viewed as a pattern-matching algorithm [150]. The input is assumed to be
one of a number of different patterns. The scalar quantizer is used after the redundancy has
been removed from the source sequence, while the vector quantizer takes advantage of the
redundancy in the data.

With these differences in mind, the recursively indexed vector quantizer (RIVQ) can
be described as a two-stage process. The first stage performs the normal pattern-matching
function, while the second stage recursively quantizes the residual if the magnitude of the
residual is greater than some prespecified threshold. The codebook of the second stage is
ordered so that the magnitude of the codebook entries is a nondecreasing function of its
index. We then choose an index I that will determine the mode in which the RIVQ operates.

The quantization rule Q, for a given input value X, is as follows:

� Quantize X with the first-stage quantizer Q1.

� If the residual �X −Q1�X�� is below a specified threshold, then Q1�X� is the nearest
output level.

10.7 Variations on the Theme 315

� Otherwise, generate X1 = X − Q1�X� and quantize using the second-stage quantizer
Q2. Check if the index J1 of the output is below the index I . If so,

Q�X� = Q1�X�+Q2�X1��

If not, form

X2 = X1 −Q�X1�

and do the same for X2 as we did for X1.

This process is repeated until for some m, the index Jm falls below the index I , in which
case X will be quantized to

Q�X� = Q1�X�+Q2�X1�+· · ·+Q2�XM��

Thus, the RIVQ operates in two modes: when the index J of the quantized input falls below
a given index I and when the index J falls above the index I .

Details on the design and performance of the recursively indexed vector quantizer can
be found in [151, 152].

10 . 7 . 5 Adapt ive Vec tor Quant izat ion

While LBG vector quantizers function by using the structure in the source output, this
reliance on the use of the structure can also be a drawback when the characteristics of the
source change over time. For situations like these, we would like to have the quantizer adapt
to the changes in the source output.

For mean-removed and gain-shape vector quantizers, we can adapt the scalar aspect of
the quantizer, that is, the quantization of the mean or the gain using the techniques discussed
in the previous chapter. In this section, we look at a few approaches to adapting the codebook
of the vector quantizer to changes in the characteristics of the input.

One way of adapting the codebook to changing input characteristics is to start with a
very large codebook designed to accommodate a wide range of source characteristics [153].
This large codebook can be ordered in some manner known to both transmitter and receiver.
Given a sequence of input vectors to be quantized, the encoder can select a subset of the
larger codebook to be used. Information about which vectors from the large codebook were
used can be transmitted as a binary string. For example, if the large codebook contained 10
vectors, and the encoder was to use the second, third, fifth, and ninth vectors, we would
send the binary string 0110100010, with a 1 representing the position of the codeword used
in the large codebook. This approach permits the use of a small codebook that is matched
to the local behavior of the source.

This approach can be used with particular effectiveness with the recursively indexed
vector quantizer [151]. Recall that in the recursively indexed vector quantizer, the quantized
output is always within a prescribed distance of the inputs, determined by the index I . This
means that the set of output values of the RIVQ can be viewed as an accurate representation
of the inputs and their statistics. Therefore, we can treat a subset of the output set of the
previous intervals as our large codebook. We can then use the method described in [153] to

316 10 V E C T O R Q U A N T I Z A T I O N

inform the receiver of which elements of the previous outputs form the codebook for the next
interval. This method (while not the most efficient) is quite simple. Suppose an output set,
in order of first appearance, is �p�a� q� s� l� t� r�, and the desired codebook for the interval to
be encoded is �a� q� l� r�. Then we would transmit the binary string 0110101 to the receiver.
The 1s correspond to the letters in the output set, which would be elements of the desired
codebook. We select the subset for the current interval by finding the closest vectors from
our collection of past outputs to the input vectors of the current set. This means that there is
an inherent delay of one interval imposed by this approach. The overhead required to send
the codebook selection is M/N , where M is the number of vectors in the output set and N
is the interval size.

Another approach to updating the codebook is to check the distortion incurred while
quantizing each input vector. Whenever this distortion is above some specified threshold,
a different higher-rate mechanism is used to encode the input. The higher-rate mechanism
might be the scalar quantization of each component, or the use of a high-rate lattice vector
quantizer. This quantized representation of the input is transmitted to the receiver and, at the
same time, added to both the encoder and decoder codebooks. In order to keep the size of the
codebook the same, an entry must be discarded when a new vector is added to the codebook.
Selecting an entry to discard is handled in a number of different ways. Variations of this
approach have been used for speech coding, image coding, and video coding (see [154, 155,
156, 157, 158] for more details).

10.8 Trel l is-Coded Quantizat ion

Finally, we look at a quantization scheme that appears to be somewhat different from other
vector quantization schemes. In fact, some may argue that it is not a vector quantizer at all.
However, the trellis-coded quantization (TCQ) algorithm gets its performance advantage by
exploiting the statistical structure exploited by the lattice vector quantizer. Therefore, we
can argue that it should be classified as a vector quantizer.

The trellis-coded quantization algorithm was inspired by the appearance of a revolution-
ary concept in modulation called trellis-coded modulation (TCM). The TCQ algorithm and
its entropy-constrained variants provide some of the best performance when encoding ran-
dom sources. This quantizer can be viewed as a vector quantizer with very large dimension,
but a restricted set of values for the components of the vectors.

Like a vector quantizer, the TCQ quantizes sequences of source outputs. Each element
of a sequence is quantized using 2R reconstruction levels selected from a set of 2R+1

reconstruction levels, where R is the number of bits per sample used by a trellis-coded
quantizer. The 2R element subsets are predefined; which particular subset is used is based
on the reconstruction level used to quantize the previous quantizer input. However, the TCQ
algorithm allows us to postpone a decision on which reconstruction level to use until we
can look at a sequence of decisions. This way we can select the sequence of decisions that
gives us the lowest amount of average distortion.

Let’s take the case of a 2-bit quantizer. As described above, this means that we will
need 23, or 8, reconstruction levels. Let’s label these reconstruction levels as shown in
Figure 10.28. The set of reconstruction levels is partitioned into two subsets: one consisting

10.8 Trellis-Coded Quantization 317

Q1,1 Q3,1

Set #1

Set #2

Q1,2 Q2,2 Q3,2Q0,1 Q2,1 Q0,2

F IGURE 10. 28 Reconstruction levels for a 2-bit trellis-coded quantizer.

of the reconstruction values labeled Q0�i and Q2�i, and the remainder comprising the second
set. We use the first set to perform the quantization if the previous quantization level was
one labeled Q0�i or Q1�i; otherwise, we use the second set. Because the current reconstructed
value defines the subset that can be used to perform the quantization on the next input,
sometimes it may be advantageous to actually accept more distortion than necessary for
the current sample in order to have less distortion in the next quantization step. In fact, at
times it may be advantageous to accept poor quantization for several samples so that several
samples down the line the quantization can result in less distortion. If you have followed
this reasoning, you can see how we might be able to get lower overall distortion by looking
at the quantization of an entire sequence of source outputs. The problem with delaying a
decision is that the number of choices increases exponentially with each sample. In the 2-bit
example, for the first sample we have four choices; for each of these four choices we have
four choices for the second sample. For each of these 16 choices we have four choices for the
third sample, and so on. Luckily, there is a technique that can be used to keep this explosive
growth of choices under control. The technique, called the Viterbi algorithm [159], is widely
used in error control coding.

In order to explain how the Viterbi algorithm works, we will need to formalize some of
what we have been discussing. The sequence of choices can be viewed in terms of a state
diagram. Let’s suppose we have four states: S0, S1, S2, and S3. We will say we are in state
Sk if we use the reconstruction levels Qk�1 or Qk�2. Thus, if we use the reconstruction levels
Q0�i, we are in state S0. We have said that we use the elements of Set #1 if the previous
quantization levels were Q0�i or Q1�i. As Set #1 consists of the quantization levels Q0�i and
Q2�i, this means that we can go from state S0 and S1 to states S0 and S2. Similarly, from
states S2 and S3 we can only go to states S1 and S3. The state diagram can be drawn as
shown in Figure 10.29.

318 10 V E C T O R Q U A N T I Z A T I O N

S3

S0

S1 S2

F IGURE 10. 29 State diagram for the selection process.

Let’s suppose we go through two sequences of choices that converge to the same state,
after which both sequences are identical. This means that the sequence of choices that had
incurred a higher distortion at the time the two sequences converged will have a higher
distortion from then on. In the end we will select the sequence of choices that results in the
lowest distortion; therefore, there is no point in continuing to keep track of a sequence that
we will discard anyway. This means that whenever two sequences of choices converge, we
can discard one of them. How often does this happen? In order to see this, let’s introduce
time into our state diagram. The state diagram with the element of time introduced into it
is called a trellis diagram. The trellis for this particular example is shown in Figure 10.30.
At each time instant, we can go from one state to two other states. And, at each step we

S0

S2

S1

S3

F IGURE 10. 30 Trellis diagram for the selection process.

10.8 Trellis-Coded Quantization 319

S0

S2

S1

S3

0 0 0

0 0 0
0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F IGURE 10. 31 Trellis diagram for the selection process with binary labels for the
state transitions.

have two sequences that converge to each state. If we discard one of the two sequences that
converge to each state, we can see that, no matter how long a sequence of decisions we use,
we will always end up with four sequences.

Notice that, assuming the initial state is known to the decoder, any path through this
particular trellis can be described to the decoder using 1 bit per sample. From each state we
can only go to two other states. In Figure 10.31, we have marked the branches with the bits
used to signal that transition. Given that each state corresponds to two quantization levels,
specifying the quantization level for each sample would require an additional bit, resulting
in a total of 2 bits per sample. Let’s see how all this works together in an example.

Example 10 . 8 . 1:

Using the quantizer whose quantization levels are shown in Figure 10.32, we will quantize the
sequence of values 0.2, 1.6, 2.3. For the distortion measure we will use the sum of absolute
differences. If we simply used the quantization levels marked as Set #1 in Figure 10.28,
we would quantize 0.2 to the reconstruction value 0.5, for a distortion of 0.3. The second
sample value of 1.6 would be quantized to 2.5, and the third sample value of 2.3 would also
be quantized to 2.5, resulting in a total distortion of 1.4. If we used Set #2 to quantize these
values, we would end up with a total distortion of 1.6. Let’s see how much distortion results
when using the TCQ algorithm.

We start by quantizing the first sample using the two quantization levels Q0�1 and Q0�2.
The reconstruction level Q0�2, or 0.5, is closer and results in an absolute difference of 0.3.
We mark this on the first node corresponding to S0. We then quantize the first sample using

Q1,1 Q3,1 Q1,2 Q2,2 Q3,2Q0,1 Q2,1 Q0,2

−2.5 −0.5 1.5 2.5 3.5−3.5 −1.5 0.5

F IGURE 10. 32 Reconstruction levels for a 2-bit trellis-coded quantizer.

320 10 V E C T O R Q U A N T I Z A T I O N

S0

S2

S1

S3

00.3

1.7

1.3

0.7

0 0

0 0 0
0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F IGURE 10. 33 Quantizing the first sample.

Q1�1 and Q1�2. The closest reconstruction value is Q1�2, or 1.5, which results in a distortion
value of 1.3. We mark the first node corresponding to S1. Continuing in this manner, we get
a distortion value of 1.7 when we use the reconstruction levels corresponding to state S2 and
a distortion value of 0.7 when we use the reconstruction levels corresponding to state S3. At
this point the trellis looks like Figure 10.33. Now we move on to the second sample. Let’s
first quantize the second sample value of 1.6 using the quantization levels associated with
state S0. The reconstruction levels associated with state S0 are −3�5 and 0.5. The closest
value to 1.6 is 0.5. This results in an absolute difference for the second sample of 1.1. We
can reach S0 from S0 and from S1. If we accept the first sample reconstruction corresponding
to S0, we will end up with an accumulated distortion of 1.4. If we accept the reconstruction
corresponding to state S1, we get an accumulated distortion of 2.4. Since the accumulated
distortion is less if we accept the transition from state S0, we do so and discard the transition
from state S1. Continuing in this fashion for the remaining states, we end up with the situation
depicted in Figure 10.34. The sequence of decisions that have been terminated are shown by
an X on the branch corresponding to the particular transition. The accumulated distortion is
listed at each node. Repeating this procedure for the third sample value of 2.3, we obtain the

S0

S2

S1

00.3

1.7

X

X

X

X

1.3

0.7

1.4

1.2

0.8

2.6

0 0

0 0 0
0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F IGURE 10. 34 Quantizing the second sample.

10.9 Summary 321

S0

S2

S1

S3

00.3

1.7

X

X

X

X

X

X

1.3

0.7

2.6

1.0

2.0

2.4

1.4
X

X

1.2

0.8

2.6

0 0

0 0 0
0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F IGURE 10. 35 Quantizing the third sample.

trellis shown in Figure 10.35. If we wanted to terminate the algorithm at this time, we could
pick the sequence of decisions with the smallest accumulated distortion. In this particular
example, the sequence would be S3, S1, S2. The accumulated distortion is 1.0, which is less
than what we would have obtained using either Set #1 or Set #2. �

10.9 Summary

In this chapter we introduced the technique of vector quantization. We have seen how we can
make use of the structure exhibited by groups, or vectors, of values to obtain compression.
Because there are different kinds of structure in different kinds of data, there are a number
of different ways to design vector quantizers. Because data from many sources, when
viewed as vectors, tend to form clusters, we can design quantizers that essentially consist of
representations of these clusters. We also described aspects of the design of vector quantizers
and looked at some applications. Recent literature in this area is substantial, and we have
barely skimmed the surface of the large number of interesting variations of this technique.

Fu r t he r Read ing

The subject of vector quantization is dealt with extensively in the book Vector Quantization and
Signal Compression, by A. Gersho and R.M. Gray [5]. There is also an excellent collection of
papers called Vector Quantization, edited by H. Abut and published by IEEE Press [143].

There are a number of excellent tutorial articles on this subject:

1. “Vector Quantization,” by R.M. Gray, in the April 1984 issue of IEEE Acoustics,
Speech, and Signal Processing Magazine [160].

2. “Vector Quantization: A Pattern Matching Technique for Speech Coding,” by
A. Gersho and V. Cuperman, in the December 1983 issue of IEEE Communications
Magazine [150].

322 10 V E C T O R Q U A N T I Z A T I O N

3. “Vector Quantization in Speech Coding,” by J. Makhoul, S. Roucos, and H. Gish, in
the November 1985 issue of the Proceedings of the IEEE [161].

4. “Vector Quantization,” by P.F. Swaszek, in Communications and Networks, edited by
I.F. Blake and H.V. Poor [162].

5. A survey of various image-coding applications of vector quantization can be found in
“Image Coding Using Vector Quantization: A Review,” by N.M. Nasrabadi and R.A.
King, in the August 1988 issue of the IEEE Transactions on Communications [163].

6. A thorough review of lattice vector quantization can be found in “Lattice Quantiza-
tion,” by J.D. Gibson and K. Sayood, in Advances in Electronics and Electron Physics
[140].

The area of vector quantization is an active one, and new techniques that use vector
quantization are continually being developed. The journals that report work in this area
include IEEE Transactions on Information Theory, IEEE Transactions on Communications,
IEEE Transactions on Signal Processing, and IEEE Transactions on Image Processing,
among others.

10.10 Projects and Problems

1. In Example 10.3.2 we increased the SNR by about 0�3 dB by moving the top-left
output point to the origin. What would happen if we moved the output points at the
four corners to the positions �±	� 0�, �0�±	�. As in the example, assume the input
has a Laplacian distribution with mean zero and variance one, and 	 = 0�7309. You
can obtain the answer analytically or through simulation.

2. For the quantizer of the previous problem, rather than moving the output points to
�±	� 0� and �0�±	�, we could have moved them to other positions that might have
provided a larger increase in SNR. Write a program to test different (reasonable)
possibilities and report on the best and worst cases.

3. In the program trainvq.c the empty cell problem is resolved by replacing the vector
with no associated training set vectors with a training set vector from the quantization
region with the largest number of vectors. In this problem, we will investigate some
possible alternatives.

Generate a sequence of pseudorandom numbers with a triangular distribution between
0 and 2. (You can obtain a random number with a triangular distribution by adding
two uniformly distributed random numbers.) Design an eight-level, two-dimensional
vector quantizer with the initial codebook shown in Table 10.9.

(a) Use the trainvq program to generate a codebook with 10,000 random numbers
as the training set. Comment on the final codebook you obtain. Plot the elements
of the codebook and discuss why they ended up where they did.

(b) Modify the program so that the empty cell vector is replaced with a vector from
the quantization region with the largest distortion. Comment on any changes in

10.10 Projects and Problems 323

TAB L E 10 . 9 Initial codebook for
Problem 3.

1 1
1 2
1 0�5
0�5 1
0�5 0�5
1�5 1
2 5
3 3

the distortion (or lack of change). Is the final codebook different from the one
you obtained earlier?

(c) Modify the program so that whenever an empty cell problem arises, a two-level
quantizer is designed for the quantization region with the largest number of
output points. Comment on any differences in the codebook and distortion from
the previous two cases.

4. Generate a 16-dimensional codebook of size 64 for the Sena image. Construct the
vector as a 4 × 4 block of pixels, an 8 × 2 block of pixels, and a 16 × 1 block of
pixels. Comment on the differences in the mean squared errors and the quality of
the reconstructed images. You can use the program trvqsp_img to obtain the
codebooks.

5. In Example 10.6.1 we designed a 60-level two-dimensional quantizer by taking the
two-dimensional representation of an 8-level scalar quantizer, removing 12 output
points from the 64 output points, and adding 8 points in other locations. Assume the
input is Laplacian with zero mean and unit variance, and 	 = 0�7309.

(a) Calculate the increase in the probability of overload by the removal of the 12
points from the original 64.

(b) Calculate the decrease in overload probability when we added the 8 new points
to the remaining 52 points.

6. In this problem we will compare the performance of a 16-dimensional pyramid vector
quantizer and a 16-dimensional LBG vector quantizer for two different sources. In
each case the codebook for the pyramid vector quantizer consists of 272 elements:

� 32 vectors with 1 element equal to ±	, and the other 15 equal to zero, and

� 240 vectors with 2 elements equal to ±	 and the other 14 equal to zero.

The value of 	 should be adjusted to give the best performance. The codebook for the
LBG vector quantizer will be obtained by using the program trvqsp_img on the
source output. You will have to modify trvqsp_img slightly to give you a codebook
that is not a power of two.

324 10 V E C T O R Q U A N T I Z A T I O N

(a) Use the two quantizers to quantize a sequence of 10,000 zero mean unit variance
Laplacian random numbers. Using either the mean squared error or the SNR as
a measure of performance, compare the performance of the two quantizers.

(b) Use the two quantizers to quantize the Sinan image. Compare the two quantizers
using either the mean squared error or the SNR and the reconstructed image.
Compare the difference between the performance of the two quantizers with the
difference when the input was random.

11
Differential Encoding

11.1 Overview

S
ources such as speech and images have a great deal of correlation from sample
to sample. We can use this fact to predict each sample based on its past
and only encode and transmit the differences between the prediction and the
sample value. Differential encoding schemes are built around this premise.
Because the prediction techniques are rather simple, these schemes are much

easier to implement than other compression schemes. In this chapter, we will look at
various components of differential encoding schemes and study how they are used to encode
sources—in particular, speech. We will also look at a widely used international differential
encoding standard for speech encoding.

11.2 Introduct ion

In the last chapter we looked at vector quantization—a rather complex scheme requiring
a significant amount of computational resources—as one way of taking advantage of the
structure in the data to perform lossy compression. In this chapter, we look at a different
approach that uses the structure in the source output in a slightly different manner, resulting
in a significantly less complex system.

When we design a quantizer for a given source, the size of the quantization interval
depends on the variance of the input. If we assume the input is uniformly distributed, the
variance depends on the dynamic range of the input. In turn, the size of the quantization
interval determines the amount of quantization noise incurred during the quantization process.

In many sources of interest, the sampled source output �xn� does not change a great deal
from one sample to the next. This means that both the dynamic range and the variance of
the sequence of differences �dn = xn −xn−1� are significantly smaller than that of the source
output sequence. Furthermore, for correlated sources the distribution of dn is highly peaked

326 11 D I F F E R E N T I A L E N C O D I N G

at zero. We made use of this skew, and resulting loss in entropy, for the lossless compression
of images in Chapter 7. Given the relationship between the variance of the quantizer input
and the incurred quantization error, it is also useful, in terms of lossy compression, to look
at ways to encode the difference from one sample to the next rather than encoding the
actual sample value. Techniques that transmit information by encoding differences are called
differential encoding techniques.

Example 11 . 2 . 1:

Consider the half cycle of a sinusoid shown in Figure 11.1 that has been sampled at the rate
of 30 samples per cycle. The value of the sinusoid ranges between 1 and −1. If we wanted
to quantize the sinusoid using a uniform four-level quantizer, we would use a step size of
0.5, which would result in quantization errors in the range �−0�25� 0�25�. If we take the
sample-to-sample differences (excluding the first sample), the differences lie in the range
�−0�2� 0�2�. To quantize this range of values with a four-level quantizer requires a step size
of 0.1, which results in quantization noise in the range �−0�05� 0�05�.

1.0

−1.0

−0.2

0.2

0.4

0.6

0.8

0

−0.4
−0.6
−0.8

10 2 3 4 5 6

Original
Difference

F IGURE 11. 1 Sinusoid and sample-to-sample differences. �

The sinusoidal signal in the previous example is somewhat contrived. However, if we
look at some of the real-world sources that we want to encode, we see that the dynamic
range that contains most of the differences is significantly smaller than the dynamic range
of the source output.

Example 11 . 2 . 2:

Figure 11.2 is the histogram of the Sinan image. Notice that the pixel values vary over
almost the entire range of 0 to 255. To represent these values exactly, we need 8 bits per

11.2 Introduction 327

1200

1000

800

600

400

200

0
0 50 100 150 200 250

F IGURE 11. 2 Histogram of the Sinan image.

8000

7000

6000

5000

4000

1000

0

3000

2000

–100 –50 0 50 100

F IGURE 11. 3 Histogram of pixel-to-pixel differences of the Sinan image.

pixel. To represent these values in a lossy manner to within an error in the least significant
bit, we need 7 bits per pixel. Figure 11.3 is the histogram of the differences.

More than 99% of the pixel values lie in the range −31 to 31. Therefore, if we were
willing to accept distortion in the least significant bit, for more than 99% of the difference
values we need 5 bits per pixel rather than 7. In fact, if we were willing to have a small
percentage of the differences with a larger error, we could get by with 4 bits for each
difference value. �

328 11 D I F F E R E N T I A L E N C O D I N G

In both examples, we have shown that the dynamic range of the differences between
samples is substantially less than the dynamic range of the source output. In the following
sections we describe encoding schemes that take advantage of this fact to provide improved
compression performance.

11.3 The Basic Algori thm

Although it takes fewer bits to encode differences than it takes to encode the original pixel,
we have not said whether it is possible to recover an acceptable reproduction of the original
sequence from the quantized difference value. When we were looking at lossless compression
schemes, we found that if we encoded and transmitted the first value of a sequence, followed
by the encoding of the differences between samples, we could losslessly recover the original
sequence. Unfortunately, a strictly analogous situation does not exist for lossy compression.

Example 11 . 3 . 1:

Suppose a source puts out the sequence

6�2 9�7 13�2 5�9 8 7�4 4�2 1�8

We could generate the following sequence by taking the difference between samples
(assume that the first sample value is zero):

6�2 3�5 3�5 −7�3 2�1 −0�6 −3�2 −2�4

If we losslessly encoded these values, we could recover the original sequence at the receiver
by adding back the difference values. For example, to obtain the second reconstructed value,
we add the difference 3.5 to the first received value 6.2 to obtain a value of 9.7. The third
reconstructed value can be obtained by adding the received difference value of 3.5 to the
second reconstructed value of 9.7, resulting in a value of 13.2, which is the same as the
third value in the original sequence. Thus, by adding the nth received difference value to
the �n−1	th reconstruction value, we can recover the original sequence exactly.

Now let us look at what happens if these difference values are encoded using a lossy
scheme. Suppose we had a seven-level quantizer with output values −6�−4�−2� 0� 2� 4� 6.
The quantized sequence would be

6 4 4 −6 2 0 −4 −2

If we follow the same procedure for reconstruction as we did for the lossless compression
scheme, we get the sequence

6 10 14 8 10 10 6 4

The difference or error between the original sequence and the reconstructed sequence is

0�2 −0�3 −0�8 −2�1 −2 −2�6 −1�8 −2�2

11.3 The Basic Algorithm 329

Notice that initially the magnitudes of the error are quite small �0�2� 0�3	. As the reconstruc-
tion progresses, the magnitudes of the error become significantly larger (2.6, 1.8, 2.2). �

To see what is happening, consider a sequence �xn�. A difference sequence �dn� is
generated by taking the differences xn −xn−1. This difference sequence is quantized to obtain
the sequence �d̂n�:

d̂n = Q�dn� = dn +qn

where qn is the quantization error. At the receiver, the reconstructed sequence �x̂n� is obtained
by adding d̂n to the previous reconstructed value x̂n−1:

x̂n = x̂n−1 + d̂n�

Let us assume that both transmitter and receiver start with the same value x0, that is,
x̂0 = x0. Follow the quantization and reconstruction process for the first few samples:

d1 = x1 −x0 (11.1)

d̂1 = Q�d1� = d1 +q1 (11.2)

x̂1 = x0 + d̂1 = x0 +d1 +q1 = x1 +q1 (11.3)

d2 = x2 −x1 (11.4)

d̂2 = Q�d2� = d2 +q2 (11.5)

x̂2 = x̂1 + d̂2 = x1 +q1 +d2 +q2 (11.6)

= x2 +q1 +q2� (11.7)

Continuing this process, at the nth iteration we get

x̂n = xn +
n∑

k=1

qk� (11.8)

We can see that the quantization error accumulates as the process continues. Theoretically,
if the quantization error process is zero mean, the errors will cancel each other out in the
long run. In practice, often long before that can happen, the finite precision of the machines
causes the reconstructed value to overflow.

Notice that the encoder and decoder are operating with different pieces of information.
The encoder generates the difference sequence based on the original sample values, while
the decoder adds back the quantized difference onto a distorted version of the original signal.
We can solve this problem by forcing both encoder and decoder to use the same information
during the differencing and reconstruction operations. The only information available to the
receiver about the sequence �xn� is the reconstructed sequence �x̂n�. As this information
is also available to the transmitter, we can modify the differencing operation to use the
reconstructed value of the previous sample, instead of the previous sample itself, that is,

dn = xn − x̂n−1� (11.9)

330 11 D I F F E R E N T I A L E N C O D I N G

Using this new differencing operation, let’s repeat our examination of the quantization
and reconstruction process. We again assume that x̂0 = x0.

d1 = x1 −x0 (11.10)

d̂1 = Q�d1� = d1 +q1 (11.11)

x̂1 = x0 + d̂1 = x0 +d1 +q1 = x1 +q1 (11.12)

d2 = x2 − x̂1 (11.13)

d̂2 = Q�d2� = d2 +q2 (11.14)

x̂2 = x̂1 + d̂2 = x̂1 +d2 +q2 (11.15)

= x2 +q2 (11.16)

At the nth iteration we have

x̂n = xn +qn� (11.17)

and there is no accumulation of the quantization noise. In fact, the quantization noise in the
nth reconstructed sequence is the quantization noise incurred by the quantization of the nth
difference. The quantization error for the difference sequence is substantially less than the
quantization error for the original sequence. Therefore, this procedure leads to an overall
reduction of the quantization error. If we are satisfied with the quantization error for a given
number of bits per sample, then we can use fewer bits with a differential encoding procedure
to attain the same distortion.

Example 11 . 3 . 2:

Let us try to quantize and then reconstruct the sinusoid of Example 11.2.1 using the two
different differencing approaches. Using the first approach, we get a dynamic range of

1.0

0.6

0.4

0

–0.2

–0.8

–1.0

0.8

0.2

–0.4

–0.6

0.5 1.0 1.5 2.0 2.5 3.0

Original

Approach 2
Approach 1

+
+

+

+

+

+

+

+

+

+

++

++

F IGURE 11. 4 Sinusoid and reconstructions.

11.3 The Basic Algorithm 331

differences from −0�2 to 0.2. Therefore, we use a quantizer step size of 0.1. In the second
approach, the differences lie in the range �−0�4� 0�4�. In order to cover this range, we use a
step size in the quantizer of 0.2. The reconstructed signals are shown in Figure 11.4.

Notice in the first case that the reconstruction diverges from the signal as we process
more and more of the signal. Although the second differencing approach uses a larger step
size, this approach provides a more accurate representation of the input. �

A block diagram of the differential encoding system as we have described it to this point
is shown in Figure 11.5. We have drawn a dotted box around the portion of the encoder that
mimics the decoder. The encoder must mimic the decoder in order to obtain a copy of the
reconstructed sample used to generate the next difference.

We would like our difference value to be as small as possible. For this to happen,
given the system we have described to this point, x̂n−1 should be as close to xn as possible.
However, x̂n−1 is the reconstructed value of xn−1; therefore, we would like x̂n−1 to be
close to xn−1. Unless xn−1 is always very close to xn, some function of past values of the
reconstructed sequence can often provide a better prediction of xn. We will look at some
of these predictor functions later in this chapter. For now, let’s modify Figure 11.5 and
replace the delay block with a predictor block to obtain our basic differential encoding
system as shown in Figure 11.6. The output of the predictor is the prediction sequence �pn�
given by

pn = f�x̂n−1� x̂n−2�

 � x̂0	� (11.18)

This basic differential encoding system is known as the differential pulse code modulation
(DPCM) system. The DPCM system was developed at Bell Laboratories a few years after
World War II [164]. It is most popular as a speech-encoding system and is widely used in
telephone communications.

As we can see from Figure 11.6, the DPCM system consists of two major components,
the predictor and the quantizer. The study of DPCM is basically the study of these two
components. In the following sections, we will look at various predictor and quantizer
designs and see how they function together in a differential encoding system.

Q

Delay

Encoder

Decoder

dnxn

xn

xn−1

xn−1

dn+
−

+
+

dn xn

^

^

^

^ ^

^
+

+

F IGURE 11. 5 A simple differential encoding system.

332 11 D I F F E R E N T I A L E N C O D I N G

Q

P

P

Encoder

Decoder

dnxn

xn

pn

pn

pn

dn+

–

+
+

dn xn

^

^^

^
+

+

F IGURE 11. 6 The basic algorithm.

11 .4 Predict ion in DPCM

Differential encoding systems like DPCM gain their advantage by the reduction in the
variance and dynamic range of the difference sequence. How much the variance is reduced
depends on how well the predictor can predict the next symbol based on the past reconstructed
symbols. In this section we will mathematically formulate the prediction problem. The
analytical solution to this problem will give us one of the more widely used approaches
to the design of the predictor. In order to follow this development, some familiarity with
the mathematical concepts of expectation and correlation is needed. These concepts are
described in Appendix A.

Define �2
d, the variance of the difference sequence, as

�2
d = E��xn −pn	

2� (11.19)

where E�� is the expectation operator. As the predictor outputs pn are given by (11.18), the
design of a good predictor is essentially the selection of the function f�·	 that minimizes �2

d.
One problem with this formulation is that x̂n is given by

x̂n = xn +qn

and qn depends on the variance of dn. Thus, by picking f�·	, we affect �2
d, which in turn

affects the reconstruction x̂n, which then affects the selection of f�·	. This coupling makes an
explicit solution extremely difficult for even the most well-behaved source [165]. As most
real sources are far from well behaved, the problem becomes computationally intractable in
most applications.

We can avoid this problem by making an assumption known as the fine quantization
assumption. We assume that quantizer step sizes are so small that we can replace x̂n by xn,
and therefore

pn = f�xn−1� xn−2�

 � x0	� (11.20)

Once the function f�·	 has been found, we can use it with the reconstructed values x̂n

to obtain pn. If we now assume that the output of the source is a stationary process,
from the study of random processes [166], we know that the function that minimizes �2

d

11.4 Prediction in DPCM 333

is the conditional expectation E�xn � xn−1� xn−2�

 � x0�. Unfortunately, the assumption of
stationarity is generally not true, and even if it were, finding this conditional expectation
requires the knowledge of nth-order conditional probabilities, which would generally not be
available.

Given the difficulty of finding the best solution, in many applications we simplify the
problem by restricting the predictor function to be linear. That is, the prediction pn is given by

pn =
N∑

i=1

aix̂n−i� (11.21)

The value of N specifies the order of the predictor. Using the fine quantization assumption,
we can now write the predictor design problem as follows: Find the �ai� so as to minimize �2

d.

�2
d = E

[(

xn −
N∑

i=1

aixn−i

)2]

(11.22)

where we assume that the source sequence is a realization of a real valued wide sense
stationary process. Take the derivative of �2

d with respect to each of the ai and set this equal
to zero. We get N equations and N unknowns:

��2
d

�a1

= −2E

[(

xn −
N∑

i=1

aixn−i

)

xn−1

]

= 0 (11.23)

��2
d

�a2

= −2E

[(

xn −
N∑

i=1

aixn−i

)

xn−2

]

= 0 (11.24)

���
���

��2
d

�aN

= −2E

[(

xn −
N∑

i=1

aixn−i

)

xn−N

]

= 0� (11.25)

Taking the expectations, we can rewrite these equations as

N∑

i=1

aiRxx�i−1	 = Rxx�1	 (11.26)

N∑

i=1

aiRxx�i−2	 = Rxx�2	 (11.27)

���
���

N∑

i=1

aiRxx�i−N	 = Rxx�N	 (11.28)

where Rxx�k	 is the autocorrelation function of xn:

Rxx�k	 = E�xnxn+k�� (11.29)

334 11 D I F F E R E N T I A L E N C O D I N G

We can write these equations in matrix form as

RA = P (11.30)

where

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Rxx�0	 Rxx�1	 Rxx�2	 · · · Rxx�N −1	
Rxx�1	 Rxx�0	 Rxx�1	 · · · Rxx�N −2	
Rxx�2	 Rxx�1	 Rxx�0	 · · · Rxx�N −3	

���
���

���
Rxx�N −1	 Rxx�N −2	 Rxx�N −3	 · · · Rxx�0	

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(11.31)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1

a2

a3
���

aN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(11.32)

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Rxx�1	
Rxx�2	
Rxx�3	

���
Rxx�N	

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(11.33)

where we have used the fact that Rxx�−k	 = Rxx�k	 for real valued wide sense stationary
processes. These equations are referred to as the discrete form of the Wiener-Hopf equations.
If we know the autocorrelation values �Rxx�k	� for k = 0� 1�

 �N , then we can find the
predictor coefficients as

A = R−1P� (11.34)

Example 11 . 4 . 1:

For the speech sequence shown in Figure 11.7, let us find predictors of orders one, two, and
three and examine their performance. We begin by estimating the autocorrelation values from
the data. Given M data points, we use the following average to find the value for Rxx�k	:

Rxx�k	 = 1
M −k

M−k∑

i=1

xixi+k� (11.35)

Using these autocorrelation values, we obtain the following coefficients for the three dif-
ferent predictors. For N = 1, the predictor coefficient is a1 = 0�66; for N = 2, the coefficients
are a1 = 0�596� a2 = 0�096; and for N = 3, the coefficients are a1 = 0�577� a2 = −0�025, and
a3 = 0�204. We used these coefficients to generate the residual sequence. In order to see the
reduction in variance, we computed the ratio of the source output variance to the variance of

11.4 Prediction in DPCM 335

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F IGURE 11. 7 A segment of speech: a male speaker saying the word “test.”

the residual sequence. For comparison, we also computed this ratio for the case where the
residual sequence is obtained by taking the difference of neighboring samples. The sample-to-
sample differences resulted in a ratio of 1.63. Compared to this, the ratio of the input variance
to the variance of the residuals from the first-order predictor was 2.04. With a second-order
predictor, this ratio rose to 3.37, and with a third-order predictor, the ratio was 6.28.

The residual sequence for the third-order predictor is shown in Figure 11.8. Notice that
although there has been a reduction in the dynamic range, there is still substantial structure

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F IGURE 11. 8 The residual sequence using a third-order predictor.

336 11 D I F F E R E N T I A L E N C O D I N G

in the residual sequence, especially in the range of samples from about the 700th sample
to the 2000th sample. We will look at ways of removing this structure when we discuss
speech coding.

Let us now introduce a quantizer into the loop and look at the performance of the DPCM
system. For simplicity, we will use a uniform quantizer. If we look at the histogram of the
residual sequence, we find that it is highly peaked. Therefore, we will assume that the input
to the quantizer will be Laplacian. We will also adjust the step size of the quantizer based on
the variance of the residual. The step sizes provided in Chapter 9 are based on the assumption
that the quantizer input has a unit variance. It is easy to show that when the variance
differs from unity, the optimal step size can be obtained by multiplying the step size for a
variance of one with the standard deviation of the input. Using this approach for a four-level
Laplacian quantizer, we obtain step sizes of 0.75, 0.59, and 0.43 for the first-, second-,
and third-order predictors, and step sizes of 0.3, 0.4, and 0.5 for an eight-level Laplacian
quantizer. We measure the performance using two different measures, the signal-to-noise
ratio (SNR) and the signal-to-prediction-error ratio. These are defined as follows:

SNR�dB	 =
∑M

i=1 x2
i∑M

i=1�xi − x̂i	
2

(11.36)

SPER�dB	 =
∑M

i=1 x2
i∑M

i=1�xi −pi	
2
� (11.37)

The results are tabulated in Table 11.1. For comparison we have also included the
results when no prediction is used; that is, we directly quantize the input. Notice the large
difference between using a first-order predictor and a second-order predictor, and then
the relatively minor increase when going from a second-order predictor to a third-order
predictor. This is fairly typical when using a fixed quantizer.

Finally, let’s take a look at the reconstructed speech signal. The speech coded using
a third-order predictor and an eight-level quantizer is shown in Figure 11.9. Although the
reconstructed sequence looks like the original, notice that there is significant distortion in
areas where the source output values are small. This is because in these regions the input
to the quantizer is close to zero. Because the quantizer does not have a zero output level,

TAB L E 11 . 1 Performance of DPCM system
with different predictors and
quantizers.

Quantizer Predictor Order SNR (dB) SPER (dB)

Four-level None 2.43 0
1 3.37 2.65
2 8.35 5.9
3 8.74 6.1

Eight-level None 3.65 0
1 3.87 2.74
2 9.81 6.37
3 10.16 6.71

11.5 Adaptive DPCM 337

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F IGURE 11. 9 The reconstructed sequence using a third-order predictor and an
eight-level uniform quantizer.

the output of the quantizer flips between the two inner levels. If we listened to this signal,
we would hear a hissing sound in the reconstructed signal.

The speech signal used to generate this example is contained among the data sets
accompanying this book in the file testm.raw. The function readau.c can be used to
read the file. You are encouraged to reproduce the results in this example and listen to the
resulting reconstructions. �

If we look at the speech sequence in Figure 11.7, we can see that there are several
distinct segments of speech. Between sample number 700 and sample number 2000, the
speech looks periodic. Between sample number 2200 and sample number 3500, the speech
is low amplitude and noiselike. Given the distinctly different characteristics in these two
regions, it would make sense to use different approaches to encode these segments. Some
approaches to dealing with these issues are specific to speech coding, and we will discuss
these approaches when we specifically discuss encoding speech using DPCM. However, the
problem is also much more widespread than when encoding speech. A general response to
the nonstationarity of the input is the use of adaptation in prediction. We will look at some
of these approaches in the next section.

11.5 Adaptive DPCM

As DPCM consists of two main components, the quantizer and the predictor, making DPCM
adaptive means making the quantizer and the predictor adaptive. Recall that we can adapt
a system based on its input or output. The former approach is called forward adaptation;
the latter, backward adaptation. In the case of forward adaptation, the parameters of the

338 11 D I F F E R E N T I A L E N C O D I N G

system are updated based on the input to the encoder, which is not available to the decoder.
Therefore, the updated parameters have to be sent to the decoder as side information. In the
case of backward adaptation, the adaptation is based on the output of the encoder. As this
output is also available to the decoder, there is no need for transmission of side information.

In cases where the predictor is adaptive, especially when it is backward adaptive, we
generally use adaptive quantizers (forward or backward). The reason for this is that the
backward adaptive predictor is adapted based on the quantized outputs. If for some reason
the predictor does not adapt properly at some point, this results in predictions that are far
from the input, and the residuals will be large. In a fixed quantizer, these large residuals will
tend to fall in the overload regions with consequently unbounded quantization errors. The
reconstructed values with these large errors will then be used to adapt the predictor, which
will result in the predictor moving further and further from the input.

The same constraint is not present for quantization, and we can have adaptive quantization
with fixed predictors.

11 . 5 . 1 Adapt ive Quant izat ion in DPCM

In forward adaptive quantization, the input is divided into blocks. The quantizer parameters
are estimated for each block. These parameters are transmitted to the receiver as side
information. In DPCM, the quantizer is in a feedback loop, which means that the input to
the quantizer is not conveniently available in a form that can be used for forward adaptive
quantization. Therefore, most DPCM systems use backward adaptive quantization.

The backward adaptive quantization used in DPCM systems is basically a variation of
the backward adaptive Jayant quantizer described in Chapter 9. In Chapter 9, the Jayant
algorithm was used to adapt the quantizer to a stationary input. In DPCM, the algorithm is
used to adapt the quantizer to the local behavior of nonstationary inputs. Consider the speech
segment shown in Figure 11.7 and the residual sequence shown in Figure 11.8. Obviously,
the quantizer used around the 3000th sample should not be the same quantizer that was used
around the 1000th sample. The Jayant algorithm provides an effective approach to adapting
the quantizer to the variations in the input characteristics.

Example 11 . 5 . 1:

Let’s encode the speech sample shown in Figure 11.7 using a DPCM system with a backward
adaptive quantizer. We will use a third-order predictor and an eight-level quantizer. We will
also use the following multipliers [110]:

M0 = 0�90� M1 = 0�90� M2 = 1�25� M3 = 1�75�

The results are shown in Figure 11.10. Notice the region at the beginning of the speech
sample and between the 3000th and 3500th sample, where the DPCM system with the
fixed quantizer had problems. Because the step size of the adaptive quantizer can become
quite small, these regions have been nicely reproduced. However, right after this region,
the speech output has a larger spike than the reconstructed waveform. This is an indication
that the quantizer is not expanding rapidly enough. This can be remedied by increasing the

11.5 Adaptive DPCM 339

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F IGURE 11. 10 The reconstructed sequence using a third-order predictor and an
eight-level Jayant quantizer.

value of M3. The program used to generate this example is dpcm_aqb. You can use this
program to study the behavior of the system for different configurations. �

11 . 5 . 2 Adapt ive Predi c t ion in DPCM

The equations used to obtain the predictor coefficients were derived based on the assumption
of stationarity. However, we see from Figure 11.7 that this assumption is not true. In the
speech segment shown in Figure 11.7, different segments have different characteristics. This
is true for most sources we deal with; while the source output may be locally stationary over
any significant length of the output, the statistics may vary considerably. In this situation, it
is better to adapt the predictor to match the local statistics. This adaptation can be forward
adaptive or backward adaptive.

DPCM wi t h Fo rwa rd Adap t i ve P red i c t i on (DPCM-APF)

In forward adaptive prediction, the input is divided into segments or blocks. In speech coding
this block consists of about 16 ms of speech. At a sampling rate of 8000 samples per second,
this corresponds to 128 samples per block [123, 167]. In image coding, we use an 8 × 8
block [168].

The autocorrelation coefficients are computed for each block. The predictor coefficients
are obtained from the autocorrelation coefficients and quantized using a relatively high-rate
quantizer. If the coefficient values are to be quantized directly, we need to use at least
12 bits per coefficient [123]. This number can be reduced considerably if we represent
the predictor coefficients in terms of parcor coefficients; we will describe how to obtain

340 11 D I F F E R E N T I A L E N C O D I N G

the parcor coefficients in Chapter 17. For now, let’s assume that the coefficients can be
transmitted with an expenditure of about 6 bits per coefficient.

In order to estimate the autocorrelation for each block, we generally assume that the sam-
ple values outside each block are zero. Therefore, for a block length of M , the autocorrelation
function for the lth block would be estimated by

R�l	
xx�k	 = 1

M −k

lM−k∑

i=�l−1	M+1

xixi+k (11.38)

for k positive, or

R�l	
xx�k	 = 1

M +k

lM∑

i=�l−1	M+1−k

xixi+k (11.39)

for k negative. Notice that R�l	
xx�k	 = R�l	

xx�−k	, which agrees with our initial assumption.

DPCM wi t h Ba ckward Adap t i ve P red i c t i on (DPCM-APB)

Forward adaptive prediction requires that we buffer the input. This introduces delay in the
transmission of the speech. As the amount of buffering is small, the use of forward adaptive
prediction when there is only one encoder and decoder is not a big problem. However,
in the case of speech, the connection between two parties may be several links, each of
which may consist of a DPCM encoder and decoder. In such tandem links, the amount of
delay can become large enough to be a nuisance. Furthermore, the need to transmit side
information makes the system more complex. In order to avoid these problems, we can adapt
the predictor based on the output of the encoder, which is also available to the decoder. The
adaptation is done in a sequential manner [169, 167].

In our derivation of the optimum predictor coefficients, we took the derivative of the
statistical average of the squared prediction error or residual sequence. In order to do this,
we had to assume that the input process was stationary. Let us now remove that assumption
and try to figure out how to adapt the predictor to the input algebraically. To keep matters
simple, we will start with a first-order predictor and then generalize the result to higher
orders.

For a first-order predictor, the value of the residual squared at time n would be given by

d2
n = �xn −a1x̂n−1	

2� (11.40)

If we could plot the value of d2
n against a1, we would get a graph similar to the one shown

in Figure 11.11. Let’s take a look at the derivative of d2
n as a function of whether the current

value of a1 is to the left or right of the optimal value of a1—that is, the value of a1 for
which d2

n is minimum. When a1 is to the left of the optimal value, the derivative is negative.
Furthermore, the derivative will have a larger magnitude when a1 is further away from the
optimal value. If we were asked to adapt a1, we would add to the current value of a1. The
amount to add would be large if a1 was far from the optimal value, and small if a1 was
close to the optimal value. If the current value was to the right of the optimal value, the
derivative would be positive, and we would subtract some amount from a1 to adapt it. The

11.5 Adaptive DPCM 341

dn

a1

2

F IGURE 11. 11 A plot of the residual squared versus the predictor coefficient.

amount to subtract would be larger if we were further from the optimal, and as before, the
derivative would have a larger magnitude if a1 were further from the optimal value.

At any given time, in order to adapt the coefficient at time n + 1, we add an amount
proportional to the magnitude of the derivative with a sign that is opposite to that of the
derivative of d2

n at time n:

a
�n+1	
1 = a

�n	
1 −

�d2
n

�a1

(11.41)

where is some proportionality constant.

�d2
n

�a1

= −2�xn −a1x̂n−1	x̂n−1 (11.42)

= −2dnx̂n−1� (11.43)

Substituting this into (11.41), we get

a
�n+1	
1 = a

�n	
1 +dnx̂n−1 (11.44)

where we have absorbed the 2 into . The residual value dn is available only to the encoder.
Therefore, in order for both the encoder and decoder to use the same algorithm, we replace
dn by d̂n in (11.44) to obtain

a
�n+1	
1 = a

�n	
1 +d̂nx̂n−1� (11.45)

Extending this adaptation equation for a first-order predictor to an N th-order predictor
is relatively easy. The equation for the squared prediction error is given by

d2
n =

(

xn −
N∑

i=1

aix̂n−i

)2

� (11.46)

342 11 D I F F E R E N T I A L E N C O D I N G

Taking the derivative with respect to aj will give us the adaptation equation for the jth
predictor coefficient:

a
�n+1	
j = a

�n	
j +d̂nx̂n−j � (11.47)

We can combine all N equations in vector form to get

A�n+1	 = A�n	 +d̂nX̂n−1 (11.48)

where

X̂n =

⎡

⎢
⎢
⎢
⎣

x̂n

x̂n−1
���

x̂n−N+1

�

⎤

⎥
⎥
⎥
⎦

(11.49)

This particular adaptation algorithm is called the least mean squared (LMS) algorithm [170].

11.6 Delta Modulat ion

A very simple form of DPCM that has been widely used in a number of speech-coding
applications is the delta modulator (DM). The DM can be viewed as a DPCM system with
a 1-bit (two-level) quantizer. With a two-level quantizer with output values ±�, we can
only represent a sample-to-sample difference of �. If, for a given source sequence, the
sample-to-sample difference is often very different from �, then we may incur substantial
distortion. One way to limit the difference is to sample more often. In Figure 11.12 we see
a signal that has been sampled at two different rates. The lower-rate samples are shown
by open circles, while the higher-rate samples are represented by +. It is apparent that the
lower-rate samples are further apart in value.

The rate at which a signal is sampled is governed by the highest frequency component of
a signal. If the highest frequency component in a signal is W , then in order to obtain an exact
reconstruction of the signal, we need to sample it at least at twice the highest frequency, or
2W . In systems that use delta modulation, we usually sample the signal at much more than
twice the highest frequency. If Fs is the sampling frequency, then the ratio of Fs to 2W can
range from almost 1 to almost 100 [123]. The higher sampling rates are used for high-quality
A/D converters, while the lower rates are more common for low-rate speech coders.

+ + + + + +
+ +

+
+

+
+

+ + + + +
+

+ + +
+

+

F IGURE 11. 12 A signal sampled at two different rates.

11.6 Delta Modulation 343

Granular region

Slope overload
region

F IGURE 11. 13 A source output sampled and coded using delta modulation.

If we look at a block diagram of a delta modulation system, we see that, while the block
diagram of the encoder is identical to that of the DPCM system, the standard DPCM decoder
is followed by a filter. The reason for the existence of the filter is evident from Figure 11.13,
where we show a source output and the unfiltered reconstruction. The samples of the source
output are represented by the filled circles. As the source is sampled at several times the
highest frequency, the staircase shape of the reconstructed signal results in distortion in
frequency bands outside the band of frequencies occupied by the signal. The filter can be
used to remove these spurious frequencies.

The reconstruction shown in Figure 11.13 was obtained with a delta modulator using a
fixed quantizer. Delta modulation systems that use a fixed step size are often referred to as
linear delta modulators. Notice that the reconstructed signal shows one of two behaviors.
In regions where the source output is relatively constant, the output alternates up or down
by �; these regions are called the granular regions. In the regions where the source output
rises or falls fast, the reconstructed output cannot keep up; these regions are called the slope
overload regions. If we want to reduce the granular error, we need to make the step size
� small. However, this will make it more difficult for the reconstruction to follow rapid
changes in the input. In other words, it will result in an increase in the overload error. To
avoid the overload condition, we need to make the step size large so that the reconstruction
can quickly catch up with rapid changes in the input. However, this will increase the granular
error.

One way to avoid this impasse is to adapt the step size to the characteristics of the
input, as shown in Figure 11.14. In quasi-constant regions, make the step size small in order
to reduce the granular error. In regions of rapid change, increase the step size in order to
reduce overload error. There are various ways of adapting the delta modulator to the local
characteristics of the source output. We describe two of the more popular ways here.

11 . 6 . 1 Cons tant Fac tor Adapt ive Del ta Modulat ion
(CFDM)

The objective of adaptive delta modulation is clear: increase the step size in overload regions
and decrease it in granular regions. The problem lies in knowing when the system is in each
of these regions. Looking at Figure 11.13, we see that in the granular region the output of

344 11 D I F F E R E N T I A L E N C O D I N G

Granular region

Slope overload
region

F IGURE 11. 14 A source output sampled and coded using adaptive delta
modulation.

the quantizer changes sign with almost every input sample; in the overload region, the sign
of the quantizer output is the same for a string of input samples. Therefore, we can define
an overload or granular condition based on whether the output of the quantizer has been
changing signs. A very simple system [171] uses a history of one sample to decide whether
the system is in overload or granular condition and whether to expand or contract the step
size. If sn denotes the sign of the quantizer output d̂n,

sn =
{

1 if d̂n > 0

−1 if d̂n < 0
(11.50)

the adaptation logic is given by

�n =
{

M1�n−1 sn = sn−1

M2�n−1 sn �= sn−1

(11.51)

where M1 = 1
M2

= M > 1. In general, M < 2.
By increasing the memory, we can improve the response of the CFDM system. For

example, if we looked at two past samples, we could decide that the system was moving
from overload to granular condition if the sign had been the same for the past two samples
and then changed with the current sample:

sn �= sn−1 = sn−2� (11.52)

In this case it would be reasonable to assume that the step size had been expanding previously
and, therefore, needed a sharp contraction. If

sn = sn−1 �= sn−2� (11.53)

then it would mean that the system was probably entering the overload region, while

sn = sn−1 = sn−2 (11.54)

would mean the system was in overload and the step size should be expanded rapidly.

11.7 Speech Coding 345

For the encoding of speech, the following multipliers Mi are recommended by [172] for
a CFDM system with two-sample memory:

sn �= sn−1 = sn−2 M1 = 0�4 (11.55)

sn �= sn−1 �= sn−2 M2 = 0�9 (11.56)

sn = sn−1 �= sn−2 M3 = 1�5 (11.57)

sn = sn−1 = sn−2 M4 = 2�0� (11.58)

The amount of memory can be increased further with a concurrent increase in complexity.
The space shuttle used a delta modulator with a memory of seven [173].

11 . 6 . 2 Cont inuous ly Var iab le S lope Del ta
Modulat ion

The CFDM systems described use a rapid adaptation scheme. For low-rate speech coding,
it is more pleasing if the adaptation is over a longer period of time. This slower adaptation
results in a decrease in the granular error and generally an increase in overload error. Delta
modulation systems that adapt over longer periods of time are referred to as syllabically
companded. A popular class of syllabically companded delta modulation systems is the
continuously variable slope delta modulation systems.

The adaptation logic used in CVSD systems is as follows [123]:

�n = ��n−1 +n�0 (11.59)

where � is a number less than but close to one, and n is equal to one if J of the last K
quantizer outputs were of the same sign. That is, we look in a window of length K to obtain
the behavior of the source output. If this condition is not satisfied, then n is equal to zero.
Standard values for J and K are J = 3 and K = 3.

11.7 Speech Coding

Differential encoding schemes are immensely popular for speech encoding. They are used in
the telephone system, voice messaging, and multimedia applications, among others. Adaptive
DPCM is a part of several international standards (ITU-T G.721, ITU G.723, ITU G.726,
ITU-T G.722), which we will look at here and in later chapters.

Before we do that, let’s take a look at one issue specific to speech coding. In Figure 11.7,
we see that there is a segment of speech that looks highly periodic. We can see this periodicity
if we plot the autocorrelation function of the speech segment (Figure 11.15).

The autocorrelation peaks at a lag value of 47 and multiples of 47. This indicates a
periodicity of 47 samples. This period is called the pitch period. The predictor we originally
designed did not take advantage of this periodicity, as the largest predictor was a third-order
predictor, and this periodic structure takes 47 samples to show up. We can take advantage
of this periodicity by constructing an outer prediction loop around the basic DPCM structure

346 11 D I F F E R E N T I A L E N C O D I N G

1.0

0.6

−0.2

−0.4

0.8

0.4

0

0.2

0 20 40 60 80 100

F IGURE 11. 15 Autocorrelation function for test.snd.

^ ^dn dn
xn

xn
^

+
–

+

+
Q

dn

Encoder

Decoder

P

P
pn pn

pn

xn

–
+

+

+

Pp

PP

+

+

+
+

F IGURE 11. 16 The DPCM structure with a pitch predictor.

as shown in Figure 11.16. This can be a simple single coefficient predictor of the form
bx̂n−� , where � is the pitch period. Using this system on testm.raw, we get the residual
sequence shown in Figure 11.17. Notice the decrease in amplitude in the periodic portion of
the speech.

Finally, remember that we have been using mean squared error as the distortion measure
in all of our discussions. However, perceptual tests do not always correlate with the mean
squared error. The level of distortion we perceive is often related to the level of the speech
signal. In regions where the speech signal is of higher amplitude, we have a harder time
perceiving the distortion, but the same amount of distortion in a different frequency band
might be very perceptible. We can take advantage of this by shaping the quantization error
so that most of the error lies in the region where the signal has a higher amplitude. This
variation of DPCM is called noise feedback coding (NFC) (see [123] for details).

11.7 Speech Coding 347

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F IGURE 11. 17 The residual sequence using the DPCM system with a pitch
predictor.

11 . 7 . 1 G.726

The International Telecommunications Union has published recommendations for a standard
ADPCM system, including recommendations G.721, G.723, and G.726. G.726 supersedes
G.721 and G.723. In this section we will describe the G.726 recommendation for ADPCM
systems at rates of 40, 32, 24, and 16 kbits.

The Quan t i z e r

The recommendation assumes that the speech output is sampled at the rate of 8000 samples
per second, so the rates of 40, 32, 24, and 16 kbits per second translate 5 bits per sample,
4 bits per sample, 3 bits per sample, and 2 bits per sample. Comparing this to the PCM
rate of 8 bits per sample, this would mean compression ratios of 1.6:1, 2:1, 2.67:1, and 4:1.
Except for the 16 kbits per second system, the number of levels in the quantizer are 2nb −1,
where nb is the number of bits per sample. Thus, the number of levels in the quantizer is
odd, which means that for the higher rates we use a midtread quantizer.

The quantizer is a backward adaptive quantizer with an adaptation algorithm that is simi-
lar to the Jayant quantizer. The recommendation describes the adaptation of the quantization
interval in terms of the adaptation of a scale factor. The input dk is normalized by a scale
factor k. This normalized value is quantized, and the normalization removed by multiplying
with k. In this way the quantizer is kept fixed and k is adapted to the input. Therefore,
for example, instead of expanding the step size, we would increase the value of k.

The fixed quantizer is a nonuniform midtread quantizer. The recommendation describes
the quantization boundaries and reconstruction values in terms of the log of the scaled input.
The input-output characteristics for the 24 kbit system are shown in Table 11.2. An output
value of −� in the table corresponds to a reconstruction value of 0.

348 11 D I F F E R E N T I A L E N C O D I N G

TAB L E 11 . 2 Recommended input-output
characteristics of the quantizer for
24-kbits-per-second operation.

Input Range Label Output

log2
dk
k

�Ik� log2
dk
k

�2�58��	 3 2.91
�1�70� 2�58	 2 2.13
�0�06� 1�70	 1 1.05

�−��−0�06	 0 −�

The adaptation algorithm is described in terms of the logarithm of the scale factor

y�k	 = log2 k� (11.60)

The adaptation of the scale factor or its log y�k	 depends on whether the input is speech
or speechlike, where the sample-to-sample difference can fluctuate considerably, or whether
the input is voice-band data, which might be generated by a modem, where the sample-
to-sample fluctuation is quite small. In order to handle both these situations, the scale
factor is composed of two values, a locked slow scale factor for when the sample-to-sample
differences are quite small, and an unlocked value for when the input is more dynamic:

y�k	 = al�k	yu�k−1	+ �1−al�k		yl�k−1	� (11.61)

The value of al�k	 depends on the variance of the input. It will be close to one for speech
inputs and close to zero for tones and voice band data.

The unlocked scale factor is adapted using the Jayant algorithm with one slight modifi-
cation. If we were to use the Jayant algorithm, the unlocked scale factor could be adapted as

u�k	 = k−1M�Ik−1� (11.62)

where M�·� is the multiplier. In terms of logarithms, this becomes

yu�k	 = y�k−1	+ log M�Ik−1�� (11.63)

The modification consists of introducing some memory into the adaptive process so that the
encoder and decoder converge following transmission errors:

yu�k	 = �1− �	y�k−1	+ �W�Ik−1� (11.64)

where W�·� = log M�·�, and � = 2−5.
The locked scale factor is obtained from the unlocked scale factor through

yl�k	 = �1−�	yl�k−1	+�yu�k	� � = 2−6� (11.65)

11.8 Image Coding 349

The P red i c t o r

The recommended predictor is a backward adaptive predictor that uses a linear combination
of the past two reconstructed values as well as the six past quantized differences to generate
the prediction

pk =
2∑

i=1

a
�k−1	
i x̂k−i +

6∑

i=1

b
�k−1	
i d̂k−i� (11.66)

The set of predictor coefficients is updated using a simplified form of the LMS algorithm.

a
�k	
1 = �1−2−8	a

�k−1	
1 +3×2−8sgn�z�k	�sgn�z�k−1	� (11.67)

a
�k	
2 = �1−2−7	a

�k−1	
2 +2−7�sgn�z�k	�sgn�z�k−2	�

−f
(
a

�k−1	
1 sgn�z�k	�sgn�z�k−1	�

))
(11.68)

where

z�k	 = d̂k +
6∑

i=1

b
�k−1	
i d̂k−i (11.69)

f��	 =
{

4� ��� ≤ 1
2

2sgn��	 ��� > 1
2 �

(11.70)

The coefficients �bi� are updated using the following equation:

b
�k	
i = �1−2−8	b

�k−1	
i +2−7sgn�d̂k�sgn�d̂k−i�� (11.71)

Notice that in the adaptive algorithms we have replaced products of reconstructed values
and products of quantizer outputs with products of their signs. This is computationally
much simpler and does not lead to any significant degradation of the adaptation process.
Furthermore, the values of the coefficients are selected such that multiplication with these
coefficients can be accomplished using shifts and adds. The predictor coefficients are all set
to zero when the input moves from tones to speech.

11.8 Image Coding

We saw in Chapter 7 that differential encoding provided an efficient approach to the lossless
compression of images. The case for using differential encoding in the lossy compression of
images has not been made as clearly. In the early days of image compression, both differential
encoding and transform coding were popular forms of lossy image compression. At the
current time differential encoding has a much more restricted role as part of other compression
strategies. Several currently popular approaches to image compression decompose the image
into lower and higher frequency components. As low-frequency signals have high sample-to-
sample correlation, several schemes use differential encoding to compress the low-frequency
components. We will see this use of differential encoding when we look at subband- and
wavelet-based compression schemes and, to a lesser extent, when we study transform coding.

350 11 D I F F E R E N T I A L E N C O D I N G

For now let us look at the performance of a couple of stand-alone differential image com-
pression schemes. We will compare the performance of these schemes with the performance
of the JPEG compression standard.

Consider a simple differential encoding scheme in which the predictor p�j� k� for the
pixel in the jth row and the kth column is given by

p�j� k� =

⎧
⎪⎨

⎪⎩

x̂�j� k−1� for k > 0

x̂�j −1� k� for k = 0 and j > 0

128 for j = 0 and k = 0

where x̂�j� k� is the reconstructed pixel in the jth row and kth column. We use this predictor
in conjunction with a fixed four-level uniform quantizer and code the quantizer output
using an arithmetic coder. The coding rate for the compressed image is approximately
1 bit per pixel. We compare this reconstructed image with a JPEG-coded image at the
same rate in Figure 11.18. The signal-to-noise ratio for the differentially encoded image is
22.33 dB (PSNR 31.42 dB) and for the JPEG-encoded image is 32.52 dB (PSNR 41.60 dB),
a difference of more than 10 dB!

However, this is an extremely simple system compared to the JPEG standard, which has
been fine-tuned for encoding images. Let’s make our differential encoding system slightly
more complicated by replacing the uniform quantizer with a recursively indexed quantizer
and the predictor by a somewhat more complicated predictor. For each pixel (except for the
boundary pixels) we compute the following three values:

p1 = 0�5× x̂�j −1� k�+0�5× x̂�j� k−1� (11.72)

p2 = 0�5× x̂�j −1� k−1�+0�5× x̂�j� k−1�

p3 = 0�5× x̂�j −1� k−1�+0�5× x̂�j −1� k�

F IGURE 11. 18 Left: Reconstructed image using differential encoding at 1 bit per
pixel. Right: Reconstructed image using JPEG at 1 bit per pixel.

11.9 Summary 351

F IGURE 11. 19 Left: Reconstructed image using differential encoding at 1 bit per
pixel using median predictor and recursively indexed quantizer.
Right: Reconstructed image using JPEG at 1 bit per pixel.

then obtain the predicted value as

p�j� k� = median�p1� p2� p3��

For the boundary pixels we use the simple prediction scheme. At a coding rate of 1
bit per pixel, we obtain the image shown in Figure 11.19. For reference we show it next
to the JPEG-coded image at the same rate. The signal-to-noise ratio for this reconstruction
is 29.20 dB (PSNR 38.28 dB). We have made up two-thirds of the difference using some
relatively minor modifications. We can see that it might be feasible to develop differential
encoding schemes that are competitive with other image compression techniques. Therefore,
it makes sense not to dismiss differential encoding out of hand when we need to develop
image compression systems.

11.9 Summary

In this chapter we described some of the more well-known differential encoding techniques.
Although differential encoding does not provide compression as high as vector quantiza-
tion, it is very simple to implement. This approach is especially suited to the encoding
of speech, where it has found broad application. The DPCM system consists of two main
components, the quantizer and the predictor. We spent a considerable amount of time dis-
cussing the quantizer in Chapter 9, so most of the discussion in this chapter focused on
the predictor. We have seen different ways of making the predictor adaptive, and looked at
some of the improvements to be obtained from source-specific modifications to the predictor
design.

352 11 D I F F E R E N T I A L E N C O D I N G

Fu r t he r Read ing

1. Digital Coding of Waveforms, by N.S. Jayant and P. Noll [123], contains some very
detailed and highly informative chapters on differential encoding.

2. “Adaptive Prediction in Speech Differential Encoding Systems,” by J.D. Gibson [167],
is a comprehensive treatment of the subject of adaptive prediction.

3. A real-time video coding system based on DPCM has been developed by NASA.
Details can be found in [174].

11.10 Projects and Problems

1. Generate an AR(1) process using the relationship

xn = 0�9×xn−1 + �n

where �n is the output of a Gaussian random number generator (this is option 2
in rangen).

(a) Encode this sequence using a DPCM system with a one-tap predictor with pre-
dictor coefficient 0.9 and a three-level Gaussian quantizer. Compute the variance
of the prediction error. How does this compare with the variance of the input?
How does the variance of the prediction error compare with the variance of the
��n� sequence?

(b) Repeat using predictor coefficient values of 0.5, 0.6, 0.7, 0.8, and 1.0. Comment
on the results.

2. Generate an AR(5) process using the following coefficients: 1.381, 0.6, 0.367, −0�7,
0.359.

(a) Encode this with a DPCM system with a 3-bit Gaussian nonuniform quantizer and
a first-, second-, third-, fourth-, and fifth-order predictor. Obtain these predictors
by solving (11.30). For each case compute the variance of the prediction error
and the SNR in dB. Comment on your results.

(b) Repeat using a 3-bit Jayant quantizer.

3. DPCM can also be used for encoding images. Encode the Sinan image using a one-tap
predictor of the form

x̂i�j = a×xi�j−1

and a 2-bit quantizer. Experiment with quantizers designed for different distributions.
Comment on your results.

4. Repeat the image-coding experiment of the previous problem using a Jayant quantizer.

5. DPCM-encode the Sinan, Elif, and bookshelf1 images using a one-tap predictor and a
four-level quantizer followed by a Huffman coder. Repeat using a five-level quantizer.
Compute the SNR for each case, and compare the rate distortion performances.

11.10 Projects and Problems 353

6. We want to DPCM-encode images using a two-tap predictor of the form

x̂i�j = a×xi�j−1 +b×xi−1�j

and a four-level quantizer followed by a Huffman coder. Find the equations we need
to solve to obtain coefficients a and b that minimize the mean squared error.

7. (a) DPCM-encode the Sinan, Elif, and bookshelf1 images using a two-tap predictor
and a four-level quantizer followed by a Huffman coder.

(b) Repeat using a five-level quantizer. Compute the SNR and rate (in bits per pixel)
for each case.

(c) Compare the rate distortion performances with the one-tap case.

(d) Repeat using a five-level quantizer. Compute the SNR for each case, and compare
the rate distortion performances using a one-tap and two-tap predictor.

12
Mathematical Preliminaries for
Transforms, Subbands, and
Wavelets

12.1 Overview

I
n this chapter we will review some of the mathematical background necessary
for the study of transforms, subbands, and wavelets. The topics include Fourier
series, Fourier transforms, and their discrete counterparts. We will also look
at sampling and briefly review some linear system concepts.

12.2 Introduct ion

The roots of many of the techniques we will study can be found in the mathematical
literature. Therefore, in order to understand the techniques, we will need some mathematical
background. Our approach in general will be to introduce the mathematical tools just prior
to when they are needed. However, there is a certain amount of background that is required
for most of what we will be looking at. In this chapter we will present only that material that
is a common background to all the techniques we will be studying. Our approach will be
rather utilitarian; more sophisticated coverage of these topics can be found in [175]. We will
be introducing a rather large number of concepts, many of which depend on each other.
In order to make it easier for you to find a particular concept, we will identify the paragraph
in which the concept is first introduced.

We will begin our coverage with a brief introduction to the concept of vector spaces, and
in particular the concept of the inner product. We will use these concepts in our description
of Fourier series and Fourier transforms. Next is a brief overview of linear systems, then

356 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

a look at the issues involved in sampling a function. Finally, we will revisit the Fourier
concepts in the context of sampled functions and provide a brief introduction to Z-transforms.
Throughout, we will try to get a physical feel for the various concepts.

12.3 Vector Spaces

The techniques we will be using to obtain compression will involve manipulations and
decompositions of (sampled) functions of time. In order to do this we need some sort of
mathematical framework. This framework is provided through the concept of vector spaces.

We are very familiar with vectors in two- or three-dimensional space. An example of a
vector in two-dimensional space is shown in Figure 12.1. This vector can be represented in
a number of different ways: we can represent it in terms of its magnitude and direction, or
we can represent it as a weighted sum of the unit vectors in the x and y directions, or we
can represent it as an array whose components are the coefficients of the unit vectors. Thus,
the vector v in Figure 12.1 has a magnitude of 5 and an angle of 36.86 degrees,

v = 4ux +3uy

and

v =
[

4
3

]

�

We can view the second representation as a decomposition of V into simpler building
blocks, namely, the basis vectors. The nice thing about this is that any vector in two
dimensions can be decomposed in exactly the same way. Given a particular vector A and a

4321

4

3

2

1

 ux

v
uy

F IGURE 12. 1 A vector.

12.3 Vector Spaces 357

basis set (more on this later), decomposition means finding the coefficients with which to
weight the unit vectors of the basis set. In our simple example it is easy to see what these
coefficients should be. However, we will encounter situations where it is not a trivial task
to find the coefficients that constitute the decomposition of the vector. We therefore need
some machinery to extract these coefficients. The particular machinery we will use here is
called the dot product or the inner product.

12 . 3 . 1 Dot or Inner Produc t

Given two vectors a and b such that

a =
[

a1

a2

]

� b =
[

b1

b2

]

the inner product between a and b is defined as

a ·b = a1b1 +a2b2�

Two vectors are said to be orthogonal if their inner product is zero. A set of vectors is
said to be orthogonal if each vector in the set is orthogonal to every other vector in the set.
The inner product between a vector and a unit vector from an orthogonal basis set will give
us the coefficient corresponding to that unit vector. It is easy to see that this is indeed so.
We can write ux and uy as

ux =
[

1
0

]

� uy =
[

0
1

]

�

These are obviously orthogonal. Therefore, the coefficient a1 can be obtained by

a ·ux = a1 ×1+a2 ×0 = a1

and the coefficient of uy can be obtained by

a ·uy = a1 ×0+a2 ×1 = a2�

The inner product between two vectors is in some sense a measure of how “similar” they
are, but we have to be a bit careful in how we define “similarity.” For example, consider
the vectors in Figure 12.2. The vector a is closer to ux than to uy. Therefore a ·ux will be
greater than a ·uy. The reverse is true for b.

12 . 3 . 2 Vector Space

In order to handle not just two- or three-dimensional vectors but general sequences and
functions of interest to us, we need to generalize these concepts. Let us begin with a more
general definition of vectors and the concept of a vector space.

A vector space consists of a set of elements called vectors that have the operations
of vector addition and scalar multiplication defined on them. Furthermore, the
results of these operations are also elements of the vector space.

358 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

 ux

b

a

uy

F IGURE 12. 2 Example of different vectors.

By vector addition of two vectors, we mean the vector obtained by the pointwise addition
of the components of the two vectors. For example, given two vectors a and b:

a =
⎡

⎣
a1

a2

a3

⎤

⎦ � b =
⎡

⎣
b1

b2

b3

⎤

⎦ (12.1)

the vector addition of these two vectors is given as

a +b =
⎡

⎣
a1 +b1

a2 +b2

a3 +b3

⎤

⎦ � (12.2)

By scalar multiplication, we mean the multiplication of a vector with a real or complex
number. For this set of elements to be a vector space it has to satisfy certain axioms.

Suppose V is a vector space; x� y� z are vectors; and � and � are scalars. Then the
following axioms are satisfied:

1. x +y = y +x (commutativity).

2. �x +y�+ z = x + �y + z� and ����x = ���x� (associativity).

3. There exists an element � in V such that x + � = x for all x in V . � is called the
additive identity.

4. ��x +y� = �x +�y, and ��+��x = �x +�x (distributivity).

5. 1 ·x = x, and 0 ·x = �.

6. For every x in V , there exists a �−x� such that x + �−x� = �.

A simple example of a vector space is the set of real numbers. In this set zero is
the additive identity. We can easily verify that the set of real numbers with the standard

12.3 Vector Spaces 359

operations of addition and multiplication obey the axioms stated above. See if you can verify
that the set of real numbers is a vector space. One of the advantages of this exercise is to
emphasize the fact that a vector is more than a line with an arrow at its end.

Example 12 . 3 . 1:

Another example of a vector space that is of more practical interest to us is the set of all
functions f�t� with finite energy. That is,

∫ �

−�
�f�t��2 dt < �� (12.3)

Let’s see if this set constitutes a vector space. If we define additions as pointwise addition
and scalar multiplication in the usual manner, the set of functions f�t� obviously satisfies
axioms 1, 2, and 4.

� If f�t� and g�t� are functions with finite energy, and � is a scalar, then the functions
f�t�+g�t� and �f�t� also have finite energy.

� If f�t� and g�t� are functions with finite energy, then f�t�+g�t� = g�t�+f�t� (axiom 1).

� If f�t�, g�t�, and h�t� are functions with finite energy, and � and � are scalars, then
�f�t�+g�t��+h�t� = f�t�+ �g�t�+h�t�� and ����f�t� = ���f�t�� (axiom 2).

� If f�t�, g�t�, and h�t� are functions with finite energy, and � is a scalar, then ��f�t�+
g�t�� = �f�t�+�g�t� and ��+��f�t� = �f�t�+�f�t� (axiom 4).

Let us define the additive identity function ��t� as the function that is identically zero for
all t. This function satisfies the requirement of finite energy, and we can see that axioms 3 and
5 are also satisfied. Finally, if a function f�t� has finite energy, then from Equation (12.3),
the function −f�t� also has finite energy, and axiom 6 is satisfied. Therefore, the set of all
functions with finite energy constitutes a vector space. This space is denoted by L2�f�, or
simply L2. �

12 . 3 . 3 Subspace

A subspace S of a vector space V is a subset of V whose members satisfy all the axioms of
the vector space and has the additional property that if x and y are in S, and � is a scalar,
then x +y and �x are also in S.

Example 12 . 3 . 2:

Consider the set S of continuous bounded functions on the interval [0, 1]. Then S is a
subspace of the vector space L2. �

360 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

12 . 3 . 4 Bas i s

One way we can generate a subspace is by taking linear combinations of a set of vectors. If
this set of vectors is linearly independent, then the set is called a basis for the subspace.

A set of vectors 	x1� x2�

 � is said to be linearly independent if no vector of the set
can be written as a linear combination of the other vectors in the set.

A direct consequence of this definition is the following theorem:

Theorem A set of vectors X = 	x1� x2�

 � xN � is linearly independent if and only if
the expression

∑N
i=1 �ixi = � implies that �i = 0 for all i = 1� 2�

 �N .

Proof The proof of this theorem can be found in most books on linear algebra [175].

The set of vectors formed by all possible linear combinations of vectors from a linearly
independent set X forms a vector space (Problem 1). The set X is said to be the basis for
this vector space. The basis set contains the smallest number of linearly independent vectors
required to represent each element of the vector space. More than one set can be the basis
for a given space.

Example 12 . 3 . 3:

Consider the vector space consisting of vectors �abT , where a and b are real numbers. Then
the set

X =
{[

1
0

]

�

[
0
1

]}

forms a basis for this space, as does the set

X =
{[

1
1

]

�

[
1
0

]}

�

In fact, any two vectors that are not scalar multiples of each other form a basis for this
space. �

The number of basis vectors required to generate the space is called the dimension of
the vector space. In the previous example the dimension of the vector space is two. The
dimension of the space of all continuous functions on the interval �0� 1 is infinity.

Given a particular basis, we can find a representation with respect to this basis for any
vector in the space.

12.3 Vector Spaces 361

Example 12 . 3 . 4:

If a = �34T , then

a = 3
[

1
0

]

+4
[

0
1

]

and

a = 4
[

1
1

]

+ �−1�

[
1
0

]

so the representation of a with respect to the first basis set is (3, 4), and the representation
of a with respect to the second basis set is �4� −1�. �

In the beginning of this section we had described a mathematical machinery for finding
the components of a vector that involved taking the dot product or inner product of the
vector to be decomposed with basis vectors. In order to use the same machinery in more
abstract vector spaces we need to generalize the notion of inner product.

12 . 3 . 5 Inner Produc t -—Formal Def in i t ion

An inner product between two vectors x and y, denoted by �x� y�, associates a scalar value
with each pair of vectors. The inner product satisfies the following axioms:

1. �x� y� = �y� x�∗, where ∗ denotes complex conjugate.

2. �x +y� z� = �x� z�+�y� z�.

3. ��x� y� = ��x� y�.

4. �x� x� ≥ 0, with equality if and only if x = �. The quantity
√�x� x� denoted by �x� is

called the norm of x and is analogous to our usual concept of distance.

12 . 3 . 6 Orthogonal and Orthonormal Sets

As in the case of Euclidean space, two vectors are said to be orthogonal if their inner product
is zero. If we select our basis set to be orthogonal (that is, each vector is orthogonal to every
other vector in the set) and further require that the norm of each vector be one (that is, the
basis vectors are unit vectors), such a basis set is called an orthonormal basis set. Given an
orthonormal basis, it is easy to find the representation of any vector in the space in terms
of the basis vectors using the inner product. Suppose we have a vector space SN with an
orthonormal basis set 	xi�

N
i=1. Given a vector y in the space SN , by definition of the basis

set we can write y as a linear combination of the vectors xi:

y =
N∑

i=1

�ixi�

362 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

To find the coefficient �k, we find the inner product of both sides of this equation with xk:

�y� xk� =
N∑

i=1

�i�xi� xk��

Because of orthonormality,

�xi� xk� =
{

1 i = k

0 i 	= k

and

�y� xk� = �k�

By repeating this with each xi, we can get all the coefficients �i. Note that in order to use
this machinery, the basis set has to be orthonormal.

We now have sufficient information in hand to begin looking at some of the well-known
techniques for representing functions of time. This was somewhat of a crash course in vector
spaces, and you might, with some justification, be feeling somewhat dazed. Basically, the
important ideas that we would like you to remember are the following:

� Vectors are not simply points in two- or three-dimensional space. In fact, functions of
time can be viewed as elements in a vector space.

� Collections of vectors that satisfy certain axioms make up a vector space.

� All members of a vector space can be represented as linear, or weighted, combinations
of the basis vectors (keep in mind that you can have many different basis sets for the
same space). If the basis vectors have unit magnitude and are orthogonal, they are
known as an orthonormal basis set.

� If a basis set is orthonormal, the weights, or coefficients, can be obtained by taking
the inner product of the vector with the corresponding basis vector.

In the next section we use these concepts to show how we can represent periodic functions
as linear combinations of sines and cosines.

12.4 Fourier Series

The representation of periodic functions in terms of a series of sines and cosines was
discovered by Jean Baptiste Joseph Fourier. Although he came up with this idea in order to
help him solve equations describing heat diffusion, this work has since become indispensable
in the analysis and design of systems. The work was awarded the grand prize for mathematics
in 1812 and has been called one of the most revolutionary contributions of the last century.
A very readable account of the life of Fourier and the impact of his discovery can be found
in [176].

12.4 Fourier Series 363

Fourier showed that any periodic function, no matter how awkward looking, could be
represented as the sum of smooth, well-behaved sines and cosines. Given a periodic function
f�t� with period T ,

f�t� = f�t +nT� n = ±1�±2�

we can write f�t� as

f�t� = a0 +
�∑

n=1

an cos nw0t +
�∑

n=1

bn sin nw0t� w0 = 2�

T
� (12.4)

This form is called the trigonometric Fourier series representation of f�t�.
A more useful form of the Fourier series representation from our point of view is the

exponential form of the Fourier series:

f�t� =
�∑

n=−�
cne

jnw0t� (12.5)

We can easily move between the exponential and trigonometric representations by using
Euler’s identity

ej� = cos �+ j sin �

where j = √−1.
In the terminology of the previous section, all periodic functions with period T form a

vector space. The complex exponential functions 	ejn�0t� constitute a basis for this space.
The parameters 	cn�

�
n=−� are the representations of a given function f�t� with respect to this

basis set. Therefore, by using different values of 	cn�
�
n=−�, we can build different periodic

functions. If we wanted to inform somebody what a particular periodic function looked like,
we could send the values of 	cn�

�
n=−� and they could synthesize the function.

We would like to see if this basis set is orthonormal. If it is, we want to be able to
obtain the coefficients that make up the Fourier representation using the approach described
in the previous section. In order to do all this, we need a definition of the inner product
on this vector space. If f�t� and g�t� are elements of this vector space, the inner product is
defined as

�f�t�� g�t�� = 1

T

∫ t0+T

t0

f�t�g�t�∗dt (12.6)

where t0 is an arbitrary constant and ∗ denotes complex conjugate. For convenience we will
take t0 to be zero.

Using this inner product definition, let us check to see if the basis set is orthonormal.

�ejn�0t� ejm�0t� = 1
T

∫ T

0
ejn�0te−jm�0tdt (12.7)

= 1
T

∫ T

0
ej�n−m��0tdt (12.8)

364 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

When n = m, Equation (12.7) becomes the norm of the basis vector, which is clearly one.
When n 	= m, let us define k = n−m. Then

�ejn�0t� ejm�0t� = 1
T

∫ T

0
ejk�0tdt (12.9)

= 1
jk�0

�ejk�0T −1� (12.10)

= 1
jk�0

�ejk2� −1� (12.11)

= 0 (12.12)

where we have used the facts that �0 = 2�
T

and

ejk2� = cos�2k��+ j sin�2k�� = 1�

Thus, the basis set is orthonormal.
Using this fact, we can find the coefficient cn by taking the inner product of f�t� with

the basis vector ejn�0t:

cn = �f�t�� ejn�0t� = 1
T

∫ T

0
f�t�ejn�0t dt� (12.13)

What do we gain from obtaining the Fourier representation 	cn�
�
n=−� of a function f�t�?

Before we answer this question, let us examine the context in which we generally use Fourier
analysis. We start with some signal generated by a source. If we wish to look at how this
signal changes its amplitude over a period of time (or space), we represent it as a function
of time f�t� (or a function of space f�x�). Thus, f�t� (or f�x�) is a representation of the
signal that brings out how this signal varies in time (or space). The sequence 	cn�

�
n=−�

is a different representation of the same signal. However, this representation brings out a
different aspect of the signal. The basis functions are sinusoids that differ from each other
in how fast they fluctuate in a given time interval. The basis vector e2j�0t fluctuates twice
as fast as the basis vector ej�0t. The coefficients of the basis vectors 	cn�

�
n=−� give us a

measure of the different amounts of fluctuation present in the signal. Fluctuation of this sort
is usually measured in terms of frequency. A frequency of 1 Hz denotes the completion of
one period in one second, a frequency of 2 Hz denotes the completion of two cycles in one
second, and so on. Thus, the coefficients 	cn�

�
n=−� provide us with a frequency profile of

the signal: how much of the signal changes at the rate of �0
2�

Hz, how much of the signal
changes at the rate of 2�0

2�
Hz, and so on. This information cannot be obtained by looking at

the time representation f�t�. On the other hand, the use of the 	cn�
�
n=−� representation tells

us little about how the signal changes with time. Each representation emphasizes a different
aspect of the signal. The ability to view the same signal in different ways helps us to better
understand the nature of the signal, and thus develop tools for manipulation of the signal.
Later, when we talk about wavelets, we will look at representations that provide information
about both the time profile and the frequency profile of the signal.

The Fourier series provides us with a frequency representation of periodic signals.
However, many of the signals we will be dealing with are not periodic. Fortunately, the
Fourier series concepts can be extended to nonperiodic signals.

12.5 Fourier Transform 365

12.5 Fourier Transform

Consider the function f�t� shown in Figure 12.3. Let us define a function fP�t� as

fP�t� =
�∑

n=−�
f�t −nT� (12.14)

where T > t1. This function, which is obviously periodic (fP�t +T� = fP�t�), is called the
periodic extension of the function f�t�. Because the function fP�t� is periodic, we can define
a Fourier series expansion for it:

cn = 1
T

∫ T
2

− T
2

fP�t�e−jn�0tdt (12.15)

fP�t� =
�∑

n=−�
cne

jn�0t� (12.16)

Define

C�n�T� = cnT

and

�� = �0�

and let us slightly rewrite the Fourier series equations:

C�n�T� =
∫ T

2

− T
2

fP�t�e−jn��tdt (12.17)

fP�t� =
�∑

n=−�

C�n�T�

T
ejn��t� (12.18)

We can recover f�t� from fP�t� by taking the limit of fP�t� as T goes to infinity. Because
�� = �0 = 2�

T
, this is the same as taking the limit as �� goes to zero. As �� goes to zero,

n�� goes to a continuous variable �. Therefore,

lim
T→���→0

∫ T
2

− T
2

fP�t�e−jn��tdt =
∫ �

−�
f�t�e−j�tdt� (12.19)

f(t)

 t1 t

F IGURE 12. 3 A function of time.

366 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

From the right-hand side, we can see that the resulting function is a function only of �. We
call this function the Fourier transform of f�t�, and we will denote it by F���. To recover
f�t� from F�w�, we apply the same limits to Equation (12.18):

f�t� lim
T→�

fP�t� = lim
T→���→0

�∑

n=−�
C�n�T�

��

2�
ejn��t (12.20)

= 1
2�

∫ �

−�
F���ej�td�� (12.21)

The equation

F��� =
∫ �

−�
f�t�e−j�tdt (12.22)

is generally called the Fourier transform. The function F��� tells us how the signal fluctuates
at different frequencies. The equation

f�t� = 1
2�

∫ �

−�
F�w�ej�td� (12.23)

is called the inverse Fourier transform, and it shows us how we can construct a signal
using components that fluctuate at different frequencies. We will denote the operation of the
Fourier transform by the symbol � . Thus, in the preceding, F��� = � �f�t�.

There are several important properties of the Fourier transform, three of which will be
of particular use to us. We state them here and leave the proof to the problems (Problems 2,
3, and 4).

12 . 5 . 1 Parseval ’ s Theorem

The Fourier transform is an energy-preserving transform; that is, the total energy when we
look at the time representation of the signal is the same as the total energy when we look
at the frequency representation of the signal. This makes sense because the total energy is
a physical property of the signal and should not change when we look at it using different
representations. Mathematically, this is stated as

∫ �

−�
�f�t��2 = 1

2�

∫ �

−�
�F����2 d�� (12.24)

The 1
2�

factor is a result of using units of radians (�) for frequency instead of Hertz (f).
If we substitute � = 2�f in Equation (12.24), the 2� factor will go away. This property
applies to any vector space representation obtained using an orthonormal basis set.

12 . 5 . 2 Modulat ion Proper ty

If f�t� has the Fourier transform F���, then the Fourier transform of f�t�ej�0t is F�w−w0�.
That is, multiplication with a complex exponential in the time domain corresponds to a shift

12.5 Fourier Transform 367

in the frequency domain. As a sinusoid can be written as a sum of complex exponentials,
multiplication of f�t� by a sinusoid will also correspond to shifts of F���. For example,

cos��0t� = ej�0t + e−j�0t

2
�

Therefore,

� �f�t� cos��0t� = 1
2

�F��−�0�+F��+�0�� �

12 . 5 . 3 Convolu t ion Theorem

When we examine the relationships between the input and output of linear systems, we will
encounter integrals of the following forms:

f�t� =
∫ �

−�
f1���f2�t − ��d�

or

f�t� =
∫ �

−�
f1�t − ��f2���d��

These are called convolution integrals. The convolution operation is often denoted as

f�t� = f1�t�⊗f2�t��

The convolution theorem states that if F��� =� �f�t� =� �f1�t�⊗f2�t��F1��� =� �f1�t�,
and F2��� = � �f2�t�, then

F��� = F1���F2����

We can also go in the other direction. If

F��� = F1���⊗F2��� =
∫

F1���F2��−��d�

then

f�t� = f1�t�f2�t��

As mentioned earlier, this property of the Fourier transform is important because the
convolution integral relates the input and output of linear systems, which brings us to one
of the major reasons for the popularity of the Fourier transform. We have claimed that the
Fourier series and Fourier transform provide us with an alternative frequency profile of a
signal. Although sinusoids are not the only basis set that can provide us with a frequency
profile, they do, however, have an important property that helps us study linear systems,
which we describe in the next section.

368 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

12.6 Linear Systems

A linear system is a system that has the following two properties:

� Homogeneity: Suppose we have a linear system L with input f�t� and output g�t�:

g�t� = L�f�t��

If we have two inputs, f1�t� and f2�t�, with corresponding outputs, g1�t� and g2�t�,
then the output of the sum of the two inputs is simply the sum of the two outputs:

L�f1�t�+f2�t� = g1�t�+g2�t��

� Scaling: Given a linear system L with input f�t� and output g�t�, if we multiply the
input with a scalar �, then the output will be multiplied by the same scalar:

L��f�t� = �L�f�t� = �g�t��

The two properties together are referred to as superposition.

12 . 6 . 1 T ime Invar iance

Of specific interest to us are linear systems that are time invariant. A time-invariant system
has the property that the shape of the response of this system does not depend on the time
at which the input was applied. If the response of a linear system L to an input f�t� is g�t�,

L�f�t� = g�t��

and we delay the input by some interval t0, then if L is a time-invariant system, the output
will be g�t� delayed by the same amount:

L�f�t − t0� = g�t − t0�� (12.25)

12 . 6 . 2 Trans fer Func t ion

Linear time-invariant systems have a very interesting (and useful) response when the input
is a sinusoid. If the input to a linear system is a sinusoid of a certain frequency �0, then the
output is also a sinusoid of the same frequency that has been scaled and delayed; that is,

L�cos��0t� = � cos��0�t − td��

or in terms of the complex exponential

L�ej�0t = �ej�0�t−td��

Thus, given a linear system, we can characterize its response to sinusoids of a particular
frequency by a pair of parameters, the gain � and the delay td. In general, we use the phase
� = �0td in place of the delay. The parameters � and � will generally be a function of the

12.6 Linear Systems 369

frequency, so in order to characterize the system for all frequencies, we will need a pair
of functions ���� and ����. As the Fourier transform allows us to express the signal as
coefficients of sinusoids, given an input f�t�, all we need to do is, for each frequency �,
multiply the Fourier transform of f�t� with some ����ej����, where ���� and ���� are the
gain and phase terms of the linear system for that particular frequency.

This pair of functions ���� and ���� constitute the transfer function of the linear
time-invariant system H���:

H��� = �H���� ej����

where �H���� = ����.
Because of the specific way in which a linear system responds to a sinusoidal input,

given a linear system with transfer function H���, input f�t�, and output g�t�, the Fourier
transforms of the input and output F��� and G��� are related by

G�w� = H���F����

Using the convolution theorem, f�t� and g�t� are related by

g�t� =
∫ �

−�
f���h�t − ��d�

or

g�t� =
∫ �

−�
f�t − ��h���d�

where H��� is the Fourier transform of h�t�.

12 . 6 . 3 Impulse Response

To see what h�t� is, let us look at the input-output relationship of a linear time-invariant
system from a different point of view. Let us suppose we have a linear system L with
input f�t�. We can obtain a staircase approximation fS�t� to the function f�t�, as shown in
Figure 12.4:

fS�t� =∑
f�n�t�rect

(
t −n�t

�t

)

(12.26)

where

rect
(t

T

)
=
{

1 �t� < T
2

0 otherwise�
(12.27)

The response of the linear system can be written as

L�fS�t� = L

[
∑

f�n�t�rect
(

t −n�t

�t

)]

(12.28)

= L

[
∑

f�n�t�
rect

(
t−n�t

�t

)

�t
�t

]

� (12.29)

370 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

Δt

F IGURE 12. 4 A function of time.

For a given value of �t, we can use the superposition property of linear systems to obtain

L�fS�t� =∑
f�n�t�L

[
rect� t−n�t

�t
�

�t

]

�t� (12.30)

If we now take the limit as �t goes to zero in this equation, on the left-hand side fS�t�
will go to f�t�. To see what happens on the right-hand side of the equation, first let’s look
at the effect of this limit on the function rect� t

�t
�/�t. As �t goes to zero, this function

becomes narrower and taller. However, at all times the integral of this function is equal
to one. The limit of this function as �t goes to zero is called the Dirac delta function, or
impulse function, and is denoted by ��t�:

lim
�t→0

rect� t−n�t
�t

�

�t
= ��t�� (12.31)

Therefore,

L�f�t� = lim
�t→0

L�fS�t� =
∫

f���L���t − ��d�� (12.32)

Denote the response of the system L to an impulse, or the impulse response, by h�t�:

h�t� = L���t�� (12.33)

Then, if the system is also time invariant,

L�f�t� =
∫

f���h�t − ��d�� (12.34)

Using the convolution theorem, we can see that the Fourier transform of the impulse response
h�t� is the transfer function H���.

The Dirac delta function is an interesting function. In fact, it is not clear that it is a
function at all. It has an integral that is clearly one, but at the only point where it is not zero,

12.6 Linear Systems 371

it is undefined! One property of the delta function that makes it very useful is the sifting
property:

∫ t2

t1

f�t���t − t0�dt =
{

f�t0� t1 ≤ t0 ≤ t2

0 otherwise�
(12.35)

12 . 6 . 4 F i l ter

The linear systems of most interest to us will be systems that permit certain frequency
components of the signal to pass through, while attenuating all other components of the
signal. Such systems are called filters. If the filter allows only frequency components below
a certain frequency W Hz to pass through, the filter is called a low-pass filter. The transfer
function of an ideal low-pass filter is given by

H��� =
{

e−j�� ��� < 2�W

0 otherwise�
(12.36)

This filter is said to have a bandwidth of W Hz. The magnitude of this filter is shown in
Figure 12.5. A low-pass filter will produce a smoothed version of the signal by blocking
higher-frequency components that correspond to fast variations in the signal.

A filter that attenuates the frequency components below a certain frequency W and
allows the frequency components above this frequency to pass through is called a high-pass
filter. A high-pass filter will remove slowly changing trends from the signal. Finally, a
signal that lets through a range of frequencies between two specified frequencies, say, W1

and W2, is called a band-pass filter. The bandwidth of this filter is said to be W2 −W1 Hz.
The magnitude of the transfer functions of an ideal high-pass filter and an ideal band-pass
filter with bandwidth W are shown in Figure 12.6. In all the ideal filter characteristics,
there is a sharp transition between the passband of the filter (the range of frequencies
that are not attenuated) and the stopband of the filter (those frequency intervals where the
signal is completely attenuated). Real filters do not have such sharp transitions, or cutoffs.

2πW ω

H(ω)

F IGURE 12. 5 Magnitude of the transfer function of an ideal low-pass filter.

372 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

2πW ωω ω0 ω0 + 2πW

H(ω) H(ω)

F IGURE 12. 6 Magnitudes of the transfer functions of ideal high-pass (left) and
ideal band-pass (right) filters.

2πW ω

H(ω)

F IGURE 12. 7 Magnitude of the transfer functions of a realistic low-pass filter.

The magnitude characteristics of a more realistic low-pass filter are shown in Figure 12.7.
Notice the more gentle rolloff. But when the cutoff between stopband and passband is not
sharp, how do we define the bandwidth? There are several different ways of defining the
bandwidth. The most common way is to define the frequency at which the magnitude of
the transfer function is 1/

√
2 of its maximum value (or the magnitude squared is 1/2 of its

maximum value) as the cutoff frequency.

12.7 Sampling

In 1928 Harry Nyquist at Bell Laboratories showed that if we have a signal whose Fourier
transform is zero above some frequency W Hz, it can be accurately represented using 2W
equally spaced samples per second. This very important result, known as the sampling
theorem, is at the heart of our ability to transmit analog waveforms such as speech and video

12.7 Sampling 373

using digital means. There are several ways to prove this result. We will use the results
presented in the previous section to do so.

12 . 7 . 1 Ideal Sampl ing-—Frequency Domain View

Let us suppose we have a function f�t� with Fourier transform F���, shown in Figure 12.8,
which is zero for � greater than 2�W . Define the periodic extension of F��� as

FP��� =
�∑

n=−�
F��−n�0�� �0 = 4�W� (12.37)

The periodic extension is shown in Figure 12.9. As FP��� is periodic, we can express it in
terms of a Fourier series expansion:

FP��� =
�∑

n=−�
cne

jn 1
2W �� (12.38)

The coefficients of the expansion 	cn�
�
n=−� are then given by

cn = 1
4�W

∫ 2�W

−2�W
FP���e−jn 1

2W �d�� (12.39)

However, in the interval �−2�W� 2�W��F��� is identical to FP���; therefore,

cn = 1
4�W

∫ 2�W

−2�W
F���e−jn 1

2W �d�� (12.40)

2πW ω−2πW

F(ω)

F IGURE 12. 8 A function F(�).

2πW ω−2πW

FP(ω)

F IGURE 12. 9 The periodic extension FP(�).

374 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

The function F��� is zero outside the interval �−2�W� 2�W�, so we can extend the limits
to infinity without changing the result:

cn = 1
2W

[
1

2�

∫ �

−�
F���e−jn 1

2W �d�

]

� (12.41)

The expression in brackets is simply the inverse Fourier transform evaluated at t = n
2W

;
therefore,

cn = 1
2W

f
(n

2W

)
� (12.42)

Knowing 	cn�
�
n=−� and the value of W , we can reconstruct FP���. Because FP��� and

F��� are identical in the interval �−2�W� 2�W�, therefore knowing 	cn�
�
n=−�, we can also

reconstruct F��� in this interval. But 	cn�
�
n=−� are simply the samples of f�t� every 1

2W

seconds, and F��� is zero outside this interval. Therefore, given the samples of a function
f�t� obtained at a rate of 2W samples per second, we should be able to exactly reconstruct
the function f�t�.

Let us see how we can do this:

f�t� = 1
2�

∫ �

−�
F���e−j�td� (12.43)

= 1

2�

∫ 2�W

−2�W
F���e−j�td� (12.44)

= 1

2�

∫ 2�W

−2�W
FP���e−j�td� (12.45)

= 1
2�

∫ 2�W

−2�W

�∑

n=−�
cne

jn 1
2W �e−j�td� (12.46)

= 1

2�

�∑

n=−�
cn

∫ 2�W

−2�W
ejw�t− n

2W �d�� (12.47)

Evaluating the integral and substituting for cn from Equation (12.42), we obtain

f�t� =
�∑

n=−�
f
(n

2W

)
Sinc

[
2W

(
t − n

2W

)]
(12.48)

where

Sinc�x = sin��x�

�x
� (12.49)

Thus, given samples of f�t� taken every 1
2W

seconds, or, in other words, samples of f�t�

obtained at a rate of 2W samples per second, we can reconstruct f�t� by interpolating
between the samples using the Sinc function.

12.7 Sampling 375

12 . 7 . 2 Ideal Sampl ing-—Time Domain View

Let us look at this process from a slightly different point of view, starting with the sampling
operation. Mathematically, we can represent the sampling operation by multiplying the
function f�t� with a train of impulses to obtain the sampled function fS�t�:

fS�t� = f�t�
�∑

n=−�
��t −nT�� T <

1
2W

� (12.50)

To obtain the Fourier transform of the sampled function, we use the convolution theorem:

�

[

f�t�
�∑

n=−�
��t −nT�

]

= � �f�t�⊗�

[�∑

n=−�
��t −nT�

]

� (12.51)

Let us denote the Fourier transform of f�t� by F���. The Fourier transform of a train of
impulses in the time domain is a train of impulses in the frequency domain (Problem 5):

�

[�∑

n=−�
��t −nT�

]

= �0

�∑

n=−�
��w−n�0� �0 = 2�

T
� (12.52)

Thus, the Fourier transform of fS�t� is

FS��� = F���⊗
�∑

n=−�
��w−n�0� (12.53)

=
�∑

n=−�
F���⊗��w−n�0� (12.54)

=
�∑

n=−�
F��−n�0� (12.55)

where the last equality is due to the sifting property of the delta function.
Pictorially, for F��� as shown in Figure 12.8, FS��� is shown in Figure 12.10. Note that

if T is less than 1
2W

��0 is greater than 4�W , and as long as �0 is greater than 4�W , we
can recover F��� by passing FS��� through an ideal low-pass filter with bandwidth W Hz
(2�W radians).

What happens if we do sample at a rate less than 2W samples per second (that is, �0 is
less than 4�W)? Again we can see the results most easily in a pictorial fashion. The result

2πW ωσ0−2πW

F IGURE 12. 10 Fourier transform of the sampled function.

376 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

2πW ω−2πW

2πW ω−2πW

F IGURE 12. 11 Effect of sampling at a rate less than 2W samples per second.

2πW ω−2πW

F IGURE 12. 12 Aliased reconstruction.

for �0 equal to 3�W is shown in Figure 12.11. Filtering this signal through an ideal low-pass
filter, we get the distorted signal shown in Figure 12.12. Therefore, if �0 is less than 4�W ,
we can no longer recover the signal f�t� from its samples. This distortion is known as
aliasing. In order to prevent aliasing, it is useful to filter the signal prior to sampling using
a low-pass filter with a bandwidth less than half the sampling frequency.

Once we have the samples of a signal, sometimes the actual times they were sampled
at are not important. In these situations we can normalize the sampling frequency to unity.
This means that the highest frequency component in the signal is at 0.5 Hz, or � radians.
Thus, when dealing with sampled signals, we will often talk about frequency ranges of −�
to �.

12.8 Discrete Fourier Transform

The procedures that we gave for obtaining the Fourier series and transform were based on the
assumption that the signal we were examining could be represented as a continuous function
of time. However, for the applications that we will be interested in, we will primarily be
dealing with samples of a signal. To obtain the Fourier transform of nonperiodic signals, we

12.8 Discrete Fourier Transform 377

started from the Fourier series and modified it to take into account the nonperiodic nature of
the signal. To obtain the discrete Fourier transform (DFT), we again start from the Fourier
series. We begin with the Fourier series representation of a sampled function, the discrete
Fourier series.

Recall that the Fourier series coefficients of a periodic function f�t� with period T is
given by

ck = 1
T

∫ T

0
f�t�ejkw0tdt� (12.56)

Suppose instead of a continuous function, we have a function sampled N times during each
period T . We can obtain the coefficients of the Fourier series representation of this sampled
function as

Fk = 1
T

∫ T

0
f�t�

N−1∑

n=0

�
(
t − n

N
T
)

ejkw0tdt (12.57)

= 1
T

N−1∑

n=0

f
(n

N
T
)

ej 2�kn
N (12.58)

where we have used the fact that w0 = 2�
T

, and we have replaced ck by Fk. Taking T = 1 for
convenience and defining

fn = f
(n

N

)
�

we get the coefficients for the discrete Fourier series (DFS) representation:

Fk =
N−1∑

n=0

fne
j 2�kn

N � (12.59)

Notice that the sequence of coefficients 	Fk� is periodic with period N .
The Fourier series representation was given by

f�t� =
�∑

k=−�
cke

jn�0t� (12.60)

Evaluating this for t = n
N

T , we get

fn = f�
n

N
T� =

�∑

k=−�
cke

j 2�kn
N � (12.61)

Let us write this in a slightly different form:

fn =
N−1∑

k=0

�∑

l=−�
ck+lN ej

2�n�k+lN�
N (12.62)

but

ej
2�n�k+lN�

N = ej 2�kn
N ej2�nl (12.63)

= ej 2�kn
N � (12.64)

378 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

Therefore,

fn =
N−1∑

k=0

ej 2�kn
N

�∑

l=−�
ck+lN � (12.65)

Define

c̄k =
�∑

l=−�
ck+lN � (12.66)

Clearly, c̄k is periodic with period N . In fact, we can show that c̄k = 1
N

Fk and

fn = 1
N

N−1∑

k=0

Fke
j 2�kn

N � (12.67)

Obtaining the discrete Fourier transform from the discrete Fourier series is simply a
matter of interpretation. We are generally interested in the discrete Fourier transform of
a finite-length sequence. If we assume that the finite-length sequence is one period of a
periodic sequence, then we can use the DFS equations to represent this sequence. The only
difference is that the expressions are only valid for one “period” of the “periodic” sequence.

The DFT is an especially powerful tool because of the existence of a fast algorithm,
called appropriately the fast Fourier transform (FFT), that can be used to compute it.

12.9 Z-Transform

In the previous section we saw how to extend the Fourier series to use with sampled
functions. We can also do the same with the Fourier transform. Recall that the Fourier
transform was given by the equation

F��� =
∫ �

−�
f�t�e−j�tdt� (12.68)

Replacing f�t� with its sampled version, we get

F��� =
∫ �

−�
f�t�

�∑

n=−�
��t −nT�e−j�tdt (12.69)

=
�∑

n=−�
fne

−j�nT (12.70)

where fn = f�nT�. This is called the discrete time Fourier transform. The Z-transform of the
sequence 	fn� is a generalization of the discrete time Fourier transform and is given by

F�z� =
�∑

n=−�
fnz

−n (12.71)

where

z = e�T+jwT � (12.72)

12.9 Z-Transform 379

Notice that if we let � equal zero, we get the original expression for the Fourier transform
of a discrete time sequence. We denote the Z-transform of a sequence by

F�z� = ��fn�

We can express this another way. Notice that the magnitude of z is given by

�z� = e�T �

Thus, when � equals zero, the magnitude of z is one. Because z is a complex number, the
magnitude of z is equal to one on the unit circle in the complex plane. Therefore, we can
say that the Fourier transform of a sequence can be obtained by evaluating the Z-transform
of the sequence on the unit circle. Notice that the Fourier transform thus obtained will be
periodic, which we expect because we are dealing with a sampled function. Further, if we
assume T to be one, � varies from −� to �, which corresponds to a frequency range of
−0�5 to 0.5 Hz. This makes sense because, by the sampling theorem, if the sampling rate is
one sample per second, the highest frequency component that can be recovered is 0.5 Hz.

For the Z-transform to exist—in other words, for the power series to converge—we need
to have

�∑

n=−�
�fnz

−n� < ��

Whether this inequality holds will depend on the sequence itself and the value of z. The
values of z for which the series converges are called the region of convergence of the
Z-transform. From our earlier discussion, we can see that for the Fourier transform of the
sequence to exist, the region of convergence should include the unit circle. Let us look at a
simple example.

Example 12 . 9 . 1:

Given the sequence

fn = anu�n

where u�n is the unit step function

u�n =
{

1 n ≥ 0

0 n < 0
(12.73)

the Z-transform is given by

F�z� =
�∑

n=0

anz−n (12.74)

=
�∑

n=0

�az−1�n� (12.75)

This is simply the sum of a geometric series. As we confront this kind of sum quite often,
let us briefly digress and obtain the formula for the sum of a geometric series.

380 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

Suppose we have a sum

Smn =
n∑

k=m

xk = xm +xm+1 +· · ·+xn (12.76)

then

xSmn = xm+1 +xm+2 +· · ·+xn+1� (12.77)

Subtracting Equation (12.77) from Equation (12.76), we get

�1−x�Smn = xm −xn+1

and

Smn = xm −xn+1

1−x
�

If the upper limit of the sum is infinity, we take the limit as n goes to infinity. This limit
exists only when �x� < 1.

Using this formula, we get the Z-transform of the 	fn� sequence as

F�z� = 1
1−az−1

�
∣
∣az−1

∣
∣< 1 (12.78)

= z

z−a
� �z� > �a� � (12.79)

�

In this example the region of convergence is the region �z� > a. For the Fourier transform
to exist, we need to include the unit circle in the region of convergence. In order for this to
happen, a has to be less than one.

Using this example, we can get some other Z-transforms that will be useful to us.

Example 12 . 9 . 2:

In the previous example we found that

�∑

n=0

anz−n = z

z−a
� �z� > �a� � (12.80)

If we take the derivative of both sides of the equation with respect to a, we get

�∑

n=0

nan−1z−n = z

�z−a�2
� �z� > �a� � (12.81)

Thus,

��nan−1u�n = z

�z−a�2
� �z� > �a� �

12.9 Z-Transform 381

If we differentiate Equation (12.80) m times, we get

�∑

n=0

n�n−1� · · · �n−m+1�an−m = m!z
�z−a�m+1

�

In other words,

�

[(
n

m

)

an−mu�n

]

= z

�z−a�m+1
� (12.82)

�

In these examples the Z-transform is a ratio of polynomials in z. For sequences of interest
to us, this will generally be the case, and the Z-transform will be of the form

F�z� = N�z�

D�z�
�

The values of z for which F�z� is zero are called the zeros of F�z�; the values for which
F�z� is infinity are called the poles of F�z�. For finite values of z, the poles will occur at the
roots of the polynomial D�z�.

The inverse Z-transform is formally given by the contour integral

1
2�j

∮

C
F�z�zn−1dz

where the integral is over the counterclockwise contour C, and C lies in the region of
convergence. This integral can be difficult to evaluate directly; therefore, in most cases we
use alternative methods for finding the inverse Z-transform.

12 . 9 . 1 Tabular Method

The inverse Z-transform has been tabulated for a number of interesting cases (see Table 12.1).
If we can write F�z� as a sum of these functions

F�z� =∑
�iFi�z�

TAB L E 12 . 1 Some Z-transform pairs.

	fn� F�z�
anu�n z

z−a

nTu�n Tz−1

�1−z−1�2

sin��nT� �sin �nT�z−1

1−2 cos��T�z−1+z−2

cos��nT� �cos �nT�z−1

1−2 cos��T�z−1+z−2

382 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

then the inverse Z-transform is given by

fn =∑
�ifi�n

where Fi�z� = ��	fi�n�.

Example 12 . 9 . 3:

F�z� = z

z−0�5
+ 2z

z−0�3

From our earlier example we know the inverse Z-transform of z/�z − a�. Using that, the
inverse Z-transform of F�z� is

fn = 0�5nu�n+2�0�3�nu�n�
�

12 . 9 . 2 Par t ia l F rac t ion Expans ion

In order to use the tabular method, we need to be able to decompose the function of interest
to us as a sum of simpler terms. The partial fraction expansion approach does exactly that
when the function is a ratio of polynomials in z.

Suppose F�z� can be written as a ratio of polynomials N�z� and D�z�. For the moment
let us assume that the degree of D�z� is greater than the degree of N�z�, and that all the
roots of D�z� are distinct (distinct roots are referred to as simple roots); that is,

F�z� = N�z�

�z− z1��z− z2� · · · �z− zL�
� (12.83)

Then we can write F�z�/z as

F�z�

z
=

L∑

i=1

Ai

z− zi

� (12.84)

If we can find the coefficients Ai, then we can write F�z� as

F�z� =
L∑

i=1

Aiz

z− zi

and the inverse Z-transform will be given by

fn =
L∑

i=1

Aiz
n
i u�n�

12.9 Z-Transform 383

The question then becomes one of finding the value of the coefficients Ai. This can be
simply done as follows: Suppose we want to find the coefficient Ak. Multiply both sides of
Equation (12.84) by �z− zk�. Simplifying this we obtain

F�z��z− zk�

z
=

L∑

i=1

Ai�z− zk�

z− zi

(12.85)

= Ak +
L∑

i=1
i 	=k

Ai�z− zk�

z− zi

� (12.86)

Evaluating this equation at z = zk, all the terms in the summation go to zero and

Ak = F�z��z− zk�

z

∣
∣
∣
∣
z=zk

� (12.87)

Example 12 . 9 . 4:

Let us use the partial fraction expansion method to find the inverse Z-transform of

F�z� = 6z2 −9z

z2 −2�5z+1
�

Then

F�z�

z
= 1

z

6z2 −9z

z2 −2�5z+1
(12.88)

= 6z−9
�z−0�5��z−2�

� (12.89)

We want to write F�z�/z in the form

F�z�

z
= A1

z−0�5
+ A2

z−2
�

Using the approach described above, we obtain

A1 = �6z−9��z−0�5�

�z−0�5��z−2�

∣
∣
∣
∣
z=0�5

(12.90)

= 4 (12.91)

A2 = �6z−9��z−2�

�z−0�5��z−2�

∣
∣
∣
∣
z=2

(12.92)

= 2� (12.93)

Therefore,

F�z� = 4z

z−0�5
+ 2z

z−2

384 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

and

fn = �4�0�5�n +2�2�nu�n� �

The procedure becomes slightly more complicated when we have repeated roots of D�z�.
Suppose we have a function

F�z� = N�z�

�z− z1��z− z2�
2
�

The partial fraction expansion of this function is

F�z�

z
= A1

z− z1

+ A2

z− z2

+ A3

�z− z2�
2
�

The values of A1 and A3 can be found as shown previously:

A1 = F�z��z− z1�

z

∣
∣
∣
∣
z=z1

(12.94)

A3 = F�z��z− z2�
2

z

∣
∣
∣
∣
z=z2

� (12.95)

However, we run into problems when we try to evaluate A2. Let’s see what happens
when we multiply both sides by �z− z2�:

F�z��z− z2�

z
= A1�z− z2�

z− z1

+A2 + A3

z− z2

� (12.96)

If we now evaluate this equation at z = z2, the third term on the right-hand side becomes
undefined. In order to avoid this problem, we first multiply both sides by �z−z2�

2 and take
the derivative with respect to z prior to evaluating the equation at z = z2:

F�z��z− z2�
2

z
= A1�z− z2�

2

z− z1

+A2�z− z2�+A3� (12.97)

Taking the derivative of both sides with respect to z, we get

d

dz

F�z��z− z2�
2

z
= 2A1�z− z2��z− z1�−A1�z− z2�

2

�z− z1�
2

+A2� (12.98)

If we now evaluate the expression at z = z2, we get

A2 = d

dz

F�z��z− z2�
2

z

∣
∣
∣
∣
z=z2

� (12.99)

12.9 Z-Transform 385

Generalizing this approach, we can show that if D�z� has a root of order m at some zk,
that portion of the partial fraction expansion can be written as

F�z�

z
= A1

z− zk

+ A2

�z− zk�
2
+· · ·+ Am

�z− zk�
m

(12.100)

and the lth coefficient can be obtained as

Al = 1
�m− l�!

d�m−l�

dz�m−l�

F�z��z− zk�m

z

∣
∣
∣
∣
z=zk

� (12.101)

Finally, let us drop the requirement that the degree of D�z� be greater or equal to the degree
of N�z�. When the degree of N�z� is greater than the degree of D�z�, we can simply divide
N�z� by D�z� to obtain

F�z� = N�z�

D�z�
= Q�z�+ R�z�

D�z�
(12.102)

where Q�z� is the quotient and R�z� is the remainder of the division operation. Clearly, R�z�

will have degree less than D�z�.
To see how all this works together, consider the following example.

Example 12 . 9 . 5:

Let us find the inverse Z-transform of the function

F�z� = 2z4 +1
2z3 −5z2 +4z−1

� (12.103)

The degree of the numerator is greater than the degree of the denominator, so we divide
once to obtain

F�z� = z+ 5z3 −4z2 + z+1
2z3 −5z2 +4z−1

� (12.104)

The inverse Z-transform of z is �n−1, where �n is the discrete delta function defined as

�n =
{

1 n = 0

0 otherwise.
(12.105)

Let us call the remaining ratio of polynomials F1�z�. We find the roots of the denominator
of F1�z� as

F1�z� = 5z3 −4z2 + z+1
2�z−0�5��z−1�2

� (12.106)

386 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

Then

F1�z�

z
= 5z3 −4z2 + z+1

2z�z−0�5��z−1�2
(12.107)

= A1

z
+ A2

z−0�5
+ A3

z−1
+ A4

�z−1�2
� (12.108)

Then

A1 = 5z3 −4z2 + z+1
2�z−0�5��z−1�2

∣
∣
∣
∣
z=0

= −1 (12.109)

A2 = 5z3 −4z2 + z+1
2z�z−1�2

∣
∣
∣
∣
z=0�5

= 4�5 (12.110)

A4 = 5z3 −4z2 + z+1
2z�z−0�5�

∣
∣
∣
∣
z=1

= 3� (12.111)

To find A3, we take the derivative with respect to z, then set z = 1:

A3 = d

dz

[
5z3 −4z2 +2z+1

2z�z−0�5�

]∣∣
∣
∣
z=1

= −3� (12.112)

Therefore,

F1�z� = −1+ 4�5z

z−0�5
− 3z

z−1
+ 3z

�z−1�2
(12.113)

and

f1�n = −�n +4�5�0�5�nu�n−3u�n+3nu�n (12.114)

and

fn = �n−1 −�n +4�5�0�5�nu�n− �3−3n�u�n� (12.115)

�

12 . 9 . 3 Long Div i s ion

If we could write F�z� as a power series, then from the Z-transform expression the coefficients
of z−n would be the sequence values fn.

Example 12 . 9 . 6:

Let’s find the inverse z-transform of

F�z� = z

z−a
�

12.9 Z-Transform 387

Dividing the numerator by the denominator we get the following:

1 + az−1 + a2z−2 · · ·
z−a

)
z
z − a

a
a − a2z−1

a2z−1

Thus, the quotient is

1+az−1 +a2z−2 +· · · =
�∑

n=0

anz−n�

We can easily see that the sequence for which F�z� is the Z-transform is

fn = anu�n� �

12 . 9 . 4 Z-Trans form Proper t ies

Analogous to the continuous linear systems, we can define the transfer function of a discrete
linear system as a function of z that relates the Z-transform of the input to the Z-transform of
the output. Let 	fn�

�
n=−� be the input to a discrete linear time-invariant system, and 	gn�

�
n=−�

be the output. If F�z� is the Z-transform of the input sequence, and G�z� is the Z-transform
of the output sequence, then these are related to each other by

G�z� = H�z�F�z� (12.116)

and H�z� is the transfer function of the discrete linear time-invariant system.
If the input sequence 	fn�

�
n=−� had a Z-transform of one, then G�z� would be equal to

H�z�. It is an easy matter to find the requisite sequence:

F�z� =
�∑

n=−�
fnz

−n = 1 ⇒ fn =
{

1 n = 0

0 otherwise.
(12.117)

This particular sequence is called the discrete delta function. The response of the system
to the discrete delta function is called the impulse response of the system. Obviously, the
transfer function H�z� is the Z-transform of the impulse response.

12 . 9 . 5 Disc re te Convolu t ion

In the continuous time case, the output of the linear time-invariant system was a convolution
of the input with the impulse response. Does the analogy hold in the discrete case? We can
check this out easily by explicitly writing out the Z-transforms in Equation (12.116). For

388 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

simplicity let us assume the sequences are all one-sided; that is, they are only nonzero for
nonnegative values of the subscript:

�∑

n=0

gnz
−n =

�∑

n=0

hnz
−n

�∑

m=0

fmz−m� (12.118)

Equating like powers of z:

g0 = h0f0

g1 = f0h1 +f1h0

g2 = f0h2 +f1h1 +f2h0

���

gn =
n∑

m=0

fmhn−m�

Thus, the output sequence is a result of the discrete convolution of the input sequence with
the impulse response.

Most of the discrete linear systems we will be dealing with will be made up of delay
elements, and their input-output relations can be written as constant coefficient difference
equations. For example, for the system shown in Figure 12.13, the input-output relationship
can be written in the form of the following difference equation:

gk = a0fk +a1fk−1 +a2fk−2 +b1gk−1 +b2gk−2� (12.119)

The transfer function of this system can be easily found by using the shifting theorem.
The shifting theorem states that if the Z-transform of a sequence 	fn� is F�z�, then the
Z-transform of the sequence shifted by some integer number of samples n0 is z−n0F�z�.

a0

a1

a2

b1

b2

fk gk

gk–1

gk–2

fk–1

fk–2

Delay

Delay

Delay

Delay

F IGURE 12. 13 A discrete system.

12.10 Summary 389

The theorem is easy to prove. Suppose we have a sequence 	fn� with Z-transform F�z�.
Let us look at the Z-transform of the sequence 	fn−n0

�:

��	fn−n0
� =

�∑

n=−�
fn−n0

z−n (12.120)

=
�∑

m=−�
fmz−m−n0 (12.121)

= z−n0

�∑

m=−�
fmz−m (12.122)

= z−n0F�z�� (12.123)

Assuming G�z� is the Z-transform of 	gn� and F�z� is the Z-transform of 	fn�, we can take
the Z-transform of both sides of the difference equation (12.119):

G�z� = a0F�z�+a1z
−1F�z�+a2z

−2F�z�+b1z
−1G�z�+b2z

−2G�z� (12.124)

from which we get the relationship between G�z� and F�z� as

G�z� = a0 +a1z
−1 +a2z

−2

1−b1z
−1 −b2z

−2
F�z�� (12.125)

By definition the transfer function H�z� is therefore

H�z� = G�z�

F�z�
(12.126)

= a0 +a1z
−1 +a2z

−2

1−b1z
−1 −b2z

−2
� (12.127)

12.10 Summary

In this chapter we have reviewed some of the mathematical tools we will be using throughout
the remainder of this book. We started with a review of vector space concepts, followed by a
look at a number of ways we can represent a signal, including the Fourier series, the Fourier
transform, the discrete Fourier series, the discrete Fourier transform, and the Z-transform.
We also looked at the operation of sampling and the conditions necessary for the recovery
of the continuous representation of the signal from its samples.

Fu r t he r Read ing

1. There are a large number of books that provide a much more detailed look at the
concepts described in this chapter. A nice one is Signal Processing and Linear Systems,
by B.P. Lathi [177].

2. For a thorough treatment of the fast Fourier transform (FFT), see Numerical Recipes
in C, by W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.J. Flannery [178].

390 12 T R A N S F O R M S , S U B B A N D S , A N D W A V E L E T S

12.11 Projects and Problems

1. Let X be a set of N linearly independent vectors, and let V be the collection of vectors
obtained using all linear combinations of the vectors in X.

(a) Show that given any two vectors in V , the sum of these vectors is also an element
of V .

(b) Show that V contains an additive identity.

(c) Show that for every x in V , there exists a �−x� in V such that their sum is the
additive identity.

2. Prove Parseval’s theorem for the Fourier transform.

3. Prove the modulation property of the Fourier transform.

4. Prove the convolution theorem for the Fourier transform.

5. Show that the Fourier transform of a train of impulses in the time domain is a train
of impulses in the frequency domain:

�

[�∑

n=−�
��t −nT�

]

= �0

�∑

n=−�
��w−n�0� �0 = 2�

T
� (12.128)

6. Find the Z-transform for the following sequences:

(a) hn = 2−nu�n, where u�n is the unit step function.

(b) hn = �n2 −n�3−nu�n.

(c) hn = �n2−n + �0�6�n�u�n.

7. Given the following input-output relationship:

yn = 0�6yn−1 +0�5xn +0�2xn−1

(a) Find the transfer function H�z�.

(b) Find the impulse response 	hn�.

8. Find the inverse Z-transform of the following:

(a) H�z� = 5
z−2 .

(b) H�z� = z
z2−0�25 .

(c) H�z� = z
z−0�5 .

13
Transform Coding

13.1 Overview

I
n this chapter we will describe a technique in which the source output is
decomposed, or transformed, into components that are then coded according
to their individual characteristics. We will then look at a number of different
transforms, including the popular discrete cosine transform, and discuss the
issues of quantization and coding of the transformed coefficients. This chapter

concludes with a description of the baseline sequential JPEG image-coding algorithm and
some of the issues involved with transform coding of audio signals.

13.2 Introduct ion

In the previous chapter we developed a number of tools that can be used to transform a
given sequence into different representations. If we take a sequence of inputs and transform
them into another sequence in which most of the information is contained in only a few
elements, we can then encode and transmit those elements, along with their location in
the new sequence, resulting in data compression. In our discussion, we will use the terms
“variance” and “information” interchangeably. The justification for this is shown in the
results in Chapter 7. For example, recall that for a Gaussian source the differential entropy is
given as 1

2 log 2�e�2. Thus, an increase in the variance results in an increase in the entropy,
which is a measure of the information contained in the source output.

To begin our discussion of transform coding, consider the following example.

392 13 T R A N S F O R M C O D I N G

Example 13 . 2 . 1:

Let’s revisit Example 8.5.1. In Example 8.5.1, we studied the encoding of the output of a
source that consisted of a sequence of pairs of numbers. Each pair of numbers corresponds
to the height and weight of an individual. In particular, let’s look at the sequence of outputs
shown in Table 13.1.

If we look at the height and weight as the coordinates of a point in two-dimensional
space, the sequence can be shown graphically as in Figure 13.1. Notice that the output

TAB L E 13 . 1 Original sequence.

Height Weight

65 170
75 188
60 150
70 170
56 130
80 203
68 160
50 110
40 80
50 153
69 148
62 140
76 164
64 120

190

200

180

170

160

150

140

130

120

110

100

90

80

10 20 30 40 50 60 70 80

F IGURE 13. 1 Source output sequence.

13.2 Introduction 393

values tend to cluster around the line y = 2�5x. We can rotate this set of values by the
transformation

� = Ax (13.1)

where x is the two-dimensional source output vector

x =
[

x0

x1

]

(13.2)

x0 corresponds to height and x1 corresponds to weight, A is the rotation matrix

A =
[

cos � sin �
− sin � cos �

]

(13.3)

� is the angle between the x-axis and the y = 2�5x line, and

� =
[

�0

�1

]

(13.4)

is the rotated or transformed set of values. For this particular case the matrix A is

A =
[

0�37139068 0�92847669
−0�92847669 0�37139068

]

(13.5)

and the transformed sequence (rounded to the nearest integer) is shown in Table 13.2. (For a
brief review of matrix concepts, see Appendix B.)

Notice that for each pair of values, almost all the energy is compacted into the first
element of the pair, while the second element of the pair is significantly smaller. If we plot
this sequence in pairs, we get the result shown in Figure 13.2. Note that we have rotated the
original values by an angle of approximately 68 degrees (arctan 2�5).

TAB L E 13 . 2 Transformed sequence.

First Coordinate Second Coordinate

182 3
202 0
162 0
184 −2
141 −4
218 1
174 −4
121 −6

90 −7
161 10
163 −9
153 −6
181 −9
135 −15

394 13 T R A N S F O R M C O D I N G

5

−5

10

−10

80 90 100 110 130 160 170 180 190 200 210 220 230120 140 150

F IGURE 13. 2 The transformed sequence.

Suppose we set all the second elements of the transformation to zero, that is, the second
coordinates of the sequence shown in Table 13.2. This reduces the number of elements that
need to be encoded by half. What is the effect of throwing away half the elements of the
sequence? We can find that out by taking the inverse transform of the reduced sequence.
The inverse transform consists of reversing the rotation. We can do this by multiplying the
blocks of two of the transformed sequences with the second element in each block set to
zero with the matrix

A−1 =
[

cos � − sin �
sin � cos �

]

(13.6)

and obtain the reconstructed sequence shown in Table 13.3. Comparing this to the original
sequence in Table 13.1, we see that, even though we transmitted only half the number of
elements present in the original sequence, this “reconstructed” sequence is very close to the
original. The reason there is so little error introduced in the sequence �xn� is that for this

TAB L E 13 . 3 Reconstructed sequence.

Height Weight

68 169
75 188
60 150
68 171
53 131
81 203
65 162
45 112
34 84
60 150
61 151
57 142
67 168
50 125

13.2 Introduction 395

particular transformation the error introduced into the �xn� sequence is equal to the error
introduced into the ��n� sequence. That is,

N−1∑

i=0

	xi − x̂i

2 =

N−1∑

i=0

	�i − �̂i

2 (13.7)

where �x̂n� is the reconstructed sequence, and

�̂i =
{

�i i = 0� 2� 4� � � �

0 otherwise
(13.8)

(see Problem 1). The error introduced in the ��n� sequence is the sum of squares of the �ns
that are set to zero. The magnitudes of these elements are quite small, and therefore the total
error introduced into the reconstructed sequence is quite small also. �

We could reduce the number of samples we needed to code because most of the infor-
mation contained in each pair of values was put into one element of each pair. As the other
element of the pair contained very little information, we could discard it without a significant
effect on the fidelity of the reconstructed sequence. The transform in this case acted on pairs
of values; therefore, the maximum reduction in the number of significant samples was a
factor of two. We can extend this idea to longer blocks of data. By compacting most of the
information in a source output sequence into a few elements of the transformed sequence
using a reversible transform, and then discarding the elements of the sequence that do not
contain much information, we can get a large amount of compression. This is the basic idea
behind transform coding.

In Example 13.2.1 we have presented a geometric view of the transform process. We
can also examine the transform process in terms of the changes in statistics between the
original and transformed sequences. It can be shown that we can get the maximum amount
of compaction if we use a transform that decorrelates the input sequence; that is, the sample-
to-sample correlation of the transformed sequence is zero. The first transform to provide
decorrelation for discrete data was presented by Hotelling [179] in the Journal of Educational
Psychology in 1933. He called his approach the method of principal components. The
analogous transform for continuous functions was obtained by Karhunen [180] and Loéve
[181]. This decorrelation approach was first utilized for compression, in what we now call
transform coding, by Kramer and Mathews [182], and Huang and Schultheiss [183].

Transform coding consists of three steps. First, the data sequence �xn� is divided into
blocks of size N . Each block is mapped into a transform sequence ��n� using a reversible
mapping in a manner similar to that described in Example 13.2.1. As shown in the example,
different elements of each block of the transformed sequence generally have different statis-
tical properties. In Example 13.2.1, most of the energy of the block of two input values was
contained in the first element of the block of two transformed values, while very little of
the energy was contained in the second element. This meant that the second element of each
block of the transformed sequence would have a small magnitude, while the magnitude of
the first element could vary considerably depending on the magnitude of the elements in the
input block. The second step consists of quantizing the transformed sequence. The quantiza-
tion strategy used will depend on three main factors: the desired average bit rate, the statistics

396 13 T R A N S F O R M C O D I N G

of the various elements of the transformed sequence, and the effect of distortion in the trans-
formed coefficients on the reconstructed sequence. In Example 13.2.1, we could take all the
bits available to us and use them to quantize the first coefficient. In more complex situations,
the strategy used may be very different. In fact, we may use different techniques, such as
differential encoding and vector quantization [118], to encode the different coefficients.

Finally, the quantized value needs to be encoded using some binary encoding technique.
The binary coding may be as simple as using a fixed-length code or as complex as a
combination of run-length coding and Huffman or arithmetic coding. We will see an example
of the latter when we describe the JPEG algorithm.

The various quantization and binary coding techniques have been described at some
length in previous chapters, so we will spend the next section describing various transforms.
We will then discuss quantization and coding strategies in the context of these transforms.

13.3 The Transform

All the transforms we deal with will be linear transforms; that is, we can get the sequence
��n� from the sequence �xn� as

�n =
N−1∑

i=0

xian�i� (13.9)

This is referred to as the forward transform. For the transforms that we will be considering,
a major difference between the transformed sequence ��n� and the original sequence �xn�
is that the characteristics of the elements of the � sequence are determined by their position
within the sequence. For example, in Example 13.2.1 the first element of each pair of the
transformed sequence was more likely to have a large magnitude compared to the second
element. In general, we cannot make such statements about the source output sequence
�xn�. A measure of the differing characteristics of the different elements of the transformed
sequence ��n� is the variance �2

n of each element. These variances will strongly influence
how we encode the transformed sequence. The size of the block N is dictated by practical
considerations. In general, the complexity of the transform grows more than linearly with N .
Therefore, beyond a certain value of N , the computational costs overwhelm any marginal
improvements that might be obtained by increasing N . Furthermore, in most real sources
the statistical characteristics of the source output can change abruptly. For example, when
we go from a silence period to a voiced period in speech, the statistics change drastically.
Similarly, in images, the statistical characteristics of a smooth region of the image can be
very different from the statistical characteristics of a busy region of the image. If N is
large, the probability that the statistical characteristics change significantly within a block
increases. This generally results in a larger number of the transform coefficients with large
values, which in turn leads to a reduction in the compression ratio.

The original sequence �xn� can be recovered from the transformed sequence ��n� via the
inverse transform:

xn =
N−1∑

i=0

�ibn�i� (13.10)

13.3 The Transform 397

The transforms can be written in matrix form as

� = Ax (13.11)

x = B� (13.12)

where A and B are N ×N matrices and the 	i� j
th element of the matrices is given by

A�i�j = ai�j (13.13)

B�i�j = bi�j � (13.14)

The forward and inverse transform matrices A and B are inverses of each other; that is,
AB = BA = I, where I is the identity matrix.

Equations (13.9) and (13.10) deal with the transform coding of one-dimensional
sequences, such as sampled speech and audio sequences. However, transform coding is one
of the most popular methods used for image compression. In order to take advantage of
the two-dimensional nature of dependencies in images, we need to look at two-dimensional
transforms.

Let Xi�j be the 	i� j
th pixel in an image. A general linear two-dimensional transform for
a block of size N ×N is given as

�k�l =
N−1∑

i=0

N−1∑

j=0

Xi�jai�j�k�l� (13.15)

All two-dimensional transforms in use today are separable transforms; that is, we can take
the transform of a two-dimensional block by first taking the transform along one dimension,
then repeating the operation along the other direction. In terms of matrices, this involves first
taking the (one-dimensional) transform of the rows, and then taking the column-by-column
transform of the resulting matrix. We can also reverse the order of the operations, first taking
the transform of the columns, and then taking the row-by-row transform of the resulting
matrix. The transform operation can be represented as

�k�l =
N−1∑

i=0

N−1∑

j=0

ak�iXi�jai�j (13.16)

which in matrix terminology would be given by

� = AXAT � (13.17)

The inverse transform is given as

X = B�BT � (13.18)

All the transforms we deal with will be orthonormal transforms. An orthonormal trans-
form has the property that the inverse of the transform matrix is simply its transpose because
the rows of the transform matrix form an orthonormal basis set:

B = A−1 = AT � (13.19)

398 13 T R A N S F O R M C O D I N G

For an orthonormal transform, the inverse transform will be given as

X = AT �A� (13.20)

Orthonormal transforms are energy preserving; that is, the sum of the squares of the
transformed sequence is the same as the sum of the squares of the original sequence. We
can see this most easily in the case of the one-dimensional transform:

N−1∑

i=0

�2
i = �T � (13.21)

= 	Ax
T Ax (13.22)

= xT AT Ax� (13.23)

If A is an orthonormal transform, AT A = A−1A = I, then

xT AT Ax = xT x (13.24)

=
N−1∑

n=0

x2
n (13.25)

and
N−1∑

i=0

�2
i =

N−1∑

n=0

x2
n� (13.26)

The efficacy of a transform depends on how much energy compaction is provided by the
transform. One way of measuring the amount of energy compaction afforded by a particular
orthonormal transform is to take a ratio of the arithmetic mean of the variances of the
transform coefficient to their geometric means [123]. This ratio is also referred to as the
transform coding gain GTC :

GTC =
1
N

∑N−1
i=0 �2

i

	
∏N−1

i=0 �2
i

1
N

(13.27)

where �2
i is the variance of the ith coefficient �i.

Transforms can be interpreted in several ways. We have already mentioned a geometric
interpretation and a statistical interpretation. We can also interpret them as a decomposition
of the signal in terms of a basis set. For example, suppose we have a two-dimensional
orthonormal transform A. The inverse transform can be written as

[
x0

x1

]

=
[

a00 a10

a01 a11

][
�0

�1

]

= �0

[
a00

a01

]

+�1

[
a10

a11

]

(13.28)

We can see that the transformed values are actually the coefficients of an expansion of the
input sequence in terms of the rows of the transform matrix. The rows of the transform
matrix are often referred to as the basis vectors for the transform because they form an
orthonormal basis set, and the elements of the transformed sequence are often called the
transform coefficients. By characterizing the basis vectors in physical terms we can get a
physical interpretation of the transform coefficients.

13.3 The Transform 399

Example 13 . 3 . 1:

Consider the following transform matrix:

A = 1√
2

[
1 1
1 −1

]

(13.29)

We can verify that this is indeed an orthonormal transform.
Notice that the first row of the matrix would correspond to a “low-pass” signal (no change

from one component to the next), while the second row would correspond to a “high-pass”
signal. Thus, if we tried to express a sequence in which each element has the same value
in terms of these two rows, the second coefficient should be zero. Suppose the original
sequence is 	���
. Then

[
�0

�1

]

= 1√
2

[
1 1
1 −1

][
�
�

]

=
[√

2�
0

]

(13.30)

The “low-pass” coefficient has a value of
√

2�, while the “high-pass” coefficient has a
value of 0. The “low-pass” and “high-pass” coefficients are generally referred to as the
low-frequency and high-frequency coefficients.

Let us take two sequences in which the components are not the same and the degree of
variation is different. Consider the two sequences (3, 1) and 	3� −1
. In the first sequence
the second element differs from the first by 2; in the second sequence, the magnitude of the
difference is 4. We could say that the second sequence is more “high pass” than the first
sequence. The transform coefficients for the two sequences are 	2

√
2�

√
2
 and 	

√
2� 2

√
2
,

respectively. Notice that the high-frequency coefficient for the sequence in which we see
a larger change is twice that of the high-frequency coefficient for the sequence with less
change. Thus, the two coefficients do seem to behave like the outputs of a low-pass filter
and a high-pass filter.

Finally, notice that in every case the sum of the squares of the original sequence is the
same as the sum of the squares of the transform coefficients; that is, the transform is energy
preserving, as it must be, since A is orthonormal. �

We can interpret one-dimensional transforms as an expansion in terms of the rows of the
transform matrix. Similarly, we can interpret two-dimensional transforms as expansions in
terms of matrices that are formed by the outer product of the rows of the transform matrix.
Recall that the outer product is given by

xxT =

⎡

⎢
⎢
⎢
⎣

x0x0 x0x1 · · · x0xN−1

x1x0 x1x1 · · · x1xN−1
���

���
���

xN−1x0 xN−1x1 · · · xN−1xN−1

⎤

⎥
⎥
⎥
⎦

(13.31)

To see this more clearly, let us use the transform introduced in Example 13.3.1 for a
two-dimensional transform.

400 13 T R A N S F O R M C O D I N G

Example 13 . 3 . 2:

For an N ×N transform A, let �i�j be the outer product of the ith and jth rows:

�i�j =

⎡

⎢
⎢
⎢
⎣

ai0

ai1
���

aiN−1

⎤

⎥
⎥
⎥
⎦

[
aj0 aj1 · · · ajN−1

]
(13.32)

=

⎡

⎢
⎢
⎢
⎣

ai0aj0 ai0aj1 · · · ai0ajN−1

ai1aj0 ai1aj1 · · · ai1ajN−1
���

���
���

aiN−1aj0 aiN−1aj1 · · · aiN−1ajN−1

⎤

⎥
⎥
⎥
⎦

(13.33)

For the transform of Example 13.3.1, the outer products are

�0�0 = 1
2

[
1 1
1 1

]

�0�1 = 1
2

[
1 −1
1 −1

]

(13.34)

�1�0 = 1
2

[
1 1

−1 −1

]

�1�1 = 1
2

[
1 −1

−1 1

]

(13.35)

From (13.20), the inverse transform is given by
[

x01 x01

x10 x11

]

= 1
2

[
1 1
1 −1

][
�00 �01

�10 �11

][
1 1
1 −1

]

(13.36)

= 1
2

[
�00 +�01 +�10 +�11 �00 −�01 +�10 −�11

�00 +�01 −�10 −�11 �00 −�01 −�10 +�11

]

(13.37)

= �00�0�0 +�01�0�1 +�10�1�0 +�11�1�1� (13.38)

The transform values �ij can be viewed as the coefficients of the expansion of x in terms of
the matrices �i�j . The matrices �i�j are known as the basis matrices.

For historical reasons, the coefficient �00, corresponding to the basis matrix �0�0, is called
the DC coefficient, while the coefficients corresponding to the other basis matrices are called
AC coefficients. DC stands for direct current, which is current that does not change with
time. AC stands for alternating current, which does change with time. Notice that all the
elements of the basis matrix �0�0 are the same, hence the DC designation. �

In the following section we will look at some of the variety of transforms available to
us, then at some of the issues involved in quantization and coding. Finally, we will describe
in detail two applications, one for image coding and one for audio coding.

13.4 Transforms of Interest

In Example 13.2.1, we constructed a transform that was specific to the data. In practice,
it is generally not feasible to construct a transform for the specific situation, for several

13.4 Transforms of Interest 401

reasons. Unless the characteristics of the source output are stationary over a long interval,
the transform needs to be recomputed often, and it is generally burdensome to compute a
transform for every different set of data. Furthermore, the overhead required to transmit
the transform itself might negate any compression gains. Both of these problems become
especially acute when the size of the transform is large. However, there are times when
we want to find out the best we can do with transform coding. In these situations, we
can use data-dependent transforms to obtain an idea of the best performance available. The
best-known data-dependent transform is the discrete Karhunen-Loéve transform (KLT). We
will describe this transform in the next section.

13 . 4 . 1 Karhunen-Loéve Trans form

The rows of the discrete Karhunen-Loéve transform [184], also known as the Hotelling
transform, consist of the eigenvectors of the autocorrelation matrix. The autocorrelation
matrix for a random process X is a matrix whose 	i� j
th element R�i�j is given by

R�i�j = EXnXn+�i−j��� (13.39)

We can show [123] that a transform constructed in this manner will minimize the geometric
mean of the variance of the transform coefficients. Hence, the Karhunen-Loéve transform
provides the largest transform coding gain of any transform coding method.

If the source output being compressed is nonstationary, the autocorrelation function will
change with time. Thus, the autocorrelation matrix will change with time, and the KLT will
have to be recomputed. For a transform of any reasonable size, this is a significant amount
of computation. Furthermore, as the autocorrelation is computed based on the source output,
it is not available to the receiver. Therefore, either the autocorrelation or the transform itself
has to be sent to the receiver. The overhead can be significant and remove any advantages
to using the optimum transform. However, in applications where the statistics change slowly
and the transform size can be kept small, the KLT can be of practical use [185].

Example 13 . 4 . 1:

Let us see how to obtain the KLT transform of size two for an arbitrary input sequence. The
autocorrelation matrix of size two for a stationary process is

R =
[

Rxx	0
 Rxx	1

Rxx	1
 Rxx	0

]

(13.40)

Solving the equation ��I −R� = 0, we get the two eigenvalues �1 = Rxx	0
+Rxx	1
, and
�2 = Rxx	0
−Rxx	1
. The corresponding eigenvectors are

V1 =
[

�
�

]

V2 =
[

�
−�

]

(13.41)

402 13 T R A N S F O R M C O D I N G

where � and � are arbitrary constants. If we now impose the orthonormality condition, which
requires the vectors to have a magnitude of 1, we get

� = � = 1√
2

and the transform matrix K is

K = 1√
2

[
1 1
1 −1

]

(13.42)

Notice that this matrix is not dependent on the values of Rxx	0
 and Rxx	1
. This is only true
of the 2×2 KLT. The transform matrices of higher order are functions of the autocorrelation
values. �

Although the Karhunen-Loéve transform maximizes the transform coding gain as defined
by (13.27), it is not practical in most circumstances. Therefore, we need transforms that do
not depend on the data being transformed. We describe some of the more popular transforms
in the following sections.

13 . 4 . 2 Disc re te Cos ine Trans form

The discrete cosine transform (DCT) gets its name from the fact that the rows of the N ×N
transform matrix C are obtained as a function of cosines.

C�i�j =
⎧
⎨

⎩

√
1
N

cos 	2j+1
i�

2N
i = 0� j = 0� 1� � � � �N −1

√
2
N

cos 	2j+1
i�

2N
i = 1� 2� � � � �N −1� j = 0� 1� � � � �N −1�

(13.43)

The rows of the transform matrix are shown in graphical form in Figure 13.3. Notice how
the amount of variation increases as we progress down the rows; that is, the frequency of
the rows increases as we go from top to bottom.

The outer products of the rows are shown in Figure 13.4. Notice that the basis matri-
ces show increased variation as we go from the top-left matrix, corresponding to the �00

coefficient, to the bottom-right matrix, corresponding to the �	N−1
	N−1
 coefficient.
The DCT is closely related to the discrete Fourier transform (DFT) mentioned in

Chapter 11, and in fact can be obtained from the DFT. However, in terms of compression,
the DCT performs better than the DFT.

To see why, recall that when we find the Fourier coefficients for a sequence of length N ,
we assume that the sequence is periodic with period N . If the original sequence is as shown
in Figure 13.5a, the DFT assumes that the sequence outside the interval of interest behaves
in the manner shown in Figure 13.5b. This introduces sharp discontinuities, at the beginning
and the end of the sequence. In order to represent these sharp discontinuities, the DFT
needs nonzero coefficients for the high-frequency components. Because these components
are needed only at the two endpoints of the sequence, their effect needs to be canceled out at
other points in the sequence. Thus, the DFT adjusts other coefficients accordingly. When we
discard the high-frequency coefficients (which should not have been there anyway) during

13.4 Transforms of Interest 403

0 3 6

7

1

4

2 5

F IGURE 13. 3 Basis set for the discrete cosine transform. The numbers in the
circles correspond to the row of the transform matrix.

the compression process, the coefficients that were canceling out the high-frequency effect
in other parts of the sequence result in the introduction of additional distortion.

The DCT can be obtained using the DFT by mirroring the original N -point sequence to
obtain a 2N -point sequence, as shown in Figure 13.6b. The DCT is simply the first N points
of the resulting 2N -point DFT. When we take the DFT of the 2N -point mirrored sequence,
we again have to assume periodicity. However, as we can see from Figure 13.6c, this does
not introduce any sharp discontinuities at the edges.

The DCT is substantially better at energy compaction for most correlated sources when
compared to the DFT [123]. In fact, for Markov sources with high correlation coefficient �,

� = Exnxn+1�

Ex2
n�

� (13.44)

the compaction ability of the DCT is very close to that of the KLT. As many sources can
be modeled as Markov sources with high values for �, this superior compaction ability has
made the DCT the most popular transform. It is a part of many international standards,
including JPEG, MPEG, and CCITT H.261, among others.

404 13 T R A N S F O R M C O D I N G

F IGURE 13. 4 The basis matrices for the DCT.

13 . 4 . 3 Disc re te S ine Trans form

The discrete sine transform (DST) is a complementary transform to the DCT. Where the
DCT provides performance close to the optimum KLT when the correlation coefficient �
is large, the DST performs close to the optimum KLT in terms of compaction when the
magnitude of � is small. Because of this property, it is often used as the complementary
transform to DCT in image [186] and audio [187] coding applications.

The elements of the transform matrix for an N ×N DST are

S�ij =
√

2
N +1

sin
�	i+1
	j +1

N +1
i� j = 0� 1� � � � �N −1� (13.45)

13 . 4 . 4 Disc re te Walsh-Hadamard Trans form

A transform that is especially simple to implement is the discrete Walsh-Hadamard transform
(DWHT). The DWHT transform matrices are rearrangements of discrete Hadamard matrices,
which are of particular importance in coding theory [188]. A Hadamard matrix of order N
is defined as an N ×N matrix H , with the property that HHT = NI , where I is the N ×N

13.4 Transforms of Interest 405

(a)

(b)

F IGURE 13. 5 Taking the discrete Fourier transform of a sequence.

(a)

(b)

(c)

F IGURE 13. 6 Taking the discrete cosine transform of a sequence.

406 13 T R A N S F O R M C O D I N G

identity matrix. Hadamard matrices whose dimensions are a power of two can be constructed
in the following manner:

H2N =
[

HN HN

HN −HN

]

(13.46)

with H1 = 1�. Therefore,

H2 =
[

H1 H1

H1 −H1

]

=
[

1 1
1 −1

]

(13.47)

H4 =
[

H2 H2

H2 −H2

]

=

⎡

⎢
⎢
⎣

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

⎤

⎥
⎥
⎦ (13.48)

H8 =
[

H4 H4

H4 −H4

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13.49)

The DWHT transform matrix H can be obtained from the Hadamard matrix by multiplying
it by a normalizing factor so that HHT = I instead of NI , and by reordering the rows in
increasing sequency order. The sequency of a row is half the number of sign changes in that
row. In H8 the first row has sequency 0, the second row has sequency 7/2, the third row has
sequency 3/2, and so on. Normalization involves multiplying the matrix by 1√

N
. Reordering

the H8 matrix in increasing sequency order, we get

H = 1√
8

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13.50)

Because the matrix without the scaling factor consists of ±1, the transform operation
consists simply of addition and subtraction. For this reason, this transform is useful in
situations where minimizing the amount of computations is very important. However, the
amount of energy compaction obtained with this transform is substantially less than the
compaction obtained by the use of the DCT. Therefore, where sufficient computational
power is available, DCT is the transform of choice.

13.5 Quantization and Coding of Transform Coefficients 407

13.5 Quantizat ion and Coding of Transform
Coeff ic ients

If the amount of information conveyed by each coefficient is different, it makes sense to
assign differing numbers of bits to the different coefficients. There are two approaches to
assigning bits. One approach relies on the average properties of the transform coefficients,
while the other approach assigns bits as needed by individual transform coefficients.

In the first approach, we first obtain an estimate of the variances of the transform
coefficients. These estimates can be used by one of two algorithms to assign the number
of bits used to quantize each of the coefficients. We assume that the relative variance of
the coefficients corresponds to the amount of information contained in each coefficient.
Thus, coefficients with higher variance are assigned more bits than coefficients with smaller
variance.

Let us find an expression for the distortion, then find the bit allocation that minimizes
the distortion. To perform the minimization we will use the method of Lagrange [189]. If
the average number of bits per sample to be used by the transform coding system is R, and
the average number of bits per sample used by the kth coefficient is Rk, then

R = 1

M

M∑

k=1

Rk (13.51)

where M is the number of transform coefficients. The reconstruction error variance for the
kth quantizer �2

rk
is related to the kth quantizer input variance �2

�k
by the following:

�2
rk

= �k2−2Rk�2
�k

(13.52)

where �k is a factor that depends on the input distribution and the quantizer.
The total reconstruction error is given by

�2
r =

M∑

k=1

�k2−2Rk�2
�k

� (13.53)

The objective of the bit allocation procedure is to find Rk to minimize (13.53) subject to
the constraint of (13.51). If we assume that �k is a constant � for all k, we can set up the
minimization problem in terms of Lagrange multipliers as

J = �
M∑

k=1

2−2Rk�2
�k

−�

(

R− 1
M

M∑

k=1

Rk

)

� (13.54)

Taking the derivative of J with respect to Rk and setting it equal to zero, we can obtain this
expression for Rk:

Rk = 1
2

log2

(
2� ln 2�2

�k

)− 1
2

log2 �� (13.55)

Substituting this expression for Rk in (13.51), we get a value for �:

� =
M∏

k=1

(
2� ln 2�2

�k

) 1
M 2−2R� (13.56)

408 13 T R A N S F O R M C O D I N G

Substituting this expression for � in (13.55), we finally obtain the individual bit allocations:

Rk = R+ 1
2

log2

�2
�k

∏M
k=1	�

2
�k

1
M

� (13.57)

Although these values of Rk will minimize (13.53), they are not guaranteed to be integers, or
even positive. The standard approach at this point is to set the negative Rks to zero. This will
increase the average bit rate above the constraint. Therefore, the nonzero Rks are uniformly
reduced until the average rate is equal to R.

The second algorithm that uses estimates of the variance is a recursive algorithm and
functions as follows:

1. Compute �2
�k

for each coefficient.

2. Set Rk = 0 for all k and set Rb = MR, where Rb is the total number of bits available
for distribution.

3. Sort the variances ��2
�k

�. Suppose �2
�1

is the maximum.

4. Increment Rl by 1, and divide �2
�1

by 2.

5. Decrement Rb by 1. If Rb = 0, then stop; otherwise, go to 3.

If we follow this procedure, we end up allocating more bits to the coefficients with higher
variance.

This form of bit allocation is called zonal sampling. The reason for this name can be
seen from the example of a bit allocation map for the 8 × 8 DCT of an image shown in
Table 13.4. Notice that there is a zone of coefficients that roughly comprises the right lower
diagonal of the bit map that has been assigned zero bits. In other words, these coefficients are
to be discarded. The advantage to this approach is its simplicity. Once the bit allocation has
been obtained, every coefficient at a particular location is always quantized using the same
number of bits. The disadvantage is that, because the bit allocations are performed based
on average value, variations that occur on the local level are not reconstructed properly.
For example, consider an image of an object with sharp edges in front of a relatively plain
background. The number of pixels that occur on edges is quite small compared to the total
number of pixels. Therefore, if we allocate bits based on average variances, the coefficients
that are important for representing edges (the high-frequency coefficients) will get few or

TAB L E 13 . 4 Bit allocation map for an 8×8 transform.

8 7 5 3 1 1 0 0
7 5 3 2 1 0 0 0
4 3 2 1 1 0 0 0
3 3 2 1 1 0 0 0
2 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

13.5 Quantization and Coding of Transform Coefficients 409

no bits assigned to them. This means that the reconstructed image will not contain a very
good representation of the edges.

This problem can be avoided by using a different approach to bit allocation known as
threshold coding [190, 93, 191]. In this approach, which coefficient to keep and which
to discard is not decided a priori. In the simplest form of threshold coding, we specify a
threshold value. Coefficients with magnitude below this threshold are discarded, while the
other coefficients are quantized and transmitted. The information about which coefficients
have been retained is sent to the receiver as side information. A simple approach described
by Pratt [93] is to code the first coefficient on each line regardless of the magnitude. After
this, when we encounter a coefficient with a magnitude above the threshold value, we send
two codewords: one for the quantized value of the coefficient, and one for the count of the
number of coefficients since the last coefficient with magnitude greater than the threshold.
For the two-dimensional case, the block size is usually small, and each “line” of the transform
is very short. Thus, this approach would be quite expensive. Chen and Pratt [191] suggest
scanning the block of transformed coefficients in a zigzag fashion, as shown in Figure 13.7.
If we scan an 8 × 8 block of quantized transform coefficients in this manner, we will find
that in general a large section of the tail end of the scan will consist of zeros. This is because

F IGURE 13. 7 The zigzag scanning pattern for an 8×8 transform.

410 13 T R A N S F O R M C O D I N G

generally the higher-order coefficients have smaller amplitude. This is reflected in the bit
allocation table shown in Table 13.4. As we shall see later, if we use midtread quantizers
(quantizers with a zero output level), combined with the fact that the step sizes for the
higher-order coefficients are generally chosen to be quite large, this means that many of
these coefficients will be quantized to zero. Therefore, there is a high probability that after
a few coefficients along the zigzag scan, all coefficients will be zero. In this situation, Chen
and Pratt suggest the transmission of a special end-of-block (EOB) symbol. Upon reception
of the EOB signal, the receiver would automatically set all remaining coefficients along the
zigzag scan to zero.

The algorithm developed by the Joint Photographic Experts Group (JPEG), described in
the next section, uses a rather clever variation of this approach.

13.6 Applicat ion to Image Compression-—JPEG

The JPEG standard is one of the most widely known standards for lossy image compression.
It is a result of the collaboration of the International Standards Organization (ISO), which
is a private organization, and what was the CCITT (now ITU-T), a part of the United
Nations. The approach recommended by JPEG is a transform coding approach using the
DCT. The approach is a modification of the scheme proposed by Chen and Pratt [191]. In
this section we will briefly describe the baseline JPEG algorithm. In order to illustrate the
various components of the algorithm, we will use an 8×8 block of the Sena image, shown
in Table 13.5. For more details, see [10].

13 . 6 . 1 The Trans form

The transform used in the JPEG scheme is the DCT transform described earlier. The input
image is first “level shifted” by 2P−1; that is, we subtract 2P−1 from each pixel value, where
P is the number of bits used to represent each pixel. Thus, if we are dealing with 8-bit images
whose pixels take on values between 0 and 255, we would subtract 128 from each pixel so
that the value of the pixel varies between −128 and 127. The image is divided into blocks
of size 8×8, which are then transformed using an 8×8 forward DCT. If any dimension of
the image is not a multiple of eight, the encoder replicates the last column or row until the

TAB L E 13 . 5 An 8×8 block from the Sena image.

124 125 122 120 122 119 117 118
121 121 120 119 119 120 120 118
126 124 123 122 121 121 120 120
124 124 125 125 126 125 124 124
127 127 128 129 130 128 127 125
143 142 143 142 140 139 139 139
150 148 152 152 152 152 150 151
156 159 158 155 158 158 157 156

13.6 Application to Image Compression-—JPEG 411

TAB L E 13 . 6 The DCT coefficients corresponding to the block of data from the Sena
image after level shift.

39�88 6�56 −2�24 1�22 −0�37 −1�08 0�79 1�13
−102�43 4�56 2�26 1�12 0�35 −0�63 −1�05 −0�48

37�77 1�31 1�77 0�25 −1�50 −2�21 −0�10 0�23
−5�67 2�24 −1�32 −0�81 1�41 0�22 −0�13 0�17
−3�37 −0�74 −1�75 0�77 −0�62 −2�65 −1�30 0�76

5�98 −0�13 −0�45 −0�77 1�99 −0�26 1�46 0�00
3�97 5�52 2�39 −0�55 −0�051 −0�84 −0�52 −0�13

−3�43 0�51 −1�07 0�87 0�96 0�09 0�33 0�01

final size is a multiple of eight. These additional rows or columns are removed during the
decoding process. If we take the 8 × 8 block of pixels shown in Table 13.5, subtract 128
from it, and take the DCT of this level-shifted block, we obtain the DCT coefficients shown
in Table 13.6. Notice that the lower-frequency coefficients in the top-left corner of the table
have larger values than the higher-frequency coefficients. This is generally the case, except
for situations in which there is substantial activity in the image block.

13 . 6 . 2 Quant izat ion

The JPEG algorithm uses uniform midtread quantization to quantize the various coefficients.
The quantizer step sizes are organized in a table called the quantization table and can be
viewed as the fixed part of the quantization. An example of a quantization table from the
JPEG recommendation [10] is shown in Table 13.7. Each quantized value is represented by
a label. The label corresponding to the quantized value of the transform coefficient �ij is
obtained as

lij =
⌊

�ij

Qij

+0�5
⌋

(13.58)

TAB L E 13 . 7 Sample quantization table.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

412 13 T R A N S F O R M C O D I N G

TAB L E 13 . 8 The quantizer labels obtained by using the
quantization table on the coefficients.

2 1 0 0 0 0 0 0
−9 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

where Qij is the 	i� j
th element of the quantization table, and �x� is the largest integer
smaller than x. Consider the �00 coefficient from Table 13.6. The value of �00 is 39.88. From
Table 13.7, Q00 is 16. Therefore,

l00 =
⌊

39�88
16

+0�5
⌋

= �2�9925� = 2� (13.59)

The reconstructed value is obtained from the label by multiplying the label with the
corresponding entry in the quantization table. Therefore, the reconstructed value of �00 would
be l00 ×Q00, which is 2×16 = 32. The quantization error in this case is 39�88−32 = −7�88.
Similarly, from Tables 13.6 and 13.7, �01 is 6.56 and Q01 is 11. Therefore,

l01 =
⌊

6�56
11

+0�5
⌋

= �1�096� = 1� (13.60)

The reconstructed value is 11, and the quantization error is 11−6�56 = 4�44. Continuing in
this fashion, we obtain the labels shown in Table 13.8.

From the sample quantization table shown in Table 13.7, we can see that the step size
generally increases as we move from the DC coefficient to the higher-order coefficients.
Because the quantization error is an increasing function of the step size, more quantization
error will be introduced in the higher-frequency coefficients than in the lower-frequency
coefficients. The decision on the relative size of the step sizes is based on how errors in
these coefficients will be perceived by the human visual system. Different coefficients in the
transform have widely different perceptual importance. Quantization errors in the DC and
lower AC coefficients are more easily detectable than the quantization error in the higher AC
coefficients. Therefore, we use larger step sizes for perceptually less important coefficients.

Because the quantizers are all midtread quantizers (that is, they all have a zero out-
put level), the quantization process also functions as the thresholding operation. All coeffi-
cients with magnitudes less than half the corresponding step size will be set to zero. Because
the step sizes at the tail end of the zigzag scan are larger, the probability of finding a long
run of zeros increases at the end of the scan. This is the case for the 8 × 8 block of labels
shown in Table 13.8. The entire run of zeros at the tail end of the scan can be coded with
an EOB code after the last nonzero label, resulting in substantial compression.

13.6 Application to Image Compression-—JPEG 413

Furthermore, this effect also provides us with a method to vary the rate. By making the
step sizes larger, we can reduce the number of nonzero values that need to be transmitted,
which translates to a reduction in the number of bits that need to be transmitted.

13 . 6 . 3 Coding

Chen and Pratt [191] used separate Huffman codes for encoding the label for each coefficient
and the number of coefficients since the last nonzero label. The JPEG approach is somewhat
more complex but results in higher compression. In the JPEG approach, the labels for the
DC and AC coefficients are coded differently.

From Figure 13.4 we can see that the basis matrix corresponding to the DC coefficient
is a constant matrix. Thus, the DC coefficient is some multiple of the average value in
the 8 × 8 block. The average pixel value in any 8 × 8 block will not differ substantially
from the average value in the neighboring 8×8 block; therefore, the DC coefficient values
will be quite close. Given that the labels are obtained by dividing the coefficients with the
corresponding entry in the quantization table, the labels corresponding to these coefficients
will be closer still. Therefore, it makes sense to encode the differences between neighboring
labels rather than to encode the labels themselves.

Depending on the number of bits used to encode the pixel values, the number of values
that the labels, and hence the differences, can take on may become quite large. A Huffman
code for such a large alphabet would be quite unmanageable. The JPEG recommendation
resolves this problem by partitioning the possible values that the differences can take on into
categories. The size of these categories grows as a power of two. Thus, category 0 has only
one member (0), category 1 has two members (−1 and 1), category 2 has four members
(−3, −2, 2, 3), and so on. The category numbers are then Huffman coded. The number of
codewords in the Huffman code is equal to the base two logarithm of the number of possible
values that the label differences can take on. If the differences can take on 4096 possible
values, the size of the Huffman code is log2 4096 = 12. The elements within each category
are specified by tacking on extra bits to the end of the Huffman code for that category. As
the categories are different sizes, we need a differing number of bits to identify the value
in each category. For example, because category 0 contains only one element, we need no
additional bits to specify the value. Category 1 contains two elements, so we need 1 bit
tacked on to the end of the Huffman code for category 1 to specify the particular element
in that category. Similarly, we need 2 bits to specify the element in category 2, 3 bits for
category 3, and n bits for category n.

The categories and the corresponding difference values are shown in Table 13.9. For
example, if the difference between two labels was 6, we would send the Huffman code
for category 3. As category 3 contains the eight values �−7�−6�−5�−4� 4� 5� 6� 7�, the
Huffman code for category 3 would be followed by 3 bits that would specify which of the
eight values in category 3 was being transmitted.

The binary code for the AC coefficients is generated in a slightly different manner. The
category C that a nonzero label falls in and the number of zero-valued labels Z since the
last nonzero label form a pointer to a specific Huffman code as shown in Table 13.10. Thus,
if the label being encoded falls in category 3, and there have been 15 zero-valued labels
prior to this nonzero label in the zigzag scan, then we form the pointer F/3, which points

414 13 T R A N S F O R M C O D I N G

TAB L E 13 . 9 Coding of the differences of the DC labels.

0 0
1 −1 1
2 −3 −2 2 3
3 −7 · · · −4 4 · · · 7
4 −15 · · · −8 8 · · · 15
5 −31 · · · −16 16 · · · 31
6 −63 · · · −32 32 · · · 63
7 −127 · · · −64 64 · · · 127
8 −255 · · · −128 128 · · · 255
9 −511 · · · −256 256 · · · 511

10 −1� 023 · · · −512 512 · · · 1,023
11 −2� 047 · · · −1� 024 1,024 · · · 2,047
12 −4� 095 · · · −2� 048 2,048 · · · 4,095
13 −8� 191 · · · −4� 096 4,096 · · · 8,191
14 −16� 383 · · · −8� 192 8,192 · · · 16,383
15 −32� 767 · · · −16� 384 16,384 · · · 32,767
16 32,768

TAB L E 13 . 10 Sample table for obtaining the Huffman code for a given label value
and run length. The values of Z are represented in hexadecimal.

Z/C Codeword Z/C Codeword · · · Z/C Codeword

0/0 (EOB) 1010 · · · F/0 (ZRL) 11111111001
0/1 00 1/1 1100 · · · F/1 1111111111110101
0/2 01 1/2 11011 · · · F/2 1111111111110110
0/3 100 1/3 1111001 · · · F/3 1111111111110111
0/4 1011 1/4 111110110 · · · F/4 1111111111111000
0/5 11010 1/5 11111110110 · · · F/5 1111111111111001
���

���
���

���
���

to the codeword 1111111111110111. Because the label falls in category 3, we follow this
codeword with 3 bits that indicate which of the eight possible values in category 3 is the
value that the label takes on.

There are two special codes shown in Table 13.10. The first is for the end-of-block
(EOB). This is used in the same way as in the Chen and Pratt [191] algorithm; that is, if
a particular label value is the last nonzero value along the zigzag scan, the code for it is
immediately followed by the EOB code. The other code is the ZRL code, which is used
when the number of consecutive zero values along the zigzag scan exceeds 15.

To see how all of this fits together, let’s encode the labels in Table 13.8. The label
corresponding to the DC coefficient is coded by first taking the difference between the
value of the quantized label in this block and the quantized label in the previous block. If
we assume that the corresponding label in the previous block was −1, then the difference
would be 3. From Table 13.9 we can see that this value falls in category 2. Therefore, we

13.6 Application to Image Compression-—JPEG 415

would send the Huffman code for category 2 followed by the 2-bit sequence 11 to indicate
that the value in category 2 being encoded was 3, and not −3�−2, or 2. To encode the AC
coefficients, we first order them using the zigzag scan. We obtain the sequence

1 −9 3 0 0 0 · · ·0

The first value, 1, belongs to category 1. Because there are no zeros preceding it, we transmit
the Huffman code corresponding to 0/1, which from Table 13.10 is 00. We then follow this
by a single bit 1 to indicate that the value being transmitted is 1 and not −1. Similarly,
−9 is the seventh element in category 4. Therefore, we send the binary string 1011, which
is the Huffman code for 0/4, followed by 0110 to indicate that −9 is the seventh element
in category 4. The next label is 3, which belongs to category 2, so we send the Huffman
code 01 corresponding to 0/2, followed by the 2 bits 11. All the labels after this point are
0, so we send the EOB Huffman code, which in this case is 1010. If we assume that the
Huffman code for the DC coefficient was 2 bits long, we have sent a grand total of 21 bits
to represent this 8×8 block. This translates to an average 21

64 bits per pixel.
To obtain a reconstruction of the original block, we perform the dequantization, which

simply consists of multiplying the labels in Table 13.8 with the corresponding values in
Table 13.7. Taking the inverse transform of the quantized coefficients shown in Table 13.11
and adding 128, we get the reconstructed block shown in Table 13.12. We can see that in
spite of going from 8 bits per pixel to 9

32 bits per pixel, the reproduction is remarkably close
to the original.

TAB L E 13 . 11 The quantized values of the coefficients.

32 11 0 0 0 0 0 0
−108 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

TAB L E 13 . 12 The reconstructed block.

123 122 122 121 120 120 119 119
121 121 121 120 119 118 118 118
121 121 120 119 119 118 117 117
124 124 123 122 122 121 120 120
130 130 129 129 128 128 128 127
141 141 140 140 139 138 138 137
152 152 151 151 150 149 149 148
159 159 158 157 157 156 155 155

416 13 T R A N S F O R M C O D I N G

F IGURE 13. 8 Sinan image coded at 0.5 bits per pixel using the JPEG algorithm.

If we wanted an even more accurate reproduction, we could do so at the cost of increased
bit rate by multiplying the step sizes in the quantization table by one-half and using these
values as the new step sizes. Using the same assumptions as before, we can show that this
will result in an increase in the number of bits transmitted. We can go in the other direction
by multiplying the step sizes with a number greater than one. This will result in a reduction
in bit rate at the cost of increased distortion.

Finally, we present some examples of JPEG-coded images in Figures 13.8 and 13.9.
These were coded using shareware generated by the Independent JPEG Group (orga-
nizer, Dr. Thomas G. Lane). Notice the high degree of “blockiness” in the lower-rate image
(Figure 13.8). This is a standard problem of most block-based techniques, and specifically
of the transform coding approach. A number of solutions have been suggested for removing
this blockiness, including postfiltering at the block edges as well as transforms that overlap
the block boundaries. Each approach has its own drawbacks. The filtering approaches tend
to reduce the resolution of the reconstructions, while the overlapped approaches increase the
complexity. One particular overlapped approach that is widely used in audio compression is
the modified DCT (MDCT), which is described in the next section.

13.7 Applicat ion to Audio Compression-—The
MDCT

As mentioned in the previous section, the use of the block based transform has the unfortunate
effect of causing distortion at the block boundaries at low rates. A number of techniques
that use overlapping blocks have been developed over the years [192]. One that has gained

13.7 Application to Audio Compression-—The MDCT 417

F IGURE 13. 9 Sinan image coded at 0.25 bits per pixel using the JPEG algorithm.

wide acceptance in audio compression is a transform based on the discrete cosine transform
called the modified discrete cosine transform (MDCT). It is used in almost all popular audio
coding standards from mp3 and AAC to Ogg Vorbis.

The MDCT used in these algorithms uses 50% overlap. That is, each block overlaps half
of the previous block and half of the next block of data. Consequently, each audio sample
is part of two blocks. If we were to keep all the frequency coefficients we would end up
with twice as many coefficients as samples. Reducing the number of frequency coefficients
results in the introduction of distortion in the inverse transform. The distortion is referred
to as time domain aliasing [193]. The reason for the name is evident if we consider that the
distortion is being introduced by subsampling in the frequency domain. Recall that sampling
at less than the Nyquist frequency in the time domain leads to an overlap of replicas of the
frequency spectrum, or frequency aliasing. The lapped transforms are successful because
they are constructed in such a way that while the inverse transform of each block results in
time-domain aliasing, the aliasing in consecutive blocks cancel each other out.

[][][][

Block i

Block i + 1

Block i + 2

Block i – 1
rp q

F IGURE 13. 10 Source output sequence.

418 13 T R A N S F O R M C O D I N G

Consider the scenario shown in Figure 13.10. Let’s look at the coding for block i and
block i+ 1. The inverse transform of the coefficients resulting from both these blocks will
result in the audio samples in the subblock q. We assume that the blocksize is N and
therefore the subblock size is N/2. The forward transform can be represented by an N/2×N
matrix P. Let us partition the matrix into two N/2×N/2 blocks, A and B. Thus

P = A�B�

Let xi = p�q�, then the forward transform Pxi can be written in terms of the subblocks as

Xi = A�B�

[
p
q

]

The inverse transform matrix Q can be represented by an N ×N/2, which can be partitioned
into two N/2×N/2 blocks, C and D.

Q =
[

C
D

]

Applying the inverse transform, we get the reconstruction values x̂

x̂i = QXi = QPxi =
[

C
D

]

A�B�

[
p
q

]

=
[

CAp+CBq
DAp+DBq

]

Repeating the process for block i+1 we get

x̂i+1 = QXi+1 = QPxi+1 =
[

C
D

]

A�B�

[
q
r

]

=
[

CAq +CBr
DAq +DBr

]

To cancel out the aliasing in the second half of the block we need

CAq +CBr +DAp+DBq = q

From this we can get the requirements on the transform

CB = 0 (13.61)

DA = 0 (13.62)

CA+DB = I (13.63)

Note that the same requirements will help cancel the aliasing in the first half of block i by
using the second half of the inverse transform of block i−1. One selection that satisfies the
last condition is

CA = 1
2

	I − J
 (13.64)

DB = 1
2

	I + J
 (13.65)

13.8 Summary 419

The forward modified discrete transform is given by the following equation:

Xk =
N−1∑

n=0

xn cos
(

2�

N
	k+ 1

2

	n+ 1

2
+ N

4

)

(13.66)

where xn are the audio samples and Xk are the frequency coefficients. The inverse MDCT
is given by

yn = 2
N

N
2 −1∑

n=0

Xk cos
(

2�

N
	k+ 1

2

	n+ 1

2
+ N

4

)

(13.67)

or in terms of our matrix notation,

P�i�j = cos
(

2�

N
	i+ 1

2

	j + 1

2
+ N

4

)

(13.68)

Q�i�j = 2
N

cos
(

2�

N
	i+ 1

2

	j + 1

2
+ N

4

)

(13.69)

It is easy to verify that, given a value of N , these matrices satisfy the conditions for alias
cancellation.

Thus, while the inverse transform for any one block will contain aliasing, by using the
inverse transform of neighboring blocks the aliasing can be canceled. What about blocks
that do not have neighbors—that is, the first and last blocks? One way to resolve this
problem is to pad the sampled audio sequence with N/2 zeros at the beginning and end
of the sequence. In practice, this is not necessary, because the data to be transformed is
windowed prior to the transform. For the first and last blocks we use a special window that
has the same effect as introducing zeros. For information on the design of windows for the
MDCT, see [194]. For more on how the MDCT is used in audio compression techniques, see
Chapter 16.

13.8 Summary

In this chapter we have described the concept of transform coding and provided some of the
details needed for the investigation of this compression scheme. The basic encoding scheme
works as follows:

� Divide the source output into blocks. In the case of speech or audio data, they will be
one-dimensional blocks. In the case of images, they will be two-dimensional blocks.
In image coding, a typical block size is 8×8. In audio coding the blocks are generally
overlapped by 50%.

� Take the transform of this block. In the case of one-dimensional data, this involves
pre-multiplying the N vector of source output samples by the transform matrix. In the
case of image data, for the transforms we have looked at, this involves pre-multiplying
the N × N block by the transform matrix and post-multiplying the result with the

420 13 T R A N S F O R M C O D I N G

transpose of the transform matrix. Fast algorithms exist for performing the transforms
described in this chapter (see [195]).

� Quantize the coefficients. Various techniques exist for the quantization of these coef-
ficients. We have described the approach used by JPEG. In Chapter 16 we describe
the quantization techniques used in various audio coding algorithms.

� Encode the quantized value. The quantized value can be encoded using a fixed-length
code or any of the different variable-length codes described in earlier chapters. We
have described the approach taken by JPEG.

The decoding scheme is the inverse of the encoding scheme for image compression. For the
overlapped transform used in audio coding the decoder adds the overlapped portions of the
inverse transform to cancel aliasing.

The basic approach can be modified depending on the particular characteristics of the
data. We have described some of the modifications used by various commercial algorithms
for transform coding of audio signals.

Fu r t he r Read ing

1. For detailed information about the JPEG standard, JPEG Still Image Data Compression
Standard, by W.B. Pennebaker and J.L. Mitchell [10], is an invaluable reference. This
book also contains the entire text of the official draft JPEG recommendation, ISO DIS
10918-1 and ISO DIS 10918-2.

2. For a detailed discussion of the MDCT and how it is used in audio coding, an
excellent source is Introduction to Digital Audio Coding Standards, by M. Bosi and
R.E. Goldberg [194]

3. Chapter 12 in Digital Coding of Waveforms, by N.S. Jayant and P. Noll [123], provides
a more mathematical treatment of the subject of transform coding.

4. A good source for information about transforms is Fundamentals of Digital Image
Processing, by A.K. Jain [196]. Another one is Digital Image Processing, by R.C.
Gonzales and R.E. Wood [96]. This book has an especially nice discussion of the
Hotelling transform.

5. The bit allocation problem and its solutions are described in Vector Quantization and
Signal Compression, by A. Gersho and R.M. Gray [5].

6. A very readable description of transform coding of images is presented in Digital
Image Compression Techniques, by M. Rabbani and P.W. Jones [80].

7. The Data Compression Book, by M. Nelson and J.-L. Gailly [60], provides a very
readable discussion of the JPEG algorithm.

13.9 Projects and Problems 421

13.9 Projects and Problems

1. A square matrix A has the property that AT A = AAT = I, where I is the identity
matrix. If X1 and X2 are two N -dimensional vectors and

�1 = AX1

�2 = AX2

then show that

�X1 −X2�2 = ��1 −�2�2 (13.70)

2. Consider the following sequence of values:

10 11 12 11 12 13 12 11
10 −10 8 −7 8 −8 7 −7

(a) Transform each row separately using an eight-point DCT. Plot the resulting 16
transform coefficients.

(b) Combine all 16 numbers into a single vector and transform it using a 16-point
DCT. Plot the 16 transform coefficients.

(c) Compare the results of (a) and (b). For this particular case would you suggest a
block size of 8 or 16 for greater compression? Justify your answer.

3. Consider the following “image”:
4 3 2 1
3 2 1 1
2 1 1 1
1 1 1 1

(a) Obtain the two-dimensional DWHT transform by first taking the one-dimensional
transform of the rows, then taking the column-by-column transform of the result-
ing matrix.

(b) Obtain the two-dimensional DWHT transform by first taking the one-dimensional
transform of the columns, then taking the row-by-row transform of the resulting
matrix.

(c) Compare and comment on the results of (a) and (b).

4. (This problem was suggested by P.F. Swaszek.) Let us compare the energy compaction
properties of the DCT and the DWHT transforms.

(a) For the Sena image, compute the mean squared value of each of the 64 coeffi-
cients using the DCT. Plot these values.

(b) For the Sena image, compute the mean squared value of each of the 64 coeffi-
cients using the DWHT. Plot these values.

(c) Compare the results of (a) and (b). Which transform provides more energy
compaction? Justify your answer.

422 13 T R A N S F O R M C O D I N G

5. Implement the transform and quantization portions of the JPEG standard. For coding
the labels use an arithmetic coder instead of the modified Huffman code described in
this chapter.

(a) Encode the Sena image using this transform coder at rates of (approximately)
0.25, 0.5, and 0.75 bits per pixel. Compute the mean squared error at each rate
and plot the rate versus the mse.

(b) Repeat part (a) using one of the public domain implementations of JPEG.

(c) Compare the plots obtained using the two coders and comment on the relative
performance of the coders.

6. One of the extensions to the JPEG standard allows for the use of multiple quantization
matrices. Investigate the issues involved in designing a set of quantization matrices.
Should the quantization matrices be similar or dissimilar? How would you measure
their similarity? Given a particular block, do you need to quantize it with each
quantization matrix to select the best? Or is there a computationally more efficient
approach? Describe your findings in a report.

14
Subband Coding

14.1 Overview

I
n this chapter we present the second of three approaches to compression in
which the source output is decomposed into constituent parts. Each constituent
part is encoded using one or more of the methods that have been described
previously. The approach described in this chapter, known as subband coding,
relies on separating the source output into different bands of frequencies using

digital filters. We provide a general description of the subband coding system and, for those
readers with some knowledge of Z-transforms, a more mathematical analysis of the system.
The sections containing the mathematical analysis are not essential to understanding the
rest of the chapter and are marked with a �. If you are not interested in the mathematical
analysis, you should skip these sections. This is followed by a description of a popular
approach to bit allocation. We conclude the chapter with applications to audio and image
compression.

14.2 Introduct ion

In previous chapters we looked at a number of different compression schemes. Each of these
schemes is most efficient when the data have certain characteristics. A vector quantization
scheme is most effective if blocks of the source output show a high degree of clustering.
A differential encoding scheme is most effective when the sample-to-sample difference is
small. If the source output is truly random, it is best to use scalar quantization or lattice vector
quantization. Thus, if a source exhibited certain well-defined characteristics, we could choose
a compression scheme most suited to that characteristic. Unfortunately, most source outputs
exhibit a combination of characteristics, which makes it difficult to select a compression
scheme exactly suited to the source output.

424 14 S U B B A N D C O D I N G

In the last chapter we looked at techniques for decomposing the source output into
different frequency bands using block transforms. The transform coefficients had differing
statistics and differing perceptual importance. We made use of these differences in allocating
bits for encoding the different coefficients. This variable bit allocation resulted in a decrease
in the average number of bits required to encode the source output. One of the drawbacks
of transform coding is the artificial division of the source output into blocks, which results
in the generation of coding artifacts at the block edges, or blocking. One approach to
avoiding this blocking is the lapped orthogonal transform (LOT) [192]. In this chapter
we look at a popular approach to decomposing the image into different frequency bands
without the imposition of an arbitrary block structure. After the input has been decomposed
into its constituents, we can use the coding technique best suited to each constituent to
improve compression performance. Furthermore, each component of the source output may
have different perceptual characteristics. For example, quantization error that is perceptually
objectionable in one component may be acceptable in a different component of the source
output. Therefore, a coarser quantizer that uses fewer bits can be used to encode the
component that is perceptually less important.

Consider the sequence �xn� plotted in Figure 14.1. We can see that, while there is a
significant amount of sample-to-sample variation, there is also an underlying long-term trend
shown by the dotted line that varies slowly.

One way to extract this trend is to average the sample values in a moving window.
The averaging operation smooths out the rapid variations, making the slow variations more
evident. Let’s pick a window of size two and generate a new sequence �yn� by averaging
neighboring values of xn:

yn = xn +xn−1

2
� (14.1)

The consecutive values of yn will be closer to each other than the consecutive values of xn.
Therefore, the sequence �yn� can be coded more efficiently using differential encoding than
we could encode the sequence �xn�. However, we want to encode the sequence �xn�, not
the sequence �yn�. Therefore, we follow the encoding of the averaged sequence �yn� by the
difference sequence �zn�:

zn = xn −yn = xn − xn +xn−1

2
= xn −xn−1

2
� (14.2)

F IGURE 14. 1 A rapidly changing source output that contains a long-term
component with slow variations.

14.2 Introduction 425

The sequences �yn� and �zn� can be coded independently of each other. This way we can
use the compression schemes that are best suited for each sequence.

Example 14 . 2 . 1:

Suppose we want to encode the following sequence of values �xn�:

10 14 10 12 14 8 14 12 10 8 10 12

There is a significant amount of sample-to-sample correlation, so we might consider using
a DPCM scheme to compress this sequence. In order to get an idea of the requirements on
the quantizer in a DPCM scheme, let us take a look at the sample-to-sample differences
xn −xn−1:

10 4 −4 2 2 −6 6 −2 −2 −2 2 2

Ignoring the first value, the dynamic range of the differences is from −6 to 6. Suppose we
want to quantize these values using m bits per sample. This means we could use a quantizer
with M = 2m levels or reconstruction values. If we choose a uniform quantizer, the size
of each quantization interval, �, is the range of possible input values divided by the total
number of reconstruction values. Therefore,

� = 12

M

which would give us a maximum quantization error of �
2 or 6

M
.

Now let’s generate two new sequences �yn� and �zn� according to (14.1) and (14.2).
All three sequences are plotted in Figure 14.2. Notice that given yn and zn, we can always
recover xn:

xn = yn + zn� (14.3)

Let’s try to encode each of these sequences. The sequence �yn� is

10 12 12 11 13 11 11 13 11 10 9 11

Notice that the �yn� sequence is “smoother” than the �xn� sequence—the sample-to-sample
variation is much smaller. This becomes evident when we look at the sample-to-sample
differences:

10 2 0 −1 2 −2 0 2 −2 −1 −1 2

The difference sequences �xn − xn−1� and �yn − yn−1� are plotted in Figure 14.3. Again,
ignoring the first difference, the dynamic range of the differences yn −yn−1 is 4. If we take
the dynamic range of these differences as a measure of the range of the quantizer, then for
an M-level quantizer, the step size of the quantizer is 4

M
and the maximum quantization

426 14 S U B B A N D C O D I N G

2

0

Value

Sample
number

−2

−4

4

6

8

10

12

14 + + +

+

+

+

++

+

+

+

++

xn

zn

yn

2 4 6 8 10 12

F IGURE 14. 2 Original set of samples and the two components.

0Value
Sample
number

−4

−2

−6

2

4

6

+

+

+

+

+

+

+

+

+

xn − xn−1

yn − yn−1

2 4 6 8 1210

F IGURE 14. 3 Difference sequences generated from the original and averaged
sequences.

14.2 Introduction 427

error is 2
M

. This maximum quantization error is one-third the maximum quantization error
incurred when the �xn� sequence is quantized using an M-level quantizer. However, in order
to reconstruct �xn�, we also need to transmit �zn�. The �zn� sequence is

0 2 −2 1 1 −3 3 −1 −1 −1 1 1

The dynamic range for zn is 6, half the dynamic range of the difference sequence for
�xn�. (We could have inferred this directly from the definition of zn.) The sample-to-sample
difference varies more than the actual values. Therefore, instead of differentially encoding
this sequence, we quantize each individual sample. For an M-level quantizer, the required
step size would be 6

M
, giving a maximum quantization error of 3

M
.

For the same number of bits per sample, we can code both yn and zn and incur less
distortion. At the receiver, we add yn and zn to get the original sequence xn back. The
maximum possible quantization error in the reconstructed sequence would be 5

M
, which is

less than the maximum error we would incur if we encoded the �xn� sequence directly.
Although we use the same number of bits for each value of yn and zn, the number of

elements in each of the �yn� and �zn� sequences is the same as the number of elements in
the original �xn� sequence. Although we are using the same number of bits per sample, we
are transmitting twice as many samples and, in effect, doubling the bit rate.

We can avoid this by sending every other value of yn and zn. Let’s divide the sequence
�yn� into subsequences �y2n� and �y2n−1�—that is, a subsequence containing only the odd-
numbered elements �y1� y3� � � � �, and a subsequence containing only the even-numbered
elements �y2� y4� � � � �. Similarly, we divide the �zn� sequence into subsequences �z2n�
and �z2n−1�. If we transmit either the even-numbered subsequences or the odd-numbered
subsequences, we would transmit only as many elements as in the original sequence. To see
how we recover the sequence �xn� from these subsequences, suppose we only transmitted
the subsequences �y2n� and �z2n�:

y2n = x2n +x2n−1

2

z2n = x2n −x2n−1

2
�

To recover the even-numbered elements of the �xn� sequence, we add the two subse-
quences. In order to obtain the odd-numbered members of the �xn� sequence, we take the
difference:

y2n + z2n = x2n (14.4)

y2n − z2n = x2n−1� (14.5)

Thus, we can recover the entire original sequence �xn�, sending only as many bits as required
to transmit the original sequence while incurring less distortion.

Is the last part of the previous statement still true? In our original scheme we proposed
to transmit the sequence �yn� by transmitting the differences yn − yn−1. As we now need to
transmit the subsequence �y2n�, we will be transmitting the differences y2n − y2n−2 instead.
In order for our original statement about reduction in distortion to hold, the dynamic range

428 14 S U B B A N D C O D I N G

of this new sequence of differences should be less than or equal to the dynamic range of the
original difference. A quick check of the �yn� shows us that the dynamic range of the new
differences is still 4, and our claim of incurring less distortion still holds. �

There are several things we can see from this example. First, the number of different
values that we transmit is the same, whether we send the original sequence �xn� or the
two subsequences �yn� and �zn�. Decomposing the �xn� sequence into subsequences did
not result in any increase in the number of values that we need to transmit. Second, the
two subsequences had distinctly different characteristics, which led to our use of different
techniques to encode the different sequences. If we had not split the �xn� sequence, we would
have been using essentially the same approach to compress both subsequences. Finally,
we could have used the same decomposition approach to decompose the two constituent
sequences, which then could be decomposed further still.

While this example was specific to a particular set of values, we can see that decomposing
a signal can lead to different ways of looking at the problem of compression. This added
flexibility can lead to improved compression performance.

Before we leave this example let us formalize the process of decomposing or analysis,
and recomposing or synthesis. In our example, we decomposed the input sequence �xn� into
two subsequences �yn� and �zn� by the operations

yn = xn +xn−1

2
(14.6)

zn = xn −xn−1

2
� (14.7)

We can implement these operations using discrete time filters. We briefly considered discrete
time filters in Chapter 12. We take a slightly more detailed look at filters in the next section.

14.3 Fi l ters

A system that isolates certain frequency components is called a filter. The analogy here
with mechanical filters such as coffee filters is obvious. A coffee filter or a filter in a water
purification system blocks coarse particles and allows only the finer-grained components
of the input to pass through. The analogy is not complete, however, because mechanical
filters always block the coarser components of the input, while the filters we are discussing
can selectively let through or block any range of frequencies. Filters that only let through
components below a certain frequency f0 are called low-pass filters; filters that block all
frequency components below a certain value f0 are called high-pass filters. The frequency
f0 is called the cutoff frequency. Filters that let through components that have frequency
content above some frequency f1 but below frequency f2 are called band-pass filters.

One way to characterize filters is by their magnitude transfer function—the ratio of the
magnitude of the input and output of the filter as a function of frequency. In Figure 14.4
we show the magnitude transfer function for an ideal low-pass filter and a more realistic
low-pass filter, both with a cutoff frequency of f0. In the ideal case, all components of
the input signal with frequencies below f0 are unaffected except for a constant amount of

14.3 Filters 429

Magnitude

 Frequency

f0

Magnitude

 Frequency

f0

F IGURE 14. 4 Ideal and realistic low-pass filter characteristics.

amplification. All frequencies above f0 are blocked. In other words, the cutoff is sharp. In
the case of the more realistic filter, the cutoff is more gradual. Also, the amplification for the
components with frequency less than f0 is not constant, and components with frequencies
above f0 are not totally blocked. This phenomenon is referred to as ripple in the passband
and stopband.

The filters we will discuss are digital filters, which operate on a sequence of numbers
that are usually samples of a continuously varying signal. We have discussed sampling
in Chapter 12. For those of you who skipped that chapter, let us take a brief look at the
sampling operation.

How often does a signal have to be sampled in order to reconstruct the signal from the
samples? If one signal changes more rapidly than another, it is reasonable to assume that we
would need to sample the more rapidly varying signal more often than the slowly varying
signal in order to achieve an accurate representation. In fact, it can be shown mathematically
that if the highest frequency component of a signal is f0, then we need to sample the signal
at more than 2f0 times per second. This result is known as the Nyquist theorem or Nyquist
rule after Harry Nyquist, a famous mathematician from Bell Laboratories. His pioneering
work laid the groundwork for much of digital communication. The Nyquist rule can also
be extended to signals that only have frequency components between two frequencies f1

and f2. If f1 and f2 satisfy certain criteria, then we can show that in order to recover the
signal exactly, we need to sample the signal at a rate of at least 2	f2 − f1
 samples per
second [123].

What would happen if we violated the Nyquist rule and sampled at less than twice
the highest frequency? In Chapter 12 we showed that it would be impossible to recover
the original signal from the sample. Components with frequencies higher than half the
sampling rate show up at lower frequencies. This process is called aliasing. In order to
prevent aliasing, most systems that require sampling will contain an “anti-aliasing filter” that
restricts the input to the sampler to be less than half the sampling frequency. If the signal
contains components at more than half the sampling frequency, we will introduce distortion
by filtering out these components. However, the distortion due to aliasing is generally more
severe than the distortion we introduce due to filtering.

430 14 S U B B A N D C O D I N G

Digital filtering involves taking a weighted sum of current and past inputs to the filter
and, in some cases, the past outputs of the filter. The general form of the input-output
relationships of the filter is given by

yn =
N∑

i=0

aixn−i +
M∑

i=1

biyn−i (14.8)

where the sequence �xn� is the input to the filter, the sequence �yn� is the output from the
filter, and the values �ai� and �bi� are called the filter coefficients.

If the input sequence is a single 1 followed by all 0s, the output sequence is called the
impulse response of the filter. Notice that if the bi are all 0, then the impulse response will
die out after N samples. These filters are called finite impulse response (FIR) filters. The
number N is sometimes called the number of taps in the filter. If any of the bi have nonzero
values, the impulse response can, in theory, continue forever. Filters with nonzero values
for some of the bi are called infinite impulse response (IIR) filters.

Example 14 . 3 . 1:

Suppose we have a filter with a0 = 1�25 and a1 = 0�5. If the input sequence �xn� is given by

xn =
{

1 n = 0

0 n �= 0�
(14.9)

then the output is given by

y0 = a0x0 +a1x−1 = 1�25

y1 = a0x1 +a1x0 = 0�5

yn = 0 n < 0 or n > 1�

This output is called the impulse response of the filter. The impulse response sequence is
usually represented by �hn�. Therefore, for this filter we would say that

hn =

⎧
⎪⎨

⎪⎩

1�25 n = 0

0�5 n = 1

0 otherwise.

(14.10)

Notice that if we know the impulse response we also know the values of ai. Knowledge
of the impulse response completely specifies the filter. Furthermore, because the impulse
response goes to zero after a finite number of samples (two in this case), the filter is an FIR
filter.

The filters we used in Example 14.2.1 are both two-tap FIR filters with impulse responses

hn =

⎧
⎪⎨

⎪⎩

1
2 n = 0
1
2 n = 1

0 otherwise

(14.11)

14.3 Filters 431

for the “averaging” or low-pass filter, and

hn =

⎧
⎪⎨

⎪⎩

1
2 n = 0

− 1
2 n = 1

0 otherwise

(14.12)

for the “difference” or high-pass filter.
Now let’s consider a different filter with a0 = 1 and b1 = 0�9. For the same input as

above, the output is given by

y0 = a0x0 +b1y−1 = 1	1
+0�9	0
 = 1 (14.13)

y1 = a0x1 +b1y0 = 1	0
+0�9	1
 = 0�9 (14.14)

y2 = a0x2 +b1y1 = 1	0
+0�9	0�9
 = 0�81 (14.15)
���

���

yn = 	0�9
n� (14.16)

The impulse response can be written more compactly as

hn =
{

0 n < 0

	0�9
n n ≥ 0�
(14.17)

Notice that the impulse response is nonzero for all n ≥ 0, which makes this an IIR filter. �

Although it is not as clear in the IIR case as it was in the FIR case, the impulse response
completely specifies the filter. Once we know the impulse response of the filter, we know
the relationship between the input and output of the filter. If �xn� and �yn� are the input and
output, respectively, of a filter with impulse response �hn�

M
n=0, then �yn� can be obtained

from �xn� and �hn� via the following relationship:

yn =
M∑

k=0

hkxn−k� (14.18)

where M is finite for an FIR filter and infinite for an IIR filter. The relationship, shown in
(14.18), is known as convolution and can be easily obtained through the use of the properties
of linearity and shift invariance (see Problem 1).

Because FIR filters are simply weighted averages, they are always stable. When we say a
filter is stable we mean that as long as the input is bounded, the output will also be bounded.
This is not true of IIR filters. Certain IIR filters can give an unbounded output even when
the input is bounded.

432 14 S U B B A N D C O D I N G

Example 14 . 3 . 2:

Consider a filter with a0 = 1 and b1 = 2. Suppose the input sequence is a single 1 followed
by 0s. Then the output is

y0 = a0x0 +b1y−1 = 1	1
+2	0
 = 1 (14.19)

y1 = a0x0 +b1y0 = 1	0
+2	1
 = 2 (14.20)

y2 = a0x1 +b1y1 = 1	0
+2	2
 = 4 (14.21)
���

���

yn = 2n� (14.22)

Even though the input contained a single 1, the output at time n = 30 is 230, or more than a
billion! �

Although IIR filters can become unstable, they can also provide better performance, in
terms of sharper cutoffs and less ripple in the passband and stopband for a fewer number of
coefficients.

The study of design and analysis of digital filters is a fascinating and important subject.
We provide some of the details in Sections 14.5–14.8. If you are not interested in these
topics, you can take a more utilitarian approach and make use of the literature to select the
necessary filters rather than design them. In the following section we briefly describe some
of the families of filters used to generate the examples in this chapter. We also provide filter
coefficients that you can use for experiment.

14 . 3 . 1 Some Fi l ters Used in Subband Coding

The most frequently used filter banks in subband coding consist of a cascade of stages, where
each stage consists of a low-pass filter and a high-pass filter, as shown in Figure 14.5. The
most popular among these filters are the quadrature mirror filters (QMF), which were first
proposed by Crosier, Esteban, and Galand [197]. These filters have the property that if the
impulse response of the low-pass filter is given by �hn�, then the high-pass impulse response
is given by �	−1
nhN−1−n�. The QMF filters designed by Johnston [198] are widely used in
a number of applications. The filter coefficients for 8-, 16-, and 32-tap filters are given in
Tables 14.1–14.3. Notice that the filters are symmetric; that is,

hN−1−n = hn n = 0� 1� � � � �
N

2
−1� (14.23)

As we shall see later, the filters with fewer taps are less efficient in their decomposition
than the filters with more taps. However, from Equation (14.18) we can see that the number
of taps dictates the number of multiply-add operations necessary to generate the filter outputs.
Thus, if we want to obtain more efficient decompositions, we do so by increasing the amount
of computation.

Another popular set of filters are the Smith-Barnwell filters [199], some of which are
shown in Tables 14.4 and 14.5.

14.3 Filters 433

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

F IGURE 14. 5 An eight-band filter bank.

TAB L E 14 . 1 Coefficients for the 8-tap
Johnston low-pass filter.

h0� h7 0�00938715
h1� h6 0�06942827
h2� h5 −0�07065183
h3� h4 0�48998080

TAB L E 14 . 2 Coefficients for the 16-tap
Johnston low-pass filter.

h0� h15 0�002898163
h1� h14 −0�009972252
h2� h13 −0�001920936
h3� h12 0�03596853
h4� h11 −0�01611869
h5� h10 −0�09530234
h6� h9 0�1067987
h7� h8 0�4773469

434 14 S U B B A N D C O D I N G

TAB L E 14 . 3 Coefficients for the 32-tap
Johnston low-pass filter.

h0� h31 0�0022551390
h1� h30 −0�0039715520
h2� h29 −0�0019696720
h3� h28 0�0081819410
h4� h27 0�00084268330
h5� h26 −0�014228990
h6� h25 0�0020694700
h7� h24 0�022704150
h8� h23 −0�0079617310
h9� h22 −0�034964400
h10� h21 0�019472180
h11� h20 0�054812130
h12� h19 −0�044524230
h13� h18 −0�099338590
h14� h17 0�13297250
h15� h16 0�46367410

TAB L E 14 . 4 Coefficients for the eight-tap
Smith-Barnwell low-pass filter.

h0 0�0348975582178515
h1 −0�01098301946252854
h2 −0�06286453934951963
h3 0�223907720892568
h4 0�556856993531445
h5 0�357976304997285
h6 −0�02390027056113145
h7 −0�07594096379188282

TAB L E 14 . 5 Coefficients for the 16-tap
Smith-Barnwell low-pass filter.

h0 0�02193598203004352
h1 0�001578616497663704
h2 −0�06025449102875281
h3 −0�0118906596205391
h4 0�137537915636625
h5 0�05745450056390939
h6 −0�321670296165893
h7 −0�528720271545339
h8 −0�295779674500919
h9 0�0002043110845170894
h10 0�02906699789446796
h11 −0�03533486088708146
h12 −0�006821045322743358
h13 0�02606678468264118
h14 0�001033363491944126
h15 −0�01435930957477529

14.3 Filters 435

These families of filters differ in a number of ways. For example, consider the Johnston
eight-tap filter and the Smith-Barnwell eight-tap filter. The magnitude transfer functions for
these two filters are plotted in Figure 14.6. Notice that the cutoff for the Smith-Barnwell
filter is much sharper than the cutoff for the Johnston filter. This means that the separation
provided by the eight-tap Johnston filter is not as good as that provided by the eight-tap
Smith-Barnwell filter. We will see the effect of this when we look at image compression
later in this chapter.

These filters are examples of some of the more popular filters. Many more filters exist
in the literature, and more are being discovered.

40000 500 1000 1500 2000 2500 3000 3500

 Frequency in Hz

(a)

40000 500 1000 1500 2000 2500 3000 3500

 Frequency in Hz

 (b)

−40

−60

−20

0

20

dB

−40

−60

−20

0

20

dB

F IGURE 14. 6 Magnitude transfer functions of the (a) eight-tap Johnston and
(b) eight-tap Smith-Barnwell filters.

436 14 S U B B A N D C O D I N G

14.4 The Basic Subband Coding Algori thm

The basic subband coding system is shown in Figure 14.7.

14 . 4 . 1 Analys i s

The source output is passed through a bank of filters, called the analysis filter bank, which
covers the range of frequencies that make up the source output. The passbands of the filters
can be nonoverlapping or overlapping. Nonoverlapping and overlapping filter banks are
shown in Figure 14.8. The outputs of the filters are then subsampled.

The justification for the subsampling is the Nyquist rule and its generalization, which
tells us that we only need twice as many samples per second as the range of frequencies.
This means that we can reduce the number of samples at the output of the filter because the
range of frequencies at the output of the filter is less than the range of frequencies at the
input to the filter. This process of reducing the number of samples is called decimation,1 or
downsampling. The amount of decimation depends on the ratio of the bandwidth of the filter
output to the filter input. If the bandwidth at the output of the filter is 1/M of the bandwidth
at the input to the filter, we would decimate the output by a factor of M by keeping every
Mth sample. The symbol M ↓ is used to denote this decimation.

Once the output of the filters has been decimated, the output is encoded using one of
several encoding schemes, including ADPCM, PCM, and vector quantization.

Synthesis
filter M

Decoder M M

Synthesis
filter 3

Decoder 3Encoder 3 MM

Synthesis
filter 2

Decoder 2Encoder 2 MM

Synthesis
filter 1

Decoder 1Encoder 1 MM

Encoder MM
Analysis
filter M

Analysis
filter 3

Analysis
filter 2

Analysis
filter 1

C
ha

nn
el

F IGURE 14. 7 Block diagram of the subband coding system.

1 The word decimation has a rather bloody origin. During the time of the Roman empire, if a legion broke ranks and
ran during battle, its members were lined up and every tenth person was killed. This process was called decimation.

14.4 The Basic Subband Coding Algorithm 437

Magnitude

 Frequency

Magnitude

 Frequency

F IGURE 14. 8 Nonoverlapping and overlapping filter banks.

14 . 4 . 2 Quant izat ion and Coding

Along with the selection of the compression scheme, the allocation of bits between the
subbands is an important design parameter. Different subbands contain differing amounts of
information. Therefore, we need to allocate the available bits among the subbands according
to some measure of the information content. There are a number of different ways we could
distribute the available bits. For example, suppose we were decomposing the source output
into four bands and we wanted a coding rate of 1 bit per sample. We could accomplish this
by using 1 bit per sample for each of the four bands. On the other hand, we could simply
discard the output of two of the bands and use 2 bits per sample for the two remaining
bands. Or, we could discard the output of three of the four filters and use 4 bits per sample
to encode the output of the remaining filter.

This bit allocation procedure can have a significant impact on the quality of the final
reconstruction, especially when the information content of different bands is very different.

If we use the variance of the output of each filter as a measure of information, and
assume that the compression scheme is scalar quantization, we can arrive at several simple
bit allocation schemes (see Section 13.5). If we use a slightly more sophisticated model
for the outputs of the filters, we can arrive at significantly better bit allocation procedures
(see Section 14.9).

14 . 4 . 3 Synthes i s

The quantized and coded coefficients are used to reconstruct a representation of the original
signal at the decoder. First, the encoded samples from each subband are decoded at the
receiver. These decoded values are then upsampled by inserting an appropriate number of

438 14 S U B B A N D C O D I N G

0s between samples. Once the number of samples per second has been brought back to the
original rate, the upsampled signals are passed through a bank of reconstruction filters. The
outputs of the reconstruction filters are added to give the final reconstructed outputs.

We can see that the basic subband system is simple. The three major components of this
system are the analysis and synthesis filters, the bit allocation scheme, and the encoding
scheme. A substantial amount of research has focused on each of these components. Various
filter bank structures have been studied in order to find filters that are simple to implement
and provide good separation between the frequency bands. In the next section we briefly
look at some of the techniques used in the design of filter banks, but our descriptions
are necessarily limited. For a (much) more detailed look, see the excellent book by P.P.
Vaidyanathan [200].

The bit allocation procedures have also been extensively studied in the contexts of
subband coding, wavelet-based coding, and transform coding. We have already described
some bit allocation schemes in Section 13.5, and we describe a different approach in
Section 14.9. There are also some bit allocation procedures that have been developed in the
context of wavelets, which we describe in the next chapter.

The separation of the source output according to frequency also opens up the possibility
for innovative ways to use compression algorithms. The decomposition of the source output
in this manner provides inputs for the compression algorithms, each of which has more clearly
defined characteristics than the original source output. We can use these characteristics to
select separate compression schemes appropriate to each of the different inputs.

Human perception of audio and video inputs is frequency dependent. We can use this
fact to design our compression schemes so that the frequency bands that are most important
to perception are reconstructed most accurately. Whatever distortion there has to be is
introduced in the frequency bands to which humans are least sensitive. We describe some
applications to the coding of speech, audio, and images later in this chapter.

Before we proceed to bit allocation procedures and implementations, we provide a more
mathematical analysis of the subband coding system. We also look at some approaches to
the design of filter banks for subband coding. The analysis relies heavily on the Z-transform
concepts introduced in Chapter 12 and will primarily be of interest to readers with an
electrical engineering background. The material is not essential to understanding the rest of
the chapter; if you are not interested in these details, you should skip these sections and go
directly to Section 14.9.

14.5 Design of Fi l ter Banks �

In this and the following starred section we will take a closer look at the analysis, down-
sampling, upsampling, and synthesis operations. Our approach follows that of [201]. We
assume familiarity with the Z-transform concepts of Chapter 12. We begin with some nota-
tion. Suppose we have a sequence x0� x1� x2� � � � . We can divide this sequence into two
subsequences: x0� x2� x4� � � � and x1� x3� x5� � � � using the scheme shown in Figure 14.9,
where z−1 corresponds to a delay of one sample and ↓ M denotes a subsampling by a factor
of M . This subsampling process is called downsampling or decimation.

14.5 Design of Filter Banks� 439

2
x0 x1 x2 x0 x2 x4

2
0 x1 x3 x5

z–1

F IGURE 14. 9 Decomposition of an input sequence into its odd and even
components.

2
x0 x2 x4 x0 0 x2 0 x4

2
x1 x3 x5

x1 0 x3 0 x500

0 x0 x1 x20

z–1

F IGURE 14. 10 Reconstructing the input sequence from its odd and even
components.

The original sequence can be recovered from the two downsampled sequences by insert-
ing 0s between consecutive samples of the subsequences, delaying the top branch by one
sample and adding the two together. Adding 0s between consecutive samples is called
upsampling and is denoted by ↑ M . The reconstruction process is shown in Figure 14.10.

While we have decomposed the source output sequence into two subsequences, there is
no reason for the statistical and spectral properties of these subsequences to be different. As
our objective is to decompose the source output sequences into subsequences with differing
characteristics, there is much more yet to be done.

Generalizing this, we obtain the system shown in Figure 14.11. The source output
sequence is fed to an ideal low-pass filter and an ideal high-pass filter, each with a bandwidth
of �/2. We assume that the source output sequence had a bandwidth of �. If the original
source signal was sampled at the Nyquist rate, as the output of the two filters have bandwidths
half that of the original sequence, the filter outputs are actually oversampled by a factor
of two. We can, therefore, subsample these signals by a factor of two without any loss of
information. The two bands now have different characteristics and can be encoded differently.
For the moment let’s assume that the encoding is performed in a lossless manner so that the
reconstructed sequence exactly matches the source output sequence.

440 14 S U B B A N D C O D I N G

2
xn y1, n

z–1
z –1

Ideal
low-pass

filter

2

2

2
y2, n xn

Ideal
high-pass

filter

Ideal
low-pass

filter

Ideal
high-pass

filter

Encoder 1

Encoder 2

Decoder 1

Decoder 2

F IGURE 14. 11 Decomposition into two bands using ideal filters.

Let us look at how this system operates in the frequency domain. We begin by looking
at the downsampling operation.

14 . 5 . 1 Downsampl ing �

To see the effects of downsampling, we will obtain the Z-transform of the downsampled
sequence in terms of the original source sequence. Because it is easier to understand what is
going on if we can visualize the process, we will use the example of a source sequence that
has the frequence profile shown in Figure 14.12. For this sequence the output of the ideal
filters will have the shape shown in Figure 14.13.

Let’s represent the downsampled sequence as �wi�n�. The Z-transform W1	z
 of the
downsampled sequence w1�n is

W1	z
 =∑
w1�nz

−n� (14.24)

The downsampling operation means that

w1�n = y1�2n� (14.25)

 π/2 π ω

X(e jω)

F IGURE 14. 12 Spectrum of the source output.

14.5 Design of Filter Banks� 441

 π/2 ω

Y1(e jω)

 π/2 π ω

Y2(e jω)

F IGURE 14. 13 Spectrum of the outputs of the ideal filters.

In order to find the Z-transform of this sequence, we go through a two-step process. Define
the sequence

y′
1�n = 1

2
	1+ ejn�
y1�n (14.26)

=
{

y1�n n even

0 otherwise.
(14.27)

We could also have written Equation (14.26) as

y′
1�n = 1

2
	1+ 	−1
n
y1�n

however, writing the relationship as in Equation (14.26) makes it easier to extend this
development to the case where we divide the source output into more than two bands.

The Z-transform of y′
1�n is given as

Y ′
1	z
 =

�∑

n=−�

1
2

	1+ ejn�
y1�nz
−n� (14.28)

Assuming all summations converge,

Y ′
1	z
 = 1

2

�∑

n=−�
y1�nz

−n + 1
2

�∑

n=−�
y1�n	ze

−j�
−n (14.29)

= 1
2

Y1	z
+ 1
2

Y1	−z
 (14.30)

442 14 S U B B A N D C O D I N G

where we have used the fact that

e−j� = cos	�
− j sin � = −1�

Noting that

w1�n = y′
1�2n (14.31)

W1	z
 =
�∑

n=−�
w1�nz

−n =
�∑

−�
y′

1�2nz
−n� (14.32)

Substituting m = 2n,

W1	z
 =
�∑

−�
y′

1�mz
−m

2 (14.33)

= Y ′
1	z

1
2
 (14.34)

= 1
2

Y1	z
1
2
+ 1

2
Y1	−z

1
2
� (14.35)

Why didn’t we simply write the Z-transform of w1�n directly in terms of y1�n and use the
substitution m = 2n? If we had, the equivalent equation to (14.33) would contain the odd
indexed terms of y1�n, which we know do not appear at the output of the downsampler. In
Equation (14.33), we also get the odd indexed terms of y′

1�n; however, as these terms are all
zero (see Equation (14.26)), they do not contribute to the Z-transform.

Substituting z = ej� we get

W1	e
j�
 = 1

2
Y1	e

j �
2
+ 1

2
Y	−e

j�
2
� (14.36)

Plotting this for the Y1	e
j�
 of Figure 14.13, we get the spectral shape shown in Figure 14.14;

that is, the spectral shape of the downsampled signal is a stretched version of the spectral
shape of the original signal. A similar situation exists for the downsampled signal w2�n.

 π/2 π ω

W1(e jω)

F IGURE 14. 14 Spectrum of the downsampled low-pass filter output.

14.5 Design of Filter Banks� 443

14 . 5 . 2 Upsampl ing �

Let’s take a look now at what happens after the upsampling. The upsampled sequence v1�n

can be written as

v1�n =
{

w1� n
2

n even

0 n odd.
(14.37)

The Z-transform V1	z
 is thus

V1	z
 =
�∑

n=−�
v1�nz

−n (14.38)

=
�∑

n=−�
w1� n

2
z−n n even (14.39)

=
�∑

m=−�
w1�mz−2m (14.40)

= W1	z
2
� (14.41)

The spectrum is sketched in Figure 14.15. The “stretching” of the sequence in the
time domain has led to a compression in the frequency domain. This compression has also
resulted in a replication of the spectrum in the 0��� interval. This replication effect is called
imaging. We remove the images by using an ideal low-pass filter in the top branch and an
ideal high-pass filter in the bottom branch.

Because the use of the filters prior to sampling reduces the bandwidth, which in turn
allows the downsampling operation to proceed without aliasing, these filters are called anti-
aliasing filters. Because they decompose the source output into components, they are also
called analysis filters. The filters after the upsampling operation are used to recompose the
original signal; therefore, they are called synthesis filters. We can also view these filters as
interpolating between nonzero values to recover the signal at the point that we have inserted
zeros. Therefore, these filters are also called interpolation filters.

 �/2 � �

V1(e j�)

F IGURE 14. 15 Spectrum of the upsampled signal.

444 14 S U B B A N D C O D I N G

Although the use of ideal filters would give us perfect reconstruction of the source
output, in practice we do not have ideal filters available. When we use more realistic filters
in place of the ideal filters, we end up introducing distortion. In the next section we look at
this situation and discuss how we can reduce or remove this distortion.

14.6 Perfect Reconstruct ion Using Two-Channel
Fi l ter Banks �

Suppose we replace the ideal low-pass filter in Figure 14.11 with a more realistic filter with
the magnitude response shown in Figure 14.4. The spectrum of the output of the low-pass
filter is shown in Figure 14.16. Notice that we now have nonzero values for frequencies
above �

2 . If we now subsample by two, we will end up sampling at less than twice the
highest frequency, or in other words, we will be sampling at below the Nyquist rate. This
will result in the introduction of aliasing distortion, which will show up in the reconstruction.
A similar situation will occur when we replace the ideal high-pass filter with a realistic
high-pass filter.

In order to get perfect reconstruction after synthesis, we need to somehow get rid of
the aliasing and imaging effects. Let us look at the conditions we need to impose upon
the filters H1	z
, H2	z
, K1	z
, and K2	z
 in order to accomplish this. These conditions are
called perfect reconstruction (PR) conditions.

Consider Figure 14.17. Let’s obtain an expression for X̂	z
 in terms of H1	z
, H2	z
,
K1	z
, and K2	z
. We start with the reconstruction:

X̂	z
 = U1	z
+U2	z
 (14.42)

= V1	z
K1	z
+V2	z
K2	z
� (14.43)

Therefore, we need to find V1	z
 and V2	z
. The sequence v1�n is obtained by upsampling
w1�n. Therefore, from Equation (14.41),

V1	z
 = W1	z
2
� (14.44)

 π/2 ω

V1(e jω)

F IGURE 14. 16 Output of the low-pass filter.

14.6 Perfect Reconstruction Using Two-Channel Filter Banks� 445

xn xnˆ

y1, n w1, n
H1(z) K1(z)2 2

v1, n

y2, n w2, n
H2(z) K2(z)2 2

v2, n

u1, n

u2, n

F IGURE 14. 17 Two-channel subband decimation and interpolation.

The sequence w1�n is obtained by downsampling y1�n,

Y1	z
 = X	z
H1	z
�

Therefore, from Equation (14.35),

W1	z
 = 1
2

[
X	z

1
2
H1	z

1
2
+X	−z

1
2
H1	−z

1
2

]

(14.45)

and

V1	z
 = 1
2

X	z
H1	z
+X	−z
H1	−z
� � (14.46)

Similarly, we can also show that

V2	z
 = 1
2

X	z
H2	z
+X	−z
H2	−z
� � (14.47)

Substituting the expressions for V1	z
 and V2	z
 into Equation (14.43) we obtain

X̂	z
 = 1

2
H1	z
K1	z
+H2	z
K2	z
�X	z

+ 1
2

H1	−z
K1	z
+H2	−z
K2	z
�X	−z
� (14.48)

For perfect reconstruction we would like X̂	z
 to be a delayed and perhaps amplitude-
scaled version of X	z
; that is,

X̂	z
 = cX	z
z−n0 � (14.49)

In order for this to be true, we need to impose conditions on H1	z
, H2	z
, K1	z
, and K2	z
.
There are several ways we can do this, with each approach providing a different solution.
One approach involves writing Equation (14.48) in matrix form as

X̂	z
 = 1
2

[
K1	z
 K2	z

]
[

H1	z
 H1	−z

H2	z
 H2	−z

][
X	z

X	−z

]

(14.50)

For perfect reconstruction, we need

[
K1	z
 K2	z

]
[

H1	z
 H1	−z

H2	z
 H2	−z

]

= [
cz−n0 0

]
(14.51)

446 14 S U B B A N D C O D I N G

where we have absorbed the factor of 1
2 into the constant c. This means that the synthesis

filters K1	z
 and K2	z
 satisfy

[
K1	z
 K2	z

]= cz−n0

det� 	z
�

[
H2	−z
 −H1	−z

]
(14.52)

where

� 	z
 =
[

H1	z
 H1	−z

H2	z
 H2	−z

]

(14.53)

If H1	z
 and/or H2	z
 are IIR filters, the reconstruction filters can become quite complex.
Therefore, we would like to have both the analysis and synthesis filters be FIR filters. If we
select the analysis filters to be FIR, then in order to guarantee that the synthesis filters are
also FIR we need

det� 	z
� = �z−n1

where � is a constant. Examining det� 	z
�

det� 	z
� = H1	z
H2	−z
−H1	−z
H2	z

= P	z
−P	−z
 = �z−n1 (14.54)

where P	z
 = H1	z
H2	−z
. If we examine Equation (14.54), we can see that n1 has to
be odd because all terms containing even powers of z in P	z
 will be canceled out by the
corresponding terms in P	−z
. Thus, P	z
 can have an arbitrary number of even-indexed
coefficients (as they will get canceled out), but there must be only one nonzero coefficient
of an odd power of z. By choosing any valid factorization of the form

P	z
 = P1	z
P2	z
 (14.55)

we can obtain many possible solutions of perfect reconstruction FIR filter banks with

H1	z
 = P1	z
 (14.56)

and

H2	z
 = P2	−z
� (14.57)

Although these filters are perfect reconstruction filters, for applications in data compression
they suffer from one significant drawback. Because these filters may be of unequal band-
width, the output of the larger bandwidth filter suffers from severe aliasing. If the output of
both bands is available to the receiver, this is not a problem because the aliasing is canceled
out in the reconstruction process. However, in many compression applications we discard
the subband containing the least amount of energy, which will generally be the output of
the filter with the smaller bandwidth. In this case the reconstruction will contain a large
amount of aliasing distortion. In order to avoid this problem for compression applications,
we generally wish to minimize the amount of aliasing in each subband. A class of filters that
is useful in this situation is the quadrature mirror filters (QMF). We look at these filters in
the next section.

14.6 Perfect Reconstruction Using Two-Channel Filter Banks� 447

14 . 6 . 1 Two-Channel PR Quadrature Mirror
F i l ters �

Before we introduce the quadrature mirror filters, let’s rewrite Equation (14.48) as

X̂	z
 = T	z
X	z
+S	z
X	−z
 (14.58)

where

T	z
 = 1

2
H1	z
K1	z
+H2	z
K2	z
� (14.59)

S	z
 = 1
2

H1	−z
K1	z
+H2	−z
K2	z
� � (14.60)

In order for the reconstruction of the input sequence �xn� to be a delayed, and perhaps
scaled, version of �xn�, we need to get rid of the aliasing term X	−z
 and have T	z
 be a
pure delay. To get rid of the aliasing term, we need

S	z
 = 0� ∀z�

From Equation (14.60), this will happen if

K1	z
 = H2	−z
 (14.61)

K2	z
 = −H1	−z
� (14.62)

After removing the aliasing distortion, a delayed version of the input will be available
at the output if

T	z
 = cz−n0 c is a constant� (14.63)

Replacing z by ej�, this means that we want

∣
∣T	ej�

∣
∣ = constant (14.64)

arg	T	ej�

 = Kw K constant� (14.65)

The first requirement eliminates amplitude distortion, while the second, the linear phase
requirement, is necessary to eliminate phase distortion. If these requirements are satisfied,

x̂	n
 = cx	n−n0
� (14.66)

That is, the reconstructed signal is a delayed version of input signal x	n
. However, meeting
both requirements simultaneously is not a trivial task.

Consider the problem of designing T	z
 to have linear phase. Substituting (14.61) and
(14.62) into Equation (14.59), we obtain

T	z
 = 1

2
H1	z
H2	−z
−H1	−z
H2	z
�� (14.67)

448 14 S U B B A N D C O D I N G

Therefore, if we choose H1	z
 and H2	z
 to be linear phase FIR, T	z
 will also be a linear
phase FIR filter. In the QMF approach, we first select the low-pass filter H1	z
, then define
the high-pass filter H2	z
 to be a mirror image of the low-pass filter:

H2	z
 = H1	−z
� (14.68)

This is referred to as a mirror condition and is the original reason for the name of the QMF
filters [200]. We can see that this condition will force both filters to have equal bandwidth.

Given the mirror condition and H1	z
, a linear phase FIR filter, we will have linear phase
and

T	z
 = 1

2
H2

1 	z
−H2
1 	−z
�� (14.69)

It is not clear that 	T	ej�
	 is a constant. In fact, we will show in Section 14.8 that a linear
phase two-channel FIR QMF bank with the filters chosen as in Equation (14.68) can have
PR property if and only if H1	z
 is in the simple two-tap form

H1	z
 = h0z
−2k0 +h1z

−	2k1+1
� (14.70)

Then, T	z
 is given by

T	z
 = 2h0h1z
−	2k0+2k1+1
 (14.71)

which is of the desired form cz−n0 . However, if we look at the magnitude characteristics
of the two filters, we see that they have poor cutoff characteristics. The magnitude of the
low-pass filter is given by

∣
∣H1	e

j�

∣
∣2 = h2

0 +h2
1 +2h0h1 cos	2k0 −2k1 −1
� (14.72)

and the high-pass filter is given by
∣
∣H2	e

j�

∣
∣2 = h2

0 +h2
1 −2h0h1 cos	2k0 −2k1 −1
�� (14.73)

For h0 = h1 = k0 = k1 = 1, the magnitude responses are plotted in Figure 14.18. Notice the
poor cutoff characteristics of these two filters.

Thus, for perfect reconstruction with no aliasing and no amplitude or phase distortion,
the mirror condition does not seem like such a good idea. However, if we slightly relax
these rather strict conditions, we can obtain some very nice designs. For example, instead of
attempting to eliminate all phase and amplitude distortion, we could elect to eliminate only
the phase distortion and minimize the amplitude distortion. We can optimize the coefficients
of H1	z
 such that 	T	ej�
	 is made as close to a constant as possible, while minimizing
the stopband energy of H1	z
 in order to have a good low-pass characteristic. Such an
optimization has been suggested by Johnston [198] and Jain and Crochiere [202]. They
construct the objective function

J = �
∫ �

�s

∣
∣H1	e

j�

∣
∣2 d�+ 	1−�

∫ �

0
	1− ∣∣T	ej�

∣
∣2
d� (14.74)

which has to be minimized to obtain H1	z
 and T1	z
, where �s is the cutoff frequency of
the filter.

14.6 Perfect Reconstruction Using Two-Channel Filter Banks� 449

−30

10

5

0

−5

−10

−15

−20

−25

0 0.5 1 1.5 2 2.5 3

Frequency

M
ag

ni
tu

de
 (

dB
)

F IGURE 14. 18 Magnitude characteristics of the two-tap PR filters.

We can also go the other way and eliminate the amplitude distortion, then attempt to
minimize the phase distortion. A review of these approaches can be found in [201, 200].

14 . 6 . 2 Power Symmetr i c F IR F i l ters �

Another approach, independently discovered by Smith and Barnwell [199] and Mintzer
[203], can be used to design a two-channel filter bank in which aliasing, amplitude distortion,
and phase distortion can be completely eliminated. As discussed earlier, choosing

K1	z
 = −H2	−z

K2	z
 = H1	−z
 (14.75)

eliminates aliasing. This leaves us with

T	z
 = 1
2

H1	−z
H2	z
−H1	z
H2	−z
��

In the approach due to Smith and Barnwell [199] and Mintzer [203], with N an odd integer,
we select

H2	z
 = z−N H1	−z−1
 (14.76)

450 14 S U B B A N D C O D I N G

so that

T	z
 = 1
2

z−N H1	z
H1	z
−1
+H1	−z
H1	−z−1
�� (14.77)

Therefore, the perfect reconstruction requirement reduces to finding a prototype low-pass
filter H	z
 = H1	z
 such that

Q	z
 = H	z
H	z−1
+H	−z
H	−z−1
 = constant� (14.78)

Defining

R	z
 = H	z
H	z−1
� (14.79)

the perfect reconstruction requirement becomes

Q	z
 = R	z
+R	−z
 = constant� (14.80)

But R	z
 is simply the Z-transform of the autocorrelation sequence of h	n
. The auto-
correlation sequence �	n
 is given by

�	n
 =
N∑

k=0

hkhk+n� (14.81)

The Z-transform of �	n
 is given by

R	z
 = ��	n
� = �

[
N∑

k=0

hkhk+n

]

� (14.82)

We can express the sum
∑N

k=0 hkhk+n as a convolution:

hn ⊗h−n =
N∑

k=0

hkhk+n� (14.83)

Using the fact that the Z-transform of a convolution of two sequences is the product of the
Z-transforms of the individual sequences, we obtain

R	z
 = �hn��h−n� = H	z
H	z−1
� (14.84)

Writing out R	z
 as the Z-transform of the sequence ��	n
� we obtain

R	z
 = �	N
zN +�	N −1
zN−1 +· · ·+�	0
+· · ·+�	N −1
z−N−1 +�	N
z−N � (14.85)

Then R	−z
 is

R	−z
 = −�	N
zN +�	N −1
zN−1 −· · ·+�	0
−· · ·+�	N −1
z−N−1 −�	N
z−N � (14.86)

Adding R	z
 and R	−z
, we obtain Q	z
 as

Q	z
 = 2�	N −1
zN−1 +2�	N −1
zN−3 +· · ·+�	0
+· · ·+2�	N −1
z−N−1� (14.87)

14.7 M-Band QMF Filter Banks� 451

Notice that the terms containing the odd powers of z got canceled out. Thus, for Q	z

to be a constant all we need is that for even values of the lag n (except for n = 0), �	n
 be
zero. In other words

�	2n
 =
N∑

k=0

hkhk+2n = 0� n �= 0� (14.88)

Writing this requirement in terms of the impulse response:

N∑

k=0

hkhk+2n =
{

0 n �= 0

�	0
 n = 0�
(14.89)

If we now normalize the impulse response,

N∑

k=0

	hk	2 = 1 (14.90)

we obtain the perfect reconstruction requirement

N∑

k=0

hkhk+2n = �n� (14.91)

In other words, for perfect reconstruction, the impulse response of the prototype filter is
orthogonal to the twice-shifted version of itself.

14.7 M -Band QMF Fi l ter Banks �

We have looked at how we can decompose an input signal into two bands. In many
applications it is necessary to divide the input into multiple bands. We can do this by using
a recursive two-band splitting as shown in Figure 14.19, or we can obtain banks of filters
that directly split the input into multiple bands. Given that we have good filters that provide
two-band splitting, it would seem that using a recursive splitting, as shown in Figure 14.19,
would be an efficient way of obtaining an M-band split. Unfortunately, even when the
spectral characteristics of the filters used for the two-band split are quite good, when we
employ them in the tree structure shown in Figure 14.19, the spectral characteristics may
not be very good. For example, consider the four-tap filter with filter coefficients shown in
Table 14.6. In Figure 14.20 we show what happens to the spectral characteristics when we
look at the two-band split (at point A in Figure 14.19), the four-band split (at point B in
Figure 14.19), and the eight-band split (at point C in Figure 14.19). For a two-band split the
magnitude characteristic is flat, with some aliasing. When we employ these same filters to
obtain a four-band split from the two-band split, there is an increase in the aliasing. When
we go one step further to obtain an eight-band split, the magnitude characteristics deteriorate
substantially, as evidenced by Figure 14.20. The various bands are no longer clearly distinct.
There is significant overlap between the bands, and hence there will be a significant amount
of aliasing in each band.

In order to see why there is an increase in distortion, let us follow the top branch of
the tree. The path followed by the signal is shown in Figure 14.21a. As we will show later

452 14 S U B B A N D C O D I N G

Low-pass
filter

High-pass
filter

Low-pass
filter

A B C

High-pass
filter

Low-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

High-pass
filter

F IGURE 14. 19 Decomposition of an input sequence into multiple bands by
recursively using a two-band split.

TAB L E 14 . 6 Coefficients for the four-tap
Daubechies low-pass filter.

h0 0.4829629131445341
h1 0.8365163037378079
h2 0.2241438680420134
h3 −0�1294095225512604

(Section 14.8), the three filters and downsamplers can be replaced by a single filter and
downsampler as shown in Figure 14.21b, where

A	z
 = HL	z
HL	z2
HL	z4
� (14.92)

If HL	z
 corresponds to a 4-tap filter, then A	z
 corresponds to a 3 × 6 × 12 = 216-tap
filter! However, this is a severely constrained filter because it was generated using only

14.7 M-Band QMF Filter Banks� 453

1

0

2

3

0.5 1 1.5 2 2.50 3

1

0

2

3

0.5 1 1.5 2 2.50 3

1

0

2

3

0.5 1 1.5 2 2.50 3

Two-band

M
ag

ni
tu

de
M

ag
ni

tu
de

M
ag

ni
tu

de

Four-band

Eight-band

F IGURE 14. 20 Spectral characteristics at points A, B, and C.

2HL(z) HL(z) 2 2HL(z)

A(z) 8

(a)

(b)

F IGURE 14. 21 Equivalent structures for recursive filtering using a two-band split.

454 14 S U B B A N D C O D I N G

four coefficients. If we had set out to design a 216-tap filter from scratch, we would have
had significantly more freedom in selecting the coefficients. This is a strong motivation for
designing filters directly for the M-band case.

An M-band filter bank has two sets of filters that are arranged as shown in Figure 14.7.
The input signal x	n
 is split into M frequency bands using an analysis bank of M filters of
bandwidth �/M . The signal in any of these M channels is then downsampled by a factor L.
This constitutes the analysis bank. The subband signals yk	n
 are encoded and transmitted.
At the synthesis stage the subband signals are then decoded, upsampled by a factor of L
by interlacing adjacent samples with L − 1 zeros, and then passed through the synthesis
or interpolation filters. The output of all these synthesis filters is added together to obtain
the reconstructed signal. This constitutes the synthesis filter bank. Thus, the analysis and
synthesis filter banks together take an input signal x	n
 and produce an output signal x̂	n
.
These filters could be any combination of FIR and IIR filters.

Depending on whether M is less than, equal to, or greater than L, the filter bank is called
an underdecimated, critically (maximally) decimated, or overdecimated filter bank. For most
practical applications, maximal decimation or “critical subsampling” is used.

A detailed study of M-band filters is beyond the scope of this chapter. Suffice it to say
that in broad outline much of what we said about two-band filters can be generalized to
M-band filters. (For more on this subject, see [200].)

14.8 The Polyphase Decomposit ion �

A major problem with representing the combination of filters and downsamplers is the
time-varying nature of the up- and downsamplers. An elegant way of solving this problem
is with the use of polyphase decomposition. In order to demonstrate this concept, let us first
consider the simple case of two-band splitting. We will first consider the analysis portion of
the system shown in Figure 14.22. Suppose the analysis filter H1	z
 is given by

H1	z
 = h0 +h1z
−1 +h2z

−2 +h3z
−3 +· · · � (14.93)

By grouping the odd and even terms together, we can write this as

H1	z
 = 	h0 +h2z
−2 +h4z

−4 +· · ·
+ z−1	h1 +h3z
−2 +h5z

−4 +· · ·
� (14.94)

2H1(z)

2H2(z)

F IGURE 14. 22 Analysis portion of a two-band subband coder.

14.8 The Polyphase Decomposition� 455

Define

H10	z
 = h0 +h2z
−1 +h4z

−2 +· · · (14.95)

H11	z
 = h1 +h3z
−1 +h5z

−2 +· · · (14.96)

Then H1	z
 = H10	z
2
 + z−1H11	z

2
. Similarly, we can decompose the filter H2	z
 into
components H20	z
 and H21	z
, and we can represent the system of Figure 14.22 as shown
in Figure 14.23. The filters H10	z
, H11	z
 and H20	z
�H21	z
 are called the polyphase
components of H1	z
 and H2	z
.

Let’s take the inverse Z-transform of the polyphase components of H1	z
:

h10	n
 = h2n n = 0� 1� � � � (14.97)

h11	n
 = h2n+1 n = 0� 1� � � � (14.98)

Thus, h10	n
 and h11	n
 are simply the impulse response hn downsampled by two. Consider
the output of the downsampler for a given input X	z
. The input to the downsampler is
X	z
H1	z
; thus, the output from Equation (14.35) is

Y1	z
 = 1
2

X
(
z

1
2

)
H1

(
z

1
2

)
+ 1

2
X
(
−z

1
2

)
H1

(
−z

1
2

)
� (14.99)

2H10(z)

H11(z)

z–1

2H20(z)

H21(z)

z–1

F IGURE 14. 23 Alternative representation of the analysis portion of a two-band
subband coder.

456 14 S U B B A N D C O D I N G

Replacing H1	z
 with its polyphase representation, we get

Y1	z
 = 1
2

X
(
z

1
2

)[
H10	z
+ z− 1

2 H11	z

]
+ 1

2
X
(
−z

1
2

)[
H10	z
− z− 1

2 H11	z

]

(14.100)

= H10	z

[
1
2

X
(
z

1
2

)
+ 1

2
X
(
−z

1
2

)]

+H11	z

[
1
2

z− 1
2 X
(
z

1
2

)
− 1

2
z− 1

2 X
(
−z

1
2

)]

(14.101)

Note that the first expression in square brackets is the output of a downsampler whose
input is X	z
, while the quantity in the second set of square brackets is the output of a
downsampler whose input is z−1X	z
. Therefore, we could implement this system as shown
in Figure 14.24.

Now let us consider the synthesis portion of the two-band system shown in Figure 14.25.
As in the case of the analysis portion, we can write the transfer functions in terms of their
polyphase representation. Thus,

G1	z
 = G10	z
2
+ z−1G11	z

2
 (14.102)

G2	z
 = G20	z
2
+ z−1G21	z

2
� (14.103)

Consider the output of the synthesis filter G1	z
 given an input Y1	z
. From Equation (14.41),
the output of the upsampler is

U1	z
 = Y1	z
2
 (14.104)

2

2

H10(z)

H11(z)

z–1

2

2

H20(z)

H21(z)

z–1

F IGURE 14. 24 Polyphase representation of the analysis portion of a two-band
subband coder.

14.8 The Polyphase Decomposition� 457

2 G1(z)

2 G2(z)

F IGURE 14. 25 The synthesis portion of a two-band subband coder.

and the output of G1	z
 is

V1	z
 = Y1	z
2
G1	z
 (14.105)

= Y1	z
2
G10	z

2
+ z−1Y1	z
2
G11	z

2
� (14.106)

The first term in the equation above is the output of an upsampler that follows a filter
with transfer function G10	z
 with input Y	z
. Similarly, Y1	z

2
G11	z
2
 is the output of an

upsampler that follows a filter with transfer function G11	z
 with input Y	z
. Thus, this
system can be represented as shown in Figure 14.26.

Putting the polyphase representations of the analysis and synthesis portions together, we
get the system shown in Figure 14.27. Looking at the portion in the dashed box, we can see
that this is a completely linear time-invariant system.

G10(z) 2

G11(z)

z–1

2

G20(z) 2

G21(z)

z–1

2

F IGURE 14. 26 Polyphase representation of the synthesis portion of a two-band
subband coder.

458 14 S U B B A N D C O D I N G

G10(z) 2

G11(z)

z–1

2

G20(z) 2

G21(z)

z–1

2

2

2

H10(z)

H11(z)

z–1

2

2

H20(z)

H21(z)

z–1

F IGURE 14. 27 Polyphase representation of the two-band subband coder.

The polyphase representation can be a very useful tool for the design and analysis
of filters. While many of its uses are beyond the scope of this chapter, we can use this
representation to prove our statement about the two-band perfect reconstruction QMF filters.

Recall that we want

T	z
 = 1

2
H1	z
H2	−z
−H1	−z
H2	z
� = cz−n0 �

If we impose the mirror condition H2	z
 = H1	−z
�T	z
 becomes

T	z
 = 1
2

[
H2

1 	z
−H2
1 	−z

]
� (14.107)

The polyphase decomposition of H1	z
 is

H1	z
 = H10	z
2
+ z−1H11	z

2
�

Substituting this into Equation (14.107) for H1	z
 and

H1	−z
 = H10	z
2
− z−1H11	z

2

for H1	−z
, we obtain

T	z
 = 2z−1H10	z
2
H11	z

2
� (14.108)

Clearly, the only way T	z
 can have the form cz−n0 is if both H10	z
 and H11	z
 are simple
delays; that is,

H10	z
 = h0z
−k0 (14.109)

H11	z
 = h1z
−k1 � (14.110)

14.9 Bit Allocation 459

This results in

T	z
 = 2h0h1z
−	2k0+2k1+1
 (14.111)

which is of the form cz−n0 as desired. The resulting filters have the transfer functions

H1	z
 = h0z
−2k0 +h1z

−	2k1+1
 (14.112)

H2	z
 = h0z
−2k0 −h1z

−	2k1+1
� (14.113)

14.9 Bit Al locat ion

Once we have separated the source output into the constituent sequences, we need to decide
how much of the coding resource should be used to encode the output of each synthesis
filter. In other words, we need to allocate the available bits between the subband sequences.
In the previous chapter we described a bit allocation procedure that uses the variances of
the transform coefficient. In this section we describe a bit allocation approach that attempts
to use as much information about the subbands as possible to distribute the bits.

Let’s begin with some notation. We have a total of BT bits that we need to distribute
among M subbands. Suppose R corresponds to the average rate in bits per sample for the
overall system, and Rk is the average rate for subband k. Let’s begin with the case where
the input is decomposed into M equal bands, each of which is decimated by a factor of M .
Finally, let’s assume that we know the rate distortion function for each band. (If you recall
from Chapter 8, this is a rather strong assumption and we will relax it shortly.) We also
assume that the distortion measure is such that the total distortion is the sum of the distortion
contribution of each band.

We want to find the bit allocation Rk such that

R = 1
M

M∑

k=1

Rk (14.114)

and the reconstruction error is minimized. Each value of Rk corresponds to a point on the
rate distortion curve. The question is where on the rate distortion curve for each subband
should we operate to minimize the average distortion. There is a trade-off between rate and
distortion. If we decrease the rate (that is, move down the rate distortion curve), we will
increase the distortion. Similarly, if we want to move to the left on the rate distortion curve
and minimize the distortion, we end up increasing the rate. We need a formulation that
incorporates both rate and distortion and the trade-off involved. The formulation we use is
based on a landmark paper in 1988 by Yaacov Shoham and Allen Gersho [204]. Let’s define
a functional Jk:

Jk = Dk +�Rk (14.115)

where Dk is the distortion contribution from the kth subband and � is a Lagrangian parameter.
This is the quantity we wish to minimize. In this expression the parameter � in some sense
specifies the trade-off. If we are primarily interested in minimizing the distortion, we can
set � to a small value. If our primary interest is in minimizing the rate, we keep the value of

460 14 S U B B A N D C O D I N G

� large. We can show that the values of Dk and Rk that minimize Jk occur where the slope
of the rate distortion curve is �. Thus, given a value of � and the rate distortion function,
we can immediately identify the values of Rk and Dk. So what should the value of � be, and
how should it vary between subbands?

Let’s take the second question first. We would like to allocate bits in such a way that
any increase in any of the rates will have the same impact on the distortion. This will
happen when we pick Rk in such a way that the slopes of the rate distortion functions for
the different subbands are the same; that is, we want to use the same � for each subband.
Let’s see what happens if we do not. Consider the two rate distortion functions shown in
Figure 14.28. Suppose the points marked x on the rate distortion functions correspond to
the selected rates. Obviously, the slopes, and hence the values of �, are different in the two
cases. Because of the differences in the slope, an increase by �R in the rate R1 will result
in a much larger decrease in the distortion than the increase in distortion if we decreased R2

by �R. Because the total distortion is the sum of the individual distortions, we can therefore
reduce the overall distortions by increasing R1 and decreasing R2. We will be able to keep
doing this until the slope corresponding to the rates are the same in both cases. Thus, the
answer to our second question is that we want to use the same value of � for all the subbands.

Given a set of rate distortion functions and a value of �, we automatically get a set of
rates Rk. We can then compute the average and check if it satisfieies our constraint on the
total number of bits we can spend. If it does not, we modify the value of � until we get a
set of rates that satisfies our rate constraint.

However, generally we do not have rate distortion functions available. In these cases we
use whatever is available. For some cases we might have operational rate distortion curves
available. By “operational” we mean performance curves for particular types of encoders
operating on specific types of sources. For example, if we knew we were going to be using
pdf-optimized nonuniform quantizers with entropy coding, we could estimate the distribution
of the subband and use the performance curve for pdf-optimized nonuniform quantizers for

Distortion

Rate

R1

Distortion

Rate R2

F IGURE 14. 28 Two rate distortion functions.

14.10 Application to Speech Coding-—G.722 461

that distribution. We might only have the performance of the particular encoding scheme
for a limited number of rates. In this case we need to have some way of obtaining the slope
from a few points. We could estimate this numerically from these points. Or we could fit
the points to a curve and estimate the slope from the curve. In these cases we might not be
able to get exactly the average rate we wanted.

Finally, we have been talking about a situation where the number of samples in each
subband is exactly the same, and therefore the total rate is simply the sum of the individual
rates. If this is not true, we need to weight the rates of the individual subbands. The functional
to be minimized becomes

J =∑
Dk +�

∑
�kRk (14.116)

where �k is the weight reflecting the relative length of the sequence generated by the kth
filter. The distortion contribution from each subband might not be equally relevant, perhaps
because of the filter construction or because of the perceptual weight attached to those
frequencies [205]. In these cases we can modify our functional still further to include the
unequal weighting of the distortion:

J =∑
wkDk +�

∑
�kRk� (14.117)

14.10 Applicat ion to Speech Coding-—G.722

The ITU-T recommendation G.722 provides a technique for wideband coding of speech
signals that is based on subband coding. The basic objective of this recommendation is to
provide high-quality speech at 64 kbits per second (kbps). The recommendation also contains
two other modes that encode the input at 56 and 48 kbps. These two modes are used when
an auxiliary channel is needed. The first mode provides for an auxiliary channel of 8 kbps;
the second mode, for an auxiliary channel of 16 kbps.

The speech output or audio signal is filtered to 7 kHz to prevent aliasing, then sampled
at 16,000 samples per second. Notice that the cutoff frequency for the anti-aliasing filter is
7 kHz, not 8 kHz, even though we are sampling at 16,000 samples per second. One reason
for this is that the cutoff for the anti-aliasing filter is not going to be sharp like that of the
ideal low-pass filter. Therefore, the highest frequency component in the filter output will be
greater than 7 kHz. Each sample is encoded using a 14-bit uniform quantizer. This 14-bit
input is passed through a bank of two 24-coefficient FIR filters. The coefficients of the
low-pass QMF filter are shown in Table 14.7.

The coefficients for the high-pass QMF filter can be obtained by the relationship

hHP�n = 	−1
nhLP�n� (14.118)

The low-pass filter passes all frequency components in the range of 0 to 4 kHz, while the
high-pass filter passes all remaining frequencies. The output of the filters is downsampled by
a factor of two. The downsampled sequences are encoded using adaptive differential PCM
(ADPCM) systems.

The ADPCM system that encodes the downsampled output of the low-frequency filter
uses 6 bits per sample, with the option of dropping 1 or 2 least significant bits in order to

462 14 S U B B A N D C O D I N G

TAB L E 14 . 7 Transmit and receive
QMF coefficient values.

h0� h23 3�66211×10−4

h1� h22 −1�34277×10−3

h2� h21 −1�34277×10−3

h3� h20 6�46973×10−3

h4� h19 1�46484×10−3

h5� h18 −1�90430×10−2

h6� h17 3�90625×10−3

h7� h16 4�41895×10−2

h8� h15 −2�56348×10−2

h9� h14 −9�82666×10−2

h10� h13 1�16089×10−1

h11� h12 4�73145×10−1

provide room for the auxiliary channel. The output of the high-pass filter is encoded using 2
bits per sample. Because the 2 least significant bits of the quantizer output of the low-pass
ADPCM system could be dropped and then not available to the receiver, the adaptation
and prediction at both the transmitter and receiver are performed using only the 4 most
significant bits of the quantizer output.

If all 6 bits are used in the encoding of the low-frequency subband, we end up with a rate
of 48 kbps for the low band. Since the high band is encoded at 2 bits per sample, the output
rate for the high subband is 16 kbps. Therefore, the total output rate for the subband-ADPCM
system is 64 kbps.

The quantizer is adapted using a variation of the Jayant algorithm [110]. Both ADPCM
systemsuse thepast tworeconstructedvaluesandthepast sixquantizeroutputs topredict thenext
sample, in the same way as the predictor for recommendation G.726 described in Chapter 11.
The predictor is adapted in the same manner as the predictor used in the G.726 algorithm.

At the receiver, after being decoded by the ADPCM decoder, each output signal is
upsampled by the insertion of a zero after each sample. The upsampled signals are passed
through the reconstruction filters. These filters are identical to the filters used for decompos-
ing the signal. The low-pass reconstruction filter coefficients are given in Table 14.7, and
the coefficients for the high-pass filter can be obtained using Equation (14.118).

14.11 Applicat ion to Audio Coding-—MPEG Audio

The Moving Picture Experts Group (MPEG) has proposed an audio coding scheme that
is based in part on subband coding. Actually, MPEG has proposed three coding schemes,
called Layer I, Layer II, and Layer III coding. Each is more complex than the previous and
provides higher compression. The coders are also “upward” compatible; a Layer N decoder
is able to decode the bitstream generated by the Layer N −1 encoder. In this section we will
look primarily at the Layer 1 and Layer 2 coders.

The Layer 1 and Layer 2 coders both use a bank of 32 filters, splitting the input into
32 bands, each with a bandwidth of fs/64, where fs is the sampling frequency. Allowable

14.12 Application to Image Compression 463

sampling frequencies are 32,000 samples per second, 44,100 samples per second, and 48,000
samples per second. Details of these coders are provided in Chapter 16.

14.12 Applicat ion to Image Compression

We have discussed how to separate a sequence into its components. However, all the exam-
ples we have used are one-dimensional sequences. What do we do when the sequences
contain two-dimensional dependencies such as images? The obvious answer is that we need
two-dimensional filters that separate the source output into components based on both the hor-
izontal and vertical frequencies. Fortunately, in most cases, this two-dimensional filter can be
implemented as two one-dimensional filters, which can be applied first in one dimension, then
in the other. Filters that have this property are called separable filters. Two-dimensional non-
separable filters do exist [206]; however, the gains are offset by the increase in complexity.

Generally, for subband coding of images we filter each row of the image separately using
a high-pass and low-pass filter. The output of the filters is decimated by a factor of two.
Assume that the images were of size N ×N . After this first stage, we will have two images
of size N × N

2 . We then filter each column of the two subimages, decimating the outputs of
the filters again by a factor of two. This results in four images of size N

2 × N
2 . We can stop

at this point or continue the decomposition process with one or more of the four subimages,
resulting in 7, 10, 13, or 16 images. Generally, of the four original subimages, only one or
two are further decomposed. The reason for not decomposing the other subimages is that
many of the pixel values in the high-frequency subimages are close to zero. Thus, there is
little reason to spend computational power to decompose these subimages.

Example 14 . 12 . 1:

Let’s take the “image” in Table 14.8 and decompose it using the low-pass and high-pass
filters of Example 14.2.1. After filtering each row with the low-pass filter, the output is
decimated by a factor of two. Each output from the filter depends on the current input and
the past input. For the very first input (that is, the pixels at the left edge of the image),
we will assume that the past values of the input were zero. The decimated output of the
low-pass and high-pass filters is shown in Table 14.9.

We take each of these subimages and filter them column by column using the low-pass
and high-pass filters and decimate the outputs by two. In this case, the first input to the filters

TAB L E 14 . 8 A sample “image.”

10 14 10 12 14 8 14 12
10 12 8 12 10 6 10 12
12 10 8 6 8 10 12 14

8 6 4 6 4 6 8 10
14 12 10 8 6 4 6 8
12 8 12 10 6 6 6 6
12 10 6 6 6 6 6 6

6 6 6 6 6 6 6 6

464 14 S U B B A N D C O D I N G

TAB L E 14 . 9 Filtered and decimated output.

Decimated Decimated
Low-Pass Output High-Pass Output

5 12 13 11 5 −2 1 3
5 10 11 8 5 −2 −1 2
6 9 7 11 6 −1 1 1
4 5 5 7 4 −1 −1 1
7 11 7 5 7 −1 −1 1
6 10 8 6 6 2 −2 0
6 8 6 6 6 −2 0 0
3 6 6 6 3 0 0 0

TAB L E 14 . 10 Four subimages.

Low-Low Image Low-High Image

2.5 6 6.5 5.5 2.5 6 6.5 5.5
5.5 9.5 9 9.5 0.5 −0�5 −2 1.5
5.5 8 6 6 1.5 3 1 −1
6 9 7 6 0 −1 −1 0

High-Low Image High-High Image

2.5 −1 0.5 1.5 2.5 −1 0.5 1.5
5.5 −1�5 0 1.5 0.5 0.5 1 −0�5
5.5 −1 −1 1 1.5 0 0 0
6 0 −1 0 0 −2 1 0

is the top element in each row. We assume that there is a zero row of pixels right above this
row in order to provide the filter with “past” values. After filtering and decimation, we get
four subimages (Table 14.10). The subimage obtained by low-pass filtering of the columns
of the subimage (which was the output of the row low-pass filtering) is called the low-low
(LL) image. Similarly, the other images are called the low-high (LH), high-low (HL), and
high-high (HH) images. �

If we look closely at the final set of subimages in the previous example, we notice that
there is a difference in the characteristics of the values in the left or top row and the interiors
of some of the subimages. For example, in the high-low subimage, the values in the first
column are significantly larger than the other values in the subimage. Similarly, in the low-
high subimage, the values in the first row are generally very different than the other values
in the subimage. The reason for this variance is our assumption that the “past” of the image
above the first row and to the left of the column was zero. The difference between zero and
the image values was much larger than the normal pixel-to-pixel differences. Therefore, we
ended up adding some spurious structure to the image reflected in the subimages. Generally,
this is undesirable because it is easier to select appropriate compression schemes when the
characteristics of the subimages are as uniform as possible. For example, if we did not have

14.12 Application to Image Compression 465

TAB L E 14 . 11 Alternate four subimages.

Low-Low Image Low-High Image

10 12 13 11 0 0 −0�5 −0�5
11 9�5 9 9�5 1 −0�5 −2 1�5
11 8 6 6 3 3 1 −1
12 9 7 6 0 −1 −1 0

High-Low Image High-High Image

0 −2 1 3 0 0 0 0
0 −1�5 0 1�5 0 0�5 1 −0�5
0 −1 −1 1 0 0 0 0
0 0 −1 0 0 −2 1 0

the relatively large values in the first column of the high-low subimage, we could choose a
quantizer with a smaller step size.

In this example, this effect was limited to a single row or column because the filters used
a single past value. However, most filters use a substantially larger number of past values
in the filtering operation, and a larger portion of the subimage is affected.

We can avoid this problem by assuming a different “past.” There are a number of ways
this can be done. A simple method that works well is to reflect the values of the pixels at
the boundary. For example, for the sequence 6 9 5 4 7 2 · · · , which was to be filtered with a
three-tap filter, we would assume the past as 9 6 6 9 5 4 7 2 · · · . If we use this approach
for the image in Example 14.12.1, the four subimages would be as shown in Table 14.11.

Notice how much sparser each image is, except for the low-low image. Most of the
energy in the original image has been compacted into the low-low image. Since the other
subimages have very few values that need to be encoded, we can devote most of our
resources to the low-low subimage.

14 . 12 . 1 Decompos ing an Image

Earlier a set of filters was provided to be used in one-dimensional subband coding. We can
use those same filters to decompose an image into its subbands.

Example 14 . 12 . 2:

Let’s use the eight-tap Johnston filter to decompose the Sinan image into four subbands.
The results of the decomposition are shown in Figure 14.29. Notice that, as in the case of
the image in Example 14.12.1, most of the signal energy is concentrated in the low-low
subimage. However, there remains a substantial amount of energy in the higher bands. To
see this more clearly, let’s look at the decomposition using the 16-tap Johnston filter. The
results are shown in Figure 14.30. Notice how much less energy there is in the higher

466 14 S U B B A N D C O D I N G

F IGURE 14. 29 Decomposition of Sinan image using the eight-tap Johnston filter.

F IGURE 14. 30 Decomposition of Sinan image using the 16-tap Johnston filter.

14.12 Application to Image Compression 467

subbands. In fact, the high-high subband seems completely empty. As we shall see later,
this difference in energy compaction can have a drastic effect on the reconstruction.

F IGURE 14. 31 Decomposition of Sinan image using the the eight-tap
Smith-Barnwell filter.

Increasing the size of the filter is not necessarily the only way of improving the energy
compaction. Figure 14.31 shows the decomposition obtained using the eight-tap Smith-
Barnwell filter. The results are almost identical to the 16-tap Johnston filter. Therefore,
rather than increase the computational load by going to a 16-tap filter, we can keep the same
computational load and simply use a different filter. �

14 . 12 . 2 Coding the Subbands

Once we have decomposed an image into subbands, we need to find the best encoding
scheme to use with each subband. The coding schemes we have studied to date are scalar
quantization, vector quantization, and differential encoding. Let us encode some of the
decomposed images from the previous section using two of the coding schemes we have
studied earlier, scalar quantization and differential encoding.

Example 14 . 12 . 3:

In the previous example we noted the fact that the eight-tap Johnston filter did not compact
the energy as well as the 16-tap Johnston filter or the eight-tap Smith-Barnwell filter. Let’s
see how this affects the encoding of the decomposed images.

468 14 S U B B A N D C O D I N G

When we encode these images at an average rate of 0.5 bits per pixel, there are 4×0�5 = 2
bits available to encode four values, one value from each of the four subbands. If we use
the recursive bit allocation procedure on the eight-tap Johnston filter outputs, we end up
allocating 1 bit to the low-low band and 1 bit to the high-low band. As the pixel-to-pixel
difference in the low-low band is quite small, we use a DPCM encoder for the low-low band.
The high-low band does not show this behavior, which means we can simply use scalar
quantization for the high-low band. As there are no bits available to encode the other two
bands, these bands can be discarded. This results in the image shown in Figure 14.32, which
is far from pleasing. However, if we use the same compression approach with the image
decomposed using the eight-tap Smith-Barnwell filter, the result is Figure 14.33, which is
much more pleasing.

F IGURE 14. 32 Sinan image coded at 0.5 bits per pixel using the eight-tap
Johnston filter.

To understand why we get such different results from using the two filters, we need to
look at the way the bits were allocated to the different bands. In this implementation, we
used the recursive bit allocation algorithm. In the image decomposed using the Johnston
filter, there was significant energy in the high-low band. The algorithm allocated 1 bit to
the low-low band and 1 bit to the high-low band. This resulted in poor encoding for both,
and subsequently poor reconstruction. There was very little signal content in any of the
bands other than the low-low band for the image decomposed using the Smith-Barnwell
filter. Therefore, the bit allocation algorithm assigned both bits to the low-low band, which
provided a reasonable reconstruction.

14.12 Application to Image Compression 469

F IGURE 14. 33 Sinan image coded at 0.5 bits per pixel using the eight-tap
Smith-Barnwell filter.

If the problem with the encoding of the image decomposed by the Johnston filter is an
insufficient number of bits for encoding the low-low band, why not simply assign both bits
to the low-low band? The problem is that the bit allocation scheme assigned a bit to the
high-low band because there was a significant amount of information in that band. If both
bits were assigned to the low-low band, we would have no bits left for use in encoding
the high-low band, and we would end up throwing away information necessary for the
reconstruction. �

The issue of energy compaction becomes a very important factor in reconstruction
quality. Filters that allow for more energy compaction permit the allocation of bits to a
smaller number of subbands. This in turn results in a better reconstruction.

The coding schemes used in this example were DPCM and scalar quantization, the
techniques generally preferred in subband coding. The advantage provided by subband coding
is readily apparent if we compare the result shown in Figure 14.33 to results in the previous
chapters where we used either DPCM or scalar quantization without prior decomposition.

It would appear that the subband approach lends itself naturally to vector quantization.
After decomposing an image into subbands, we could design separate codebooks for each
subband to reflect the characteristics of that particular subband. The only problem with this
idea is that the low-low subband generally requires a large number of bits per pixel. As
we mentioned in Chapter 10, it is generally not feasible to operate the nonstructured vector
quantizers at high rates. Therefore, when vector quantizers are used, they are generally

470 14 S U B B A N D C O D I N G

used only for encoding the higher frequency bands. This may change as vector quantization
algorithms that operate at higher rates are developed.

14.13 Summary

In this chapter we introduced another approach to the decomposition of signals. In subband
coding we decompose the source output into components. Each of these components can
then be encoded using one of the techniques described in the previous chapters. The general
subband encoding procedure can be summarized as follows:

� Select a set of filters for decomposing the source. We have provided a number of
filters in this chapter. Many more filters can be obtained from the published literature
(we give some references below).

� Using the filters, obtain the subband signals �yk�n�:

yk�n =
N−1∑

i=0

hk�ixn−i (14.119)

where �hk�n� are the coefficients of the kth filter.

� Decimate the output of the filters.

� Encode the decimated output.

The decoding procedure is the inverse of the encoding procedure. When encoding images
the filtering and decimation operations have to be performed twice, once along the rows and
once along the columns. Care should be taken to avoid problems at edges, as described in
Section 14.12.

Fu r t he r Read ing

1. Handbook for Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser [162],
is an excellent source of information about digital filters.

2. Multirate Systems and Filter Banks, by P.P. Vaidyanathan [200], provides detailed
information on QMF filters, as well as the relationship between wavelets and filter
banks and much more.

3. The topic of subband coding is also covered in Digital Coding of Waveforms, by
N.S. Jayant and P. Noll [123].

4. The MPEG-1 audio coding algorithm is described in “ISO-MPEG-1 Audio: A
Generic Standard for Coding of High-Quality Digital Audio,” by K. Brandenburg and
G. Stoll [28], in the October 1994 issue of the Journal of the Audio Engineering Society.

5. A review of the rate distortion method of bit allocation is provided in “Rate Distortion
Methods for Image and Video Compression,” by A. Ortega and K. Ramachandran, in
the November 1998 issue of IEEE Signal Processing Magazine [169].

14.14 Projects and Problems 471

14.14 Projects and Problems

1. A linear shift invariant system has the following properties:

� If for a given input sequence �xn� the output of the system is the sequence �yn�,
then if we delay the input sequence by k units to obtain the sequence �xn−k�,
the corresponding output will be the sequence �yn� delayed by k units.

� If the output corresponding to the sequence �x	1

n � is �y	1

n �, and the output
corresponding to the sequence �x	2

n � is �y	2

n �, then the output corresponding to

the sequence ��x	1

n +�x	2

n � is ��y	1

n +�y	2

n �.

Use these two properties to show the convolution property given in Equation (14.18).

2. Let’s design a set of simple four-tap filters that satisfies the perfect reconstruction
condition.

(a) We begin with the low-pass filter. Assume that the impulse response of the filter
is given by �h1�k�

k=3
k=0. Further assume that

∣
∣h1�k

∣
∣= ∣

∣h1�j

∣
∣ ∀j� k�

Find a set of values for �hi�j� that satisfies Equation (14.91).

(b) Plot the magnitude of the transfer function H1	z
.

(c) Using Equation (14.23), find the high-pass filter coefficients �h2�k�.

(d) Find the magnitude of the transfer function H2	z
.

3. Given an input sequence

xn =
{

	−1
n n = 0� 1� 2� � � �

0 otherwise

(a) Find the output sequence yn if the filter impulse response is

hn =
{

1√
2

n = 0� 1

0 otherwise.

(b) Find the output sequence wn if the impulse response of the filter is

hn =

⎧
⎪⎨

⎪⎩

1√
2

n = 0

− 1√
2

n = 1

0 otherwise.

(c) Looking at the sequences yn and wn, what can you say about the sequence xn?

4. Given an input sequence

xn =
{

1 n = 0� 1� 2� � � �

0 otherwise

472 14 S U B B A N D C O D I N G

(a) Find the output sequence yn if the filter impulse response is

hn =
{

1√
2

n = 0� 1

0 otherwise.

(b) Find the output sequence wn if the impulse response of the filter is

hn =

⎧
⎪⎨

⎪⎩

1√
2

n = 0

− 1√
2

n = 1

0 otherwise.

(c) Looking at the sequences yn and wn, what can you say about the sequence xn?

5. Write a program to perform the analysis and downsampling operations and another to
perform the upsampling and synthesis operations for an image compression application.
The programs should read the filter parameters from a file. The synthesis program
should read the output of the analysis program and write out the reconstructed images.
The analysis program should also write out the subimages scaled so that they can be
displayed. Test your program using the Johnston eight-tap filter and the Sena image.

6. In this problem we look at some of the many ways we can encode the subimages
obtained after subsampling. Use the eight-tap Johnston filter to decompose the Sena
image into four subimages.

(a) Encode the low-low band using an adptive delta modulator (CFDM or CVSD).
Encode all other bands using a 1-bit scalar quantizer.

(b) Encode the low-low band using a 2-bit adaptive DPCM system. Encode the
low-high and high-low bands using a 1-bit scalar quantizer.

(c) Encode the low-low band using a 3-bit adaptive DPCM system. Encode the
low-high and high-low band using a 0.5 bit/pixel vector quantizer.

(d) Compare the reconstructions obtained using the different schemes.

15
Wavelet-Based Compression

15.1 Overview

I
n this chapter we introduce the concept of wavelets and describe how to use
wavelet-based decompositions in compression schemes. We begin with an
introduction to wavelets and multiresolution analysis and then describe how
we can implement a wavelet decomposition using filters. We then examine
the implementations of several wavelet-based compression schemes.

15.2 Introduct ion

In the previous two chapters we looked at a number of ways to decompose a signal. In this
chapter we look at another approach to decompose a signal that has become increasingly
popular in recent years: the use of wavelets. Wavelets are being used in a number of different
applications. Depending on the application, different aspects of wavelets can be emphasized.
As our particular application is compression, we will emphasize those aspects of wavelets
that are important in the design of compression algorithms. You should be aware that there
is much more to wavelets than is presented in this chapter. At the end of the chapter we
suggest options if you want to delve more deeply into this subject.

The practical implementation of wavelet compression schemes is very similar to that
of subband coding schemes. As in the case of subband coding, we decompose the signal
(analysis) using filter banks. The outputs of the filter banks are downsampled, quantized,
and encoded. The decoder decodes the coded representations, upsamples, and recomposes
the signal using a synthesis filter bank.

In the next several sections we will briefly examine the construction of wavelets and
describe how we can obtain a decomposition of a signal using multiresolution analysis. We
will then describe some of the currently popular schemes for image compression. If you are

474 15 W A V E L E T - B A S E D C O M P R E S S I O N

primarily interested at this time in implementation of wavelet-based compression schemes,
you should skip the next few sections and go directly to Section 15.5.

In the last two chapters we have described several ways of decomposing signals. Why do
we need another one? To answer this question, let’s begin with our standard tool for analysis,
the Fourier transform. Given a function f�t�, we can find the Fourier transform F��� as

F��� =
∫ �

−�
f�t�ej�tdt�

Integration is an averaging operation; therefore, the analysis we obtain, using the Fourier
transform, is in some sense an “average” analysis, where the averaging interval is all of
time. Thus, by looking at a particular Fourier transform, we can say, for example, that there
is a large component of frequency 10 kHz in a signal, but we cannot tell when in time this
component occurred. Another way of saying this is that Fourier analysis provides excellent
localization in frequency and none in time. The converse is true for the time function f�t�,
which provides exact information about the value of the function at each instant of time
but does not directly provide spectral information. It should be noted that both f�t� and
F��� represent the same function, and all the information is present in each representation.
However, each representation makes different kinds of information easily accessible.

If we have a very nonstationary signal, like the one shown in Figure 15.1, we would
like to know not only the frequency components but when in time the particular frequency
components occurred. One way to obtain this information is via the short-term Fourier
transform (STFT). With the STFT, we break the time signal f�t� into pieces of length T and
apply Fourier analysis to each piece. This way we can say, for example, that a component at
10 kHz occurred in the third piece—that is, between time 2T and time 3T . Thus, we obtain
an analysis that is a function of both time and frequency. If we simply chopped the function
into pieces, we could get distortion in the form of boundary effects (see Problem 1). In order
to reduce the boundary effects, we window each piece before we take the Fourier transform.
If the window shape is given by g�t�, the STFT is formally given by

F��� �� =
∫ �

−�
f�t�g∗�t − ��ej�tdt� (15.1)

If the window function g�t� is a Gaussian, the STFT is called the Gabor transform.

t0
2t0

F IGURE 15. 1 A nonstationary signal.

15.2 Introduction 475

The problem with the STFT is the fixed window size. Consider Figure 15.1. In order to
obtain the low-pass component at the beginning of the function, the window size should be
at least t0 so that the window will contain at least one cycle of the low-frequency component.
However, a window size of t0 or greater means that we will not be able to accurately localize
the high-frequency spurt. A large window in the time domain corresponds to a narrow filter
in the frequency domain, which is what we want for the low-frequency components—and
what we do not want for the high-frequency components. This dilemma is formalized in
the uncertainty principle, which states that for a given window g�t�, the product of the time
spread �2

t and the frequency spread �2
� is lower bounded by

√
1/2, where

�2
t =

∫
t2 �g�t��2 dt
∫ �g�t��2 dt

(15.2)

�2
� =

∫
�2 �G����2 d�
∫ �G����2 d�

� (15.3)

Thus, if we wish to have finer resolution in time, that is, reduce �2
t , we end up with an

increase in �2
�, or a lower resolution in the frequency domain. How do we get around this

problem?
Let’s take a look at the discrete STFT in terms of basis expansion, and for the moment,

let’s look at just one interval:

F�m� 0� =
∫ �

−�
f�t�g∗�t�e−jm�0tdt� (15.4)

The basis functions are g�t�, g�t�ej�ot, g�t�ej2�ot, and so on. The first three basis functions
are shown in Figure 15.2. We can see that we have a window with constant size, and
within this window, we have sinusoids with an increasing number of cycles. Let’s conjure
up a different set of functions in which the number of cycles is constant, but the size of
the window keeps changing, as shown in Figure 15.3. Notice that although the number of

F IGURE 15. 2 The first three STFT basis functions for the first time interval.

F IGURE 15. 3 Three wavelet basis functions.

476 15 W A V E L E T - B A S E D C O M P R E S S I O N

cycles of the sinusoid in each window is the same, as the size of the window gets smaller,
these cycles occur in a smaller time interval; that is, the frequency of the sinusoid increases.
Furthermore, the lower frequency functions cover a longer time interval, while the higher
frequency functions cover a shorter time interval, thus avoiding the problem that we had
with the STFT. If we can write our function in terms of these functions and their translates,
we have a representation that gives us time and frequency localization and can provide high
frequency resolution at low frequencies (longer time window) and high time resolution at
high frequencies (shorter time window). This, crudely speaking, is the basic idea behind
wavelets.

In the following section we will formalize the concept of wavelets. Then we will discuss
how to get from a wavelet basis set to an implementation. If you wish to move directly to
implementation issues, you should skip to Section 15.5.

15.3 Wavelets

In the example at the end of the previous section, we started out with a single function. All
other functions were obtained by changing the size of the function or scaling and translating
this single function. This function is called the mother wavelet. Mathematically, we can
scale a function f�t� by replacing t with t/a, where the parameter a governs the amount of
scaling. For example, consider the function

f�t� =
{

cos�	t� −1 ≤ t ≤ 1

0 otherwise.

We have plotted this function in Figure 15.4. To scale this function by 0.5, we replace t by
t/0�5:

f
(t

0�5

)
=
{

cos�	 t
0�5 � −1 ≤ t

0�5 ≤ 1

0 otherwise

=
{

cos�2	t� − 1
2 ≤ t ≤ 1

2

0 otherwise.

We have plotted the scaled function in Figure 15.5. If we define the norm of a function f�t�
by

�f�t��2 =
∫ �

−�
f 2�t�dt

scaling obviously changes the norm of the function:

∥
∥
∥f
(t

a

)∥
∥
∥

2

=
∫ �

−�
f 2
(t

a

)
dt

= a
∫ �

−�
f 2�x�dx

15.3 Wavelets 477

−1.5

1

0.5

0

−0.5

−1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

t

f(t)

F IGURE 15. 4 A function f(t).

−1.5

1

0.5

0

−0.5

−1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

t

f(t/0.5)

F IGURE 15. 5 The function f (t
0�5).

478 15 W A V E L E T - B A S E D C O M P R E S S I O N

where we have used the substitution x = t/a. Thus,
∥
∥
∥f
(t

a

)∥
∥
∥

2

= a�f�t��2 �

If we want the scaled function to have the same norm as the original function, we need to
multiply it by 1/

√
a.

Mathematically, we can represent the translation of a function to the right or left by an
amount b by replacing t by t −b or t +b. For example, if we want to translate the scaled
function shown in Figure 15.5 by one, we have

f

(
t −1
0�5

)

=
{

cos�2	�t −1�� − 1
2 ≤ t −1 ≤ 1

2

0 otherwise

=
{

cos�2	�t −1�� 1
2 ≤ t ≤ 3

2

0 otherwise.

The scaled and translated function is shown in Figure 15.6. Thus, given a mother wavelet

�t�, the remaining functions are obtained as

a�b�t� = 1√
a

(
t −b

a

)

(15.5)

with Fourier transforms

���� = � �
�t�

�a�b��� = � �
a�b�t�� (15.6)

−1.5

1

0.5

0

−0.5

−1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

t

f((t–1)/0.5)

F IGURE 15. 6 A scaled and translated function.

15.3 Wavelets 479

Our expansion using coefficients with respect to these functions is obtained from the
inner product of f�t� with the wavelet functions:

wa�b = �
a�b�t�� f�t�	 =
∫ �

−�

a�b�t�f�t�dt� (15.7)

We can recover the function f�t� from the wa�b by

f�t� = 1
C

∫ �

−�

∫ �

−�
wa�b
a�b�t�

dadb

a2
(15.8)

where

C
 =
∫ �

0

�� ����2
�

d�� (15.9)

For integral (15.8) to exist, we need C
 to be finite. For C
 to be finite, we need ��0� = 0.
Otherwise, we have a singularity in the integrand of (15.9). Note that ��0� is the average
value of
�t�; therefore, a requirement on the mother wavelet is that it have zero mean. The
condition that C
 be finite is often called the admissibility condition. We would also like the
wavelets to have finite energy; that is, we want the wavelets to belong to the vector space
L2 (see Example 12.3.1). Using Parseval’s relationship, we can write this requirement as

∫ �

−�
������2 d� < ��

For this to happen, ������2 has to decay as � goes to infinity. These requirements mean that
the energy in ���� is concentrated in a narrow frequency band, which gives the wavelet its
frequency localization capability.

If a and b are continuous, then wa�b is called the continuous wavelet transform (CWT).
Just as with other transforms, we will be more interested in the discrete version of this
transform. We first obtain a series representation where the basis functions are continuous
functions of time with discrete scaling and translating parameters a and b. The discrete
versions of the scaling and translating parameters have to be related to each other because
if the scale is such that the basis functions are narrow, the translation step should be
correspondingly small and vice versa. There are a number of ways we can choose these
parameters. The most popular approach is to select a and b according to

a = a−m
0 � b = nb0a

−m
0 (15.10)

where m and n are integers, a0 is selected to be 2, and b0 has a value of 1. This gives us
the wavelet set

m�n�t� = a
m/2
0
�am

0 t −nb0�� m�n ∈ Z� (15.11)

For a0 = 2 and b0 = 1, we have

m�n�t� = 2m/2
�2mt −n�� (15.12)

480 15 W A V E L E T - B A S E D C O M P R E S S I O N

(Note that these are the most commonly used choices, but they are not the only choices.) If
this set is complete, then �
m�n�t�� are called affine wavelets. The wavelet coefficients are
given by

wm�n = �f�t��
m�n�t�	 (15.13)

= a
m/2
0

∫
f�t�
�am

0 t −nb0�dt� (15.14)

The function f�t� can be reconstructed from the wavelet coefficients by

f�t� =∑

m

∑

n

wm�n
m�n�t�� (15.15)

Wavelets come in many shapes. We will look at some of the more popular ones later in
this chapter. One of the simplest wavelets is the Haar wavelet, which we will use to explore
the various aspects of wavelets. The Haar wavelet is given by

�t� =
{

1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1�

(15.16)

By translating and scaling this mother wavelet, we can synthesize a variety of functions.
This version of the transform, where f�t� is a continuous function while the transform

consists of discrete values, is a wavelet series analogous to the Fourier series. It is also
called the discrete time wavelet transform (DTWT). We have moved from the continuous
wavelet transform, where both the time function f�t� and its transform wa�b were continuous
functions of their arguments, to the wavelet series, where the time function is continuous
but the time-scale wavelet representation is discrete. Given that in data compression we
are generally dealing with sampled functions that are discrete in time, we would like both
the time and frequency representations to be discrete. This is called the discrete wavelet
transform (DWT). However, before we get to that, let’s look into one additional concept—
multiresolution analysis.

15.4 Mult iresolut ion Analysis and the Scal ing
Funct ion

The idea behind multiresolution analysis is fairly simple. Let’s define a function ��t� that
we call a scaling function. We will later see that the scaling function is closely related to
the mother wavelet. By taking linear combinations of the scaling function and its translates
we can generate a large number of functions

f�t� =∑

k

ak��t −k�� (15.17)

The scaling function has the property that a function that can be represented by the scaling
function can also be represented by the dilated versions of the scaling function.

15.4 Multiresolution Analysis and the Scaling Function 481

For example, one of the simplest scaling functions is the Haar scaling function:

��t� =
{

1 0 ≤ t < 1

0 otherwise.
(15.18)

Then f�t� can be any piecewise continuous function that is constant in the interval �k� k+1�
for all k.

Let’s define

�k�t� = ��t −k�� (15.19)

The set of all functions that can be obtained using a linear combination of the set ��k�t��

f�t� =∑

k

ak�k�t� (15.20)

is called the span of the set ��k�t��, or Span��k�t��. If we now add all functions that
are limits of sequences of functions in Span��k�t��, this is referred to as the closure of
Span��k�t�� and denoted by Span��k�t��. Let’s call this set V0.

If we want to generate functions at a higher resolution, say, functions that are required
to be constant over only half a unit interval, we can use a dilated version of the “mother”
scaling function. In fact, we can obtain scaling functions at different resolutions in a manner
similar to the procedure used for wavelets:

�j�k�t� = 2j/2��2jt −k�� (15.21)

The indexing scheme is the same as that used for wavelets, with the first index referring
to the resolution while the second index denotes the translation. For the Haar example,

�1�0�t� =
{√

2 0 ≤ t < 1
2

0 otherwise.
(15.22)

We can use translates of �1�0�t� to represent all functions that are constant over intervals
�k/2� �k+1�/2� for all k. Notice that in general any function that can be represented by the
translates of ��t� can also be represented by a linear combination of translates of �1�0�t�.
The converse, however, is not true. Defining

V1 = Span��1�k�t�� (15.23)

we can see that V0 ⊂ V1. Similarly, we can show that V1 ⊂ V2, and so on.

Example 15 . 4 . 1:

Consider the function shown in Figure 15.7. We can approximate this function using trans-
lates of the Haar scaling function ��t�. The approximation is shown in Figure 15.8a. If we
call this approximation �

�0�
f �t�, then

�
�0�
f �t� =∑

k

c0�k�k�t� (15.24)

482 15 W A V E L E T - B A S E D C O M P R E S S I O N

f(t)

t

F IGURE 15. 7 A sample function.

φf (t)
(0)

φf (t)
(1)

φf (t)
(2)

t

t

t

(a)

(b)

(c)

F IGURE 15. 8 Approximations of the function shown Figure 15.7.

15.4 Multiresolution Analysis and the Scaling Function 483

where

c0�k =
∫ k+1

k
f�t��k�t�dt� (15.25)

We can obtain a more refined approximation, or an approximation at a higher resolution,
�

�1�
f �t�, shown in Figure 15.8b, if we use the set ��1�k�t��:

�
�1�
f �t� =∑

k

c1�k�1�k�t�� (15.26)

Notice that we need twice as many coefficients at this resolution compared to the previous
resolution. The coefficients at the two resolutions are related by

c0�k = 1√
2

�c1�2k + c1�2k+1�� (15.27)

Continuing in this manner (Figure 15.8c), we can get higher and higher resolution approxi-
mations of f�t� with

�
�m�
f �t� =∑

k

cm�k�m�k�t�� (15.28)

Recall that, according to the Nyquist rule, if the highest frequency component of a signal
is at f0 Hz, we need 2f0 samples per second to accurately represent it. Therefore, we could
obtain an accurate representation of f�t� using the set of translates ��j�k�t��, where 2−j < 1

2f0
.

As

cj�k = 2j/2
∫ k+1

2j

k

2j

f�t�dt� (15.29)

by the mean value theorem of calculus, cj�k is equal to a sample value of f�t� in the interval
�k2−j� �k + 1�2−j�. Therefore, the function �

�j�
f �t� would represent more than 2f0 samples

per second of f�t�. �

We said earlier that a scaling function has the property that any function that can be
represented exactly by an expansion at some resolution j can also be represented by dilations
of the scaling function at resolution j +1. In particular, this means that the scaling function
itself can be represented by its dilations at a higher resolution:

��t� =∑

k

hk�1�k�t�� (15.30)

Substituting �1�k�t� = √
2��2t−k�, we obtain the multiresolution analysis (MRA) equation:

��t� =∑

k

hk

√
2��2t −k�� (15.31)

This equation will be of great importance to us when we begin looking at ways of imple-
menting the wavelet transform.

484 15 W A V E L E T - B A S E D C O M P R E S S I O N

Example 15 . 4 . 2:

Consider the Haar scaling function. Picking

h0 = h1 = 1√
2

and

hk = 0 for k > 1

satisfies the recursion equation. �

Example 15 . 4 . 3:

Consider the triangle scaling function shown in Figure 15.9. For this function

h0 = 1

2
√

2
� h1 = 1√

2
� h2 = 1

2
√

2

satisfies the recursion equation.

F IGURE 15. 9 Triangular scaling function. �

While both the Haar scaling function and the triangle scaling functions are valid scaling
functions, there is an important difference between the two. The Haar function is orthogonal
to its translates; that is,

∫
��t���t −m�dt = �m�

This is obviously not true of the triangle function. In this chapter we will be principally
concerned with scaling functions that are orthogonal because they give rise to orthonormal
transforms that, as we have previously seen, are very useful in compression.

How about the Haar wavelet? Can it be used as a scaling function? Some reflection
will show that we cannot obtain the Haar wavelet from a linear combination of its dilated
versions.

So, where do wavelets come into the picture? Let’s continue with our example using the
Haar scaling function. Let us assume for the moment that there is a function g�t� that can
be exactly represented by ��1�

g �t�; that is, g�t� is a function in the set V1. We can decompose

15.4 Multiresolution Analysis and the Scaling Function 485

��1�
g �t� into the sum of a lower-resolution version of itself, namely, ��0�

g �t�, and the difference
��1�

g �t�−��0�
g �t�. Let’s examine this difference over an arbitrary unit interval �k� k+1�:

��1�
g �t�−��0�

g �t� =
{

c0�k −√
2c1�2k k ≤ t < k+ 1

2

c0�k −√
2c1�2k+1 k+ 1

2 ≤ t < k+1�
(15.32)

Substituting for c0�k from (15.27), we obtain

��1�
g �t�−��0�

g �t� =
{

− 1√
2
c1�2k + 1√

2
c1�2k+1 k ≤ t < k+ 1

2
1√
2
c1�2k − 1√

2
c1�2k+1 k+ 1

2 ≤ t < k+1�
(15.33)

Defining

d0�k = − 1√
2

c1�2k + 1√
2

c1�2k+1

over the arbitrary interval �k� k+1�,

��1�
g �t�−��0�

g �t� = d0�k
0�k�t� (15.34)

where

0�k�t� =
{

1 k ≤ t < k+ 1
2

−1 k+ 1
2 ≤ t < k+1�

(15.35)

But this is simply the kth translate of the Haar wavelet. Thus, for this particular case the
function can be represented as the sum of a scaling function and a wavelet at the same
resolution:

��1�
g �t� =∑

k

c0�k�0�k�t�+∑
k

d0�k
0�k�t�� (15.36)

In fact, we can show that this decomposition is not limited to this particular example.
A function in V1 can be decomposed into a function in V0—that is, a function that is a
linear combination of the scaling function at resolution 0, and a function that is a linear
combination of translates of a mother wavelet. Denoting the set of functions that can be
obtained by a linear combination of the translates of the mother wavelet as W0, we can write
this symbolically as

V1 = V0 ⊕W0� (15.37)

In other words, any function in V1 can be represented using functions in V0 and W0.
Obviously, once a scaling function is selected, the choice of the wavelet function cannot

be arbitrary. The wavelet that generates the set W0 and the scaling function that generates
the sets V0 and V1 are intrinsically related. In fact, from (15.37), W0 ⊂ V1, and therefore any
function in W0 can be represented by a linear combination of ��1�k�. In particular, we can
write the mother wavelet
�t� as

�t� =∑

k

wk�1�k�t� (15.38)

486 15 W A V E L E T - B A S E D C O M P R E S S I O N

or

�t� =∑

k

wk

√
2��2t −k�� (15.39)

This is the counterpart of the multiresolution analysis equation for the wavelet function and
will be of primary importance in the implementation of the decomposition.

All of this development has been for a function in V1. What if the function can only
be accurately represented at resolution j +1? If we define Wj as the closure of the span of

j�k�t�, we can show that

Vj+1 = Vj ⊕Wj� (15.40)

But, as j is arbitrary,

Vj = Vj−1 ⊕Wj−1 (15.41)

and

Vj+1 = Vj−1 ⊕Wj−1 ⊕Wj� (15.42)

Continuing in this manner, we can see that for any k ≤ j

Vj+1 = Vk ⊕Wk ⊕Wk+1 ⊕· · ·⊕Wj� (15.43)

In other words, if we have a function that belongs to Vj+1 (i.e., that can be exactly represented
by the scaling function at resolution j + 1), we can decompose it into a sum of functions
starting with a lower-resolution approximation followed by a sequence of functions generated
by dilations of the wavelet that represent the leftover details. This is very much like what
we did in subband coding. A major difference is that, while the subband decomposition
is in terms of sines and cosines, the decomposition in this case can use a variety of
scaling functions and wavelets. Thus, we can adapt the decomposition to the signal being
decomposed by selecting the scaling function and wavelet.

15.5 Implementation Using Fi l ters

One of the most popular approaches to implementing the decomposition discussed in the
previous section is using a hierarchical filter structure similar to the one used in subband
coding. In this section we will look at how to obtain the structure and the filter coefficients.

We start with the MRA equation

��t� =∑

k

hk

√
2��2t −k�� (15.44)

Substituting t = 2jt −m, we obtain the equation for an arbitrary dilation and translation:

��2jt −m� = ∑

k

hk

√
2��2�2jt −m�−k� (15.45)

= ∑

k

hk

√
2��2j+1t −2m−k� (15.46)

= ∑

l

hl−2m

√
2��2j+1t − l� (15.47)

15.5 Implementation Using Filters 487

where in the last equation we have used the substitution l = 2m + k. Suppose we have
a function f�t� that can be accurately represented at resolution j + 1 by some scaling
function ��t�. We assume that the scaling function and its dilations and translations form
an orthonormal set. The coefficients cj+1 can be obtained by

cj+1�k =
∫

f�t��j+1�kdt� (15.48)

If we can represent f�t� accurately at resolution j +1 with a linear combination of �j+1�k�t�,
then from the previous section we can decompose it into two functions: one in terms of
�j�k�t� and one in terms of the jth dilation of the corresponding wavelet �
j�k�t��. The
coefficients cj�k are given by

cj�k =
∫

f�t��j�k�t�dt (15.49)

=
∫

f�t�2
j
2 ��2jt −k�dt� (15.50)

Substituting for ��2jt −k� from (15.47), we get

cj�l =
∫

f�t�2
j
2
∑

l

hl−2k

√
2��2j+1t − l�dt� (15.51)

Interchanging the order of summation and integration, we get

cj�l =∑

l

hl−2k

∫
f�t�2

j
2

√
2��2j+1t − l�dt� (15.52)

But the integral is simply cj+1�k. Therefore,

cj�k =∑

k

hk−2mcj+1�k� (15.53)

We have encountered this relationship before in the context of the Haar function. Equa-
tion (15.27) provides the relationship between coefficients of the Haar expansion at two
resolution levels. In a more general setting, the coefficients �hj� provide a link between the
coefficients �cj�k� at different resolutions. Thus, given the coefficients at resolution level
j + 1, we can obtain the coefficients at all other resolution levels. But how do we start the
process? Recall that f�t� can be accurately represented at resolution j + 1. Therefore, we
can replace cj+1�k by the samples of f�t�. Let’s represent these samples by xk. Then the
coefficients of the low-resolution expansion are given by

cj�k =∑

k

hk−2mxk� (15.54)

In Chapter 12, we introduced the input-output relationship of a linear filter as

ym =∑

k

hkxm−k =∑

k

hm−kxk� (15.55)

Replacing m by 2m, we get every other sample of the output

y2m =∑

k

h2m−kxk� (15.56)

488 15 W A V E L E T - B A S E D C O M P R E S S I O N

Comparing (15.56) with (15.54), we can see that the coefficients of the low-resolution
approximation are every other output of a linear filter whose impulse response is h−k. Recall
that �hk� are the coefficients that satisfy the MRA equation. Using the terminology of
subband coding, the coefficients cj�k are the downsampled output of the linear filter with
impulse response �h−k�.

The detail portion of the representation is obtained in a similar manner. Again we start
from the recursion relationship. This time we use the recursion relationship for the wavelet
function as our starting point:

�t� =∑

k

wk

√
2��2t −k�� (15.57)

Again substituting t = 2jt −m and using the same simplifications, we get

�2jt −m� =∑

k

wk−2m

√
2��2j+1t −k�� (15.58)

Using the fact that the dilated and translated wavelets form an orthonormal basis, we can
obtain the detail coefficients dj�k by

dj�k =
∫

f�t�
j�k�t�dt (15.59)

=
∫

f�t�2
j
2
�2jt −k�dt (15.60)

=
∫

f�t�2
j
2
∑

l

wl−2k

√
2��2j+1t − l�dt (15.61)

= ∑

l

wl−2k

∫
f�t�2

j+1
2 ��2j+1t − l�dt (15.62)

= ∑

l

wl−2kcj+1�l� (15.63)

Thus, the detail coefficients are the decimated outputs of a filter with impulse response
�w−k�.

At this point we can use exactly the same arguments to further decompose the coefficients
�cj�.

In order to retrieve �cj+1�k� from �cj�k� and �dj�k�, we upsample the lower resolution
coefficients and filter, using filters with impulse response �hk� and �wk�

cj+1�k =∑

l

cj�lbk−2l

∑

l

dj�lwk−2l�

15 . 5 . 1 Sca l ing and Wavelet Coef f i c ients

In order to implement the wavelet decomposition, the coefficients �hk� and �wk� are of
primary importance. In this section we look at some of the properties of these coefficients
that will help us in finding different decompositions.

15.5 Implementation Using Filters 489

We start with the MRA equation. Integrating both sides of the equation over all t, we
obtain

∫ �

−�
��t�dt =

∫ �

−�

∑

k

hk

√
2��2t −k�dt� (15.64)

Interchanging the summation and integration on the right-hand side of the equation, we get
∫ �

−�
��t�dt =∑

k

hk

√
2
∫ �

−�
��2t −k�dt� (15.65)

Substituting x = 2t −k with dx = 2dt in the right-hand side of the equation, we get
∫ �

−�
��t�dt = ∑

k

hk

√
2
∫ �

−�
��x�

1
2

dx (15.66)

= ∑

k

hk

1√
2

∫ �

−�
��x�dx� (15.67)

Assuming that the average value of the scaling function is not zero, we can divide both sides
by the integral and we get

∑

k

hk = √
2� (15.68)

If we normalize the scaling function to have a magnitude of one, we can use the orthogonality
condition on the scaling function to get another condition on �hk�:

∫
���t��2 dt =

∫ ∑

k

hk

√
2��2t −k�

∑

m

hm

√
2��2t −m�dt (15.69)

= ∑

k

∑

m

hkhm2
∫

��2t −k���2t −m�dt (15.70)

= ∑

k

∑

m

hkhm

∫
��x−k���x−m�dx (15.71)

where in the last equation we have used the substitution x = 2t. The integral on the right-hand
side is zero except when k = m. When k = m, the integral is unity and we obtain

∑

k

h2
k = 1� (15.72)

We can actually get a more general property by using the orthogonality of the translates
of the scaling function

∫
��t���t −m�dt = �m� (15.73)

Rewriting this using the MRA equation to substitute for ��t� and ��t −m�, we obtain

∫
[
∑

k

hk

√
2��2t −k�

][
∑

l

hl

√
2��2t −2m− l�

]

dt

=∑

k

∑

l

hkhl2
∫

��2t −k���2t −2m− l�dt� (15.74)

490 15 W A V E L E T - B A S E D C O M P R E S S I O N

Substituting x = 2t, we get
∫

��t���t −m�dt = ∑

k

∑

l

hkhl

∫
��x−k���x−2m− l�dx (15.75)

= ∑

k

∑

l

hkhl�k−�2m+l� (15.76)

= ∑

k

hkhk−2m� (15.77)

Therefore, we have
∑

k

hkhk−2m = �m (15.78)

Notice that this is the same relationship we had to satisfy for perfect reconstruction in the
previous chapter.

Using these relationships, we can generate scaling coefficients for filters of various
lengths.

Example 15 . 5 . 1:

For k = 2, we have from (15.68) and (15.72)

h0 +h1 = √
2 (15.79)

h2
0 +h2

1 = 1� (15.80)

These equations are uniquely satisfied by

h0 = h1 = 1√
2

�

which is the Haar scaling function. �

An orthogonal expansion does not exist for all lengths. In the following example, we
consider the case of k = 3.

Example 15 . 5 . 2:

For k = 3, from the three conditions (15.68), (15.72), and (15.78), we have

h0 +h1 +h2 = √
2 (15.81)

h2
0 +h2

1 +h2
2 = 1 (15.82)

h0h2 = 0 (15.83)

The last condition can only be satisfied if h0 = 0 or h2 = 0. In either case we will be left
with the two-coefficient filter for the Haar scaling function. �

In fact, we can see that for k odd, we will always end up with a condition that will
force one of the coefficients to zero, thus leaving an even number of coefficients. When the

15.5 Implementation Using Filters 491

number of coefficients gets larger than the number of conditions, we end up with an infinite
number of solutions.

Example 15 . 5 . 3:

Consider the case when k = 4. The three conditions give us the following three equations:

h0 +h1 +h2 +h3 = √
2 (15.84)

h2
0 +h2

1 +h2
2 +h2

3 = 1 (15.85)

h0h2 +h1h3 = 0 (15.86)

We have three equations and four unknowns; that is, we have one degree of freedom. We
can use this degree of freedom to impose further conditions on the solution. The solutions
to these equations include the Daubechies four-tap solution:

h0 = 1+√
3

4
√

2
� h1 = 3+√

3

4
√

2
� h2 = 3−√

3

4
√

2
� h3 = 1−√

3

4
√

2
� �

Given the close relationship between the scaling function and the wavelet, it seems
reasonable that we should be able to obtain the coefficients for the wavelet filter from the
coefficients of the scaling filter. In fact, if the wavelet function is orthogonal to the scaling
function at the same scale

∫
��t −k�
�t −m�dt = 0� (15.87)

then

wk = ±�−1�khN−k (15.88)

and
∑

k

hkwn−2k = 0� (15.89)

Furthermore,
∑

k

wk = 0� (15.90)

The proof of these relationships is somewhat involved [207].

15 . 5 . 2 Fami l ies of Wavelets

Let’s move to the more practical aspects of compression using wavelets. We have said
that there is an infinite number of possible wavelets. Which one is best depends on the
application. In this section we list different wavelets and their corresponding filters. You are
encouraged to experiment with these to find those best suited to your application.

The 4-tap, 12-tap, and 20-tap Daubechies filters are shown in Tables 15.1–15.3. The
6-tap, 12-tap, and 18-tap Coiflet filters are shown in Tables 15.4–15.6.

492 15 W A V E L E T - B A S E D C O M P R E S S I O N

TAB L E 15 . 1 Coefficients for the 4-tap
Daubechies low-pass filter.

h0 0.4829629131445341
h1 0.8365163037378079
h2 0.2241438680420134
h3 −0�1294095225512604

TAB L E 15 . 2 Coefficients for the 12-tap
Daubechies low-pass filter.

h0 0.111540743350
h1 0.494623890398
h2 0.751133908021
h3 0.315250351709
h4 −0�226264693965
h5 −0�129766867567
h6 0.097501605587
h7 0.027522865530
h8 −0�031582039318
h9 0.000553842201
h10 0.004777257511
h11 −0�001077301085

TAB L E 15 . 3 Coefficients for the 20-tap
Daubechies low-pass filter.

h0 0.026670057901
h1 0.188176800078
h2 0.527201188932
h3 0.688459039454
h4 0.281172343661
h5 −0�249846424327
h6 −0�195946274377
h7 0.127369340336
h8 0.093057364604
h9 −0�071394147166
h10 −0�029457536822
h11 0.033212674059
h12 0.003606553567
h13 −0�010733175483
h14 0.001395351747
h15 0.001992405295
h16 −0�000685856695
h17 −0�000116466855
h18 0.000093588670
h19 −0�000013264203

15.5 Implementation Using Filters 493

TAB L E 15 . 4 Coefficients for the 6-tap Coiflet
low-pass filter.

h0 −0�051429728471
h1 0.238929728471
h2 0.602859456942
h3 0.272140543058
h4 −0�051429972847
h5 −0�011070271529

TAB L E 15 . 5 Coefficients for the 12-tap Coiflet
low-pass filter.

h0 0.011587596739
h1 −0�029320137980
h2 −0�047639590310
h3 0.273021046535
h4 0.574682393857
h5 0.294867193696
h6 −0�054085607092
h7 −0�042026480461
h8 0.016744410163
h9 0.003967883613
h10 −0�001289203356
h11 −0�000509505539

TAB L E 15 . 6 Coefficients for the 18-tap Coiflet
low-pass filter.

h0 −0�002682418671
h1 0.005503126709
h2 0.016583560479
h3 −0�046507764479
h4 −0�043220763560
h5 0.286503335274
h6 0.561285256870
h7 0.302983571773
h8 −0�050770140755
h9 −0�058196250762
h10 0.024434094321
h11 0.011229240962
h12 −0�006369601011
h13 −0�001820458916
h14 0.000790205101
h15 0.000329665174
h16 −0�000050192775
h17 −0�000024465734

494 15 W A V E L E T - B A S E D C O M P R E S S I O N

15.6 Image Compression

One of the most popular applications of wavelets has been to image compression. The JPEG
2000 standard, which is designed to update and replace the current JPEG standard, will use
wavelets instead of the DCT to perform decomposition of the image. During our discussion
we have always referred to the signal to be decomposed as a one-dimensional signal;
however, images are two-dimensional signals. There are two approaches to the subband
decomposition of two-dimensional signals: using two-dimensional filters, or using separable
transforms that can be implemented using one-dimensional filters on the rows first and then
on the columns (or vice versa). Most approaches, including the JPEG 2000 verification
model, use the second approach.

In Figure 15.10 we show how an image can be decomposed using subband decomposition.
We begin with an N ×M image. We filter each row and then downsample to obtain two
N × M

2 images. We then filter each column and subsample the filter output to obtain four
N
2 × M

2 images. Of the four subimages, the one obtained by low-pass filtering the rows and
columns is referred to as the LL image; the one obtained by low-pass filtering the rows
and high-pass filtering the columns is referred to as the LH image; the one obtained by
high-pass filtering the rows and low-pass filtering the columns is called the HL image; and
the subimage obtained by high-pass filtering the rows and columns is referred to as the HH
image. This decomposition is sometimes represented as shown in Figure 15.11. Each of the
subimages obtained in this fashion can then be filtered and subsampled to obtain four more
subimages. This process can be continued until the desired subband structure is obtained.
Three popular structures are shown in Figure 15.12. In the structure in Figure 15.12a, the
LL subimage has been decomposed after each decomposition into four more subimages,
resulting in a total of 10 subimages. This is one of the more popular decompositions.

a0
H0

H0

H1

2

2

2

LL N/2

N
M/2

M/2

N

M

x

LH

a1
H1

H0

H1

2

2

2

HL

HH

F IGURE 15. 10 Subband decomposition of an N×M image.

15.6 Image Compression 495

N/2 LL

M/2

LH

N/2 HL HH

M/2

F IGURE 15. 11 First-level decomposition.

(a) (b) (c)

F IGURE 15. 12 Three popular subband structures.

Example 15 . 6 . 1:

Let’s use the Daubechies wavelet filter to repeat what we did in Examples 14.12.2 and 14.12.3
using the Johnston and the Smith-Barnwell filters. If we use the 4-tap Daubechies filter,
we obtain the decomposition shown in Figure 15.13. Notice that even though we are only
using a 4-tap filter, we get results comparable to the 16-tap Johnston filter and the 8-tap
Smith-Barnwell filters.

If we now encode this image at the rate of 0�5 bits per pixel, we get the reconstructed
image shown in Figure 15.14. Notice that the quality is comparable to that obtained using
filters requiring two or four times as much computation. �

In this example we used a simple scalar quantizer for quantization of the coefficients.
However, if we use strategies that are motivated by the properties of the coefficients them-
selves, we can obtain significant performance improvements. In the next sections we examine
two popular quantization strategies developed specifically for wavelets.

496 15 W A V E L E T - B A S E D C O M P R E S S I O N

F IGURE 15. 13 Decomposition of Sinan image using the four-tap Daubechies filter.

F IGURE 15. 14 Reconstruction of Sinan image encoded using 0.5 bits per pixel
and the four-tap Daubechies filter.

15.7 Embedded Zerotree Coder 497

15.7 Embedded Zerotree Coder

The embedded zerotree wavelet (EZW) coder was introduced by Shapiro [208]. It is a
quantization and coding strategy that incorporates some characteristics of the wavelet decom-
position. Just as the quantization and coding approach used in the JPEG standard, which
were motivated by the characteristics of the coefficients, were superior to the generic zonal
coding algorithms, the EZW approach and its descendants significantly outperform some
of the generic approaches. The particular characteristic used by the EZW algorithm is that
there are wavelet coefficients in different subbands that represent the same spatial loca-
tion in the image. If the decomposition is such that the size of the different subbands is
different (the first two decompositions in Figure 15.12), then a single coefficient in the
smaller subband may represent the same spatial location as multiple coefficients in the other
subbands.

In order to put our discussion on more solid ground, consider the 10-band decomposition
shown in Figure 15.15. The coefficient a in the upper-left corner of band I represents the
same spatial location as coefficients a1 in band II, a2 in band III, and a3 in band IV. In turn,
the coefficient a1 represents the same spatial location as coefficients a11� a12� a13, and a14

in band V. Each of these pixels represents the same spatial location as four pixels in band
VIII, and so on. In fact, we can visualize the relationships of these coefficients in the form
of a tree: The coefficient a forms the root of the tree with three descendants a1� a2, and a3.
The coefficient a1 has descendants a11� a12� a13, and a14. The coefficient a2 has descendants
a21� a22� a23, and a24, and the coefficient a3 has descendants a31� a32� a33, and a34. Each of
these coefficients in turn has four descendants, making a total of 64 coefficients in this tree.
A pictorial representation of the tree is shown in Figure 15.16.

Recall that when natural images are decomposed in this manner most of the energy is
compacted into the lower bands. Thus, in many cases the coefficients closer to the root of the
tree have higher magnitudes than coefficients further away from the root. This means that
often if a coefficient has a magnitude less than a given threshold, all its descendants will have
magnitudes less than that threshold. In a scalar quantizer, the outer levels of the quantizer
correspond to larger magnitudes. Consider the 3-bit quantizer shown in Figure 15.17. If we
determine that all coefficients arising from a particular root have magnitudes smaller than
T0 and we inform the decoder of this situation, then for all coefficients in that tree we need
only use 2 bits per sample, while getting the same performance as we would have obtained
using the 3-bit quantizer. If the binary coding scheme used in Figure 15.17 is used, in which
the first bit is the sign bit and the next bit is the most significant bit of the magnitude, then
the information that a set of coefficients has value less than T0 is the same as saying that
the most significant bit of the magnitude is 0. If there are N coefficients in the tree, this
is a savings of N bits minus however many bits are needed to inform the decoder of this
situation.

Before we describe the EZW algorithm, we need to introduce some terminology. Given
a threshold T , if a given coefficient has a magnitude greater than T , it is called a significant
coefficient at level T . If the magnitude of the coefficient is less than T (it is insignificant),
and all its descendants have magnitudes less than T , then the coefficient is called a zerotree
root. Finally, it might happen that the coefficient itself is less than T but some of its
descendants have a value greater than T . Such a coefficient is called an isolated zero.

498 15 W A V E L E T - B A S E D C O M P R E S S I O N

a

I II

III
IV

VI

VIII

XIX

V

VII

a1 a11 a12

a13 a14

a111 a112

a113 a114

a121 a122

a123 a124

a131 a132

a133 a134

a141 a142

a143 a144

a2 a3

F IGURE 15. 15 A 10-band wavelet decomposition.

The EZW algorithm is a multiple-pass algorithm, with each pass consisting of two steps:
significance map encoding or the dominant pass, and refinement or the subordinate pass. If
cmax is the value of the largest coefficient, the initial value of the threshold T0 is given by

T0 = 2log2 cmax�� (15.91)

This selection guarantees that the largest coefficient will lie in the interval �T0� 2T0�. In each
pass, the threshold Ti is reduced to half the value it had in the previous pass:

Ti = 1
2

Ti−1� (15.92)

15.7 Embedded Zerotree Coder 499

a111

a11 a12

a1 a2

a

a3

a13 a14 a21 a22 a23 a24 a31 a32 a33 a34

a112 a113 a114 a121 a122 a123 a124 a131 a132 a133 a134 a141 a142 a143 a144

F IGURE 15. 16 Data structure used in the EZW coder.

100

000

001

010

011

101

110

111

−T0 T0

F IGURE 15. 17 A 3-bit midrise quantizer.

500 15 W A V E L E T - B A S E D C O M P R E S S I O N

For a given value of Ti, we assign one of four possible labels to the coefficients: significant
positive (sp), significant negative (sn), zerotree root (zr), and isolated zero (iz). If we used
a fixed-length code, we would need 2 bits to represent each of the labels. Note that when
a coefficient has been labeled a zerotree root, we do not need to label its descendants. This
assignment is referred to as significance map coding.

We can view the significance map coding in part as quantization using a three-level
midtread quantizer. This situation is shown in Figure 15.18. The coefficients labeled signifi-
cant are simply those that fall in the outer levels of the quantizer and are assigned an initial
reconstructed value of 1�5Ti or −1�5Ti, depending on whether the coefficient is positive or
negative. Note that selecting Ti according to (15.91) and (15.92) guarantees the significant
coefficients will lie in the interval �T� 2T�. Once a determination of significance has been
made, the significant coefficients are included in a list for further refinement in the refine-
ment or subordinate passes. In the refinement pass, we determine whether the coefficient
lies in the upper or lower half of the interval �T� 2T�. In successive refinement passes, as
the value of T is reduced, the interval containing the significant coefficient is narrowed still
further and the reconstruction is updated accordingly. An easy way to perform the refinement
is to take the difference between the coefficient value and its reconstruction and quantize it
using a two-level quantizer with reconstruction values ±T/4. This quantized value is then
added on to the current reconstruction value as a correction term.

The wavelet coefficients that have not been previously determined significant are scanned
in the manner depicted in Figure 15.19, with each parent node in a tree scanned before its
offspring. This makes sense because if the parent is determined to be a zerotree root, we
would not need to encode the offspring.

−T

−1.5T

T

1.5T

F IGURE 15. 18 A three-level midtread quantizer.

15.7 Embedded Zerotree Coder 501

F IGURE 15. 19 Scanning of wavelet coefficients for encoding using the EZW
algorithm.

Although this may sound confusing, in order to see how simple the encoding procedure
actually is, let’s use an example.

Example 15 . 7 . 1:

Let’s use the seven-level decomposition shown below to demonstrate the various steps of
EZW:

26 6 13 10

−7 7 6 4

4 −4 4 −3

2 −2 −2 0

To obtain the initial threshold value T0, we find the maximum magnitude coefficient, which
in this case is 26. Then

T0 = 2log2 26� = 16�

502 15 W A V E L E T - B A S E D C O M P R E S S I O N

Comparing the coefficients against 16, we find 26 is greater than 16 so we send sp. The next
coefficient in the scan is 6, which is less than 16. Furthermore, its descendants (13, 10, 6,
and 4) are all less than 16. Therefore, 6 is a zerotree root, and we encode this entire set with
the label zr. The next coefficient in the scan is −7, which is also a zerotree root, as is 7, the
final element in the scan. We do not need to encode the rest of the coefficients separately
because they have already been encoded as part of the various zerotrees. The sequence of
labels to be transmitted at this point is

sp zr zr zr

Since each label requires 2 bits (for fixed-length encoding), we have used up 8 bits from
our bit budget. The only significant coefficient in this pass is the coefficient with a value of
26. We include this coefficient in our list to be refined in the subordinate pass. Calling the
subordinate list LS , we have

LS = �26��

The reconstructed value of this coefficient is 1�5T0 = 24, and the reconstructed bands look
like this:

24 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

The next step is the subordinate pass, in which we obtain a correction term for the
reconstruction value of the significant coefficients. In this case, the list LS contains only one
element. The difference between this element and its reconstructed value is 26 − 24 = 2.
Quantizing this with a two-level quantizer with reconstruction levels ±T0/4, we obtain
a correction term of 4. Thus, the reconstruction becomes 24 + 4 = 28. Transmitting the
correction term costs a single bit, therefore at the end of the first pass we have used up 9
bits. Using only these 9 bits, we would obtain the following reconstruction:

28 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

We now reduce the value of the threshold by a factor of two and repeat the process. The
value of T1 is 8. We rescan the coefficients that have not yet been deemed significant. To

15.7 Embedded Zerotree Coder 503

emphasize the fact that we do not consider the coefficients that have been deemed significant
in the previous pass, we replace them with �:

� 6 13 10

−7 7 6 4

4 −4 4 −3

2 −2 −2 0

The first coefficient we encounter has a value of 6. This is less than the threshold value
of 8; however, the descendants of this coefficient include coefficients with values of 13 and
10. Therefore, this coefficient cannot be classified as a zerotree root. This is an example of
what we defined as an isolated zero. The next two coefficients in the scan are −7 and 7.
Both of these coefficients have magnitudes less than the threshold value of 8. Furthermore,
all their descendants also have magnitudes less than 8. Therefore, these two coefficients are
coded as zr. The next two elements in the scan are 13 and 10, which are both coded as sp.
The final two elements in the scan are 6 and 4. These are both less than the threshold, but
they do not have any descendants. We code these coefficients as iz. Thus, this dominant
pass is coded as

iz zr zr sp sp iz iz

which requires 14 bits, bringing the total number of bits used to 23. The significant coef-
ficients are reconstructed with values 1�5T1 = 12. Thus, the reconstruction at this point
is

28 0 12 12

0 0 0 0

0 0 0 0

0 0 0 0

We add the new significant coefficients to the subordinate list:

LS = �26� 13� 10��

In the subordinate pass, we take the difference between the coefficients and their
reconstructions and quantize these to obtain the correction or refinement values for these
coefficients. The possible values for the correction terms are ±T1/4 = ±2:

26−28 = −2 ⇒ Correction term = −2

13−12 = 1 ⇒ Correction term = 2 (15.93)

10−12 = −2 ⇒ Correction term = −2

504 15 W A V E L E T - B A S E D C O M P R E S S I O N

Each correction requires a single bit, bringing the total number of bits used to 26. With these
corrections, the reconstruction at this stage is

26 0 14 10

0 0 0 0

0 0 0 0

0 0 0 0

If we go through one more pass, we reduce the threshold value to 4. The coefficients to
be scanned are

� 6 � �

−7 7 6 4

4 −4 4 −3

2 −2 −2 0

The dominant pass results in the following coded sequence:

sp sn sp sp sp sp sn iz iz sp iz iz iz

This pass cost 26 bits, equal to the total number of bits used previous to this pass. The
reconstruction upon decoding of the dominant pass is

26 6 14 10

−6 6 6 6

6 −6 6 0

0 0 0 0

The subordinate list is

LS = �26� 13� 10� 6−7� 7� 6� 4� 4�−4� 4�

By now it should be reasonably clear how the algorithm works. We continue encoding
until we have exhausted our bit budget or until some other criterion is satisfied. �

There are several observations we can make from this example. Notice that the encoding
process is geared to provide the most bang for the bit at each step. At each step the bits

15.8 Set Partitioning in Hierarchical Trees 505

are used to provide the maximum reduction in the reconstruction error. If at any time the
encoding is interrupted, the reconstruction using this (interrupted) encoding is the best that
the algorithm could have provided using this many bits. The encoding improves as more
bits are transmitted. This form of coding is called embedded coding. In order to enhance
this aspect of the algorithm, we can also sort the subordinate list at the end of each pass
using information available to both encoder and decoder. This would increase the likelihood
of larger coefficients being encoded first, thus providing for a greater reduction in the
reconstruction error.

Finally, in the example we determined the number of bits used by assuming fixed-length
encoding. In practice, arithmetic coding is used, providing a further reduction in rate.

15.8 Set Part i t ioning in Hierarchical Trees

The SPIHT (Set Partitioning in Hierarchical Trees) algorithm is a generalization of the EZW
algorithm and was proposed by Amir Said and William Pearlman [209]. Recall that in EZW
we transmit a lot of information for little cost when we declare an entire subtree to be
insignificant and represent all the coefficients in it with a zerotree root label zr. The SPIHT
algorithm uses a partitioning of the trees (which in SPIHT are called spatial orientation trees)
in a manner that tends to keep insignificant coefficients together in larger subsets. The
partitioning decisions are binary decisions that are transmitted to the decoder, providing a
significance map encoding that is more efficient than EZW. In fact, the efficiency of the
significance map encoding in SPIHT is such that arithmetic coding of the binary decisions
provides very little gain. The thresholds used for checking significance are powers of two,
so in essence the SPIHT algorithm sends the binary representation of the integer value of
the wavelet coefficients. As in EZW, the significance map encoding, or set partitioning and
ordering step, is followed by a refinement step in which the representations of the significant
coefficients are refined.

Let’s briefly describe the algorithm and then look at some examples of its operation.
However, before we do that we need to get familiar with some notation. The data structure
used by the SPIHT algorithm is similar to that used by the EZW algorithm—although not
the same. The wavelet coefficients are again divided into trees originating from the lowest
resolution band (band I in our case). The coefficients are grouped into 2 × 2 arrays that,
except for the coefficients in band I, are offsprings of a coefficient of a lower resolution band.
The coefficients in the lowest resolution band are also divided into 2 ×2 arrays. However,
unlike the EZW case, all but one of them are root nodes. The coefficient in the top-left
corner of the array does not have any offsprings. The data structure is shown pictorially in
Figure 15.20 for a seven-band decomposition.

The trees are further partitioned into four types of sets, which are sets of coordinates of
the coefficients:

� ��i� j� This is the set of coordinates of the offsprings of the wavelet coefficient at
location �i� j�. As each node can either have four offsprings or none, the size of ��i� j�
is either zero or four. For example, in Figure 15.20 the set ��0� 1� consists of the
coordinates of the coefficients b1, b2, b3, and b4.

506 15 W A V E L E T - B A S E D C O M P R E S S I O N

III

IV

I

II

V

VIIVI

b1 b2

b3 b4

b11 b12

b13 b14

b21 b22

b23 b24

b31 b32

b33 b34

b41 b42

b43 b44

a b

d c

F IGURE 15. 20 Data structure used in the SPIHT algorithm.

� ��i� j� This is the set of all descendants of the coefficient at location �i� j�. Descen-
dants include the offsprings, the offsprings of the offsprings, and so on. For exam-
ple, in Figure 15.20 the set ��0� 1� consists of the coordinates of the coefficients
b1� � � � � b4� b11� � � � � b14� � � � � b44. Because the number of offsprings can either be zero
or four, the size of ��i� j� is either zero or a sum of powers of four.

� � This is the set of all root nodes—essentially band I in the case of Figure 15.20.

� ��i� j� This is the set of coordinates of all the descendants of the coefficient at location
�i� j� except for the immediate offsprings of the coefficient at location �i� j�. In other
words,

��i� j� = ��i� j�−��i� j��

15.8 Set Partitioning in Hierarchical Trees 507

In Figure 15.20 the set ��0� 1� consists of the coordinates of the coefficients
b11� � � � � b14� � � � � b44.

A set ��i� j� or ��i� j� is said to be significant if any coefficient in the set has a
magnitude greater than the threshold. Finally, thresholds used for checking significance are
powers of two, so in essence the SPIHT algorithm sends the binary representation of the
integer value of the wavelet coefficients. The bits are numbered with the least significant bit
being the zeroth bit, the next bit being the first significant bit, and the kth bit being referred
to as the k−1 most significant bit.

With these definitions under our belt, let us now describe the algorithm. The algorithm
makes use of three lists: the list of insignificant pixels (LIP), the list of significant pixels
(LSP), and the list of insignificant sets (LIS). The LSP and LIS lists will contain the
coordinates of coefficients, while the LIS will contain the coordinates of the roots of sets
of type � or �. We start by determining the initial value of the threshold. We do this by
calculating

n = log2 cmax�
where cmax is the maximum magnitude of the coefficients to be encoded. The LIP list is
initialized with the set � . Those elements of � that have descendants are also placed in
LIS as type � entries. The LSP list is initially empty.

In each pass, we will first process the members of LIP, then the members of LIS. This
is essentially the significance map encoding step. We then process the elements of LSP in
the refinement step.

We begin by examining each coordinate contained in LIP. If the coefficient at that
coordinate is significant (that is, it is greater than 2n), we transmit a 1 followed by a bit
representing the sign of the coefficient (we will assume 1 for positive, 0 for negative).
We then move that coefficient to the LSP list. If the coefficient at that coordinate is not
significant, we transmit a 0.

After examining each coordinate in LIP, we begin examining the sets in LIS. If the set at
coordinate �i� j� is not significant, we transmit a 0. If the set is significant, we transmit a 1.
What we do after that depends on whether the set is of type � or �.

If the set is of type �, we check each of the offsprings of the coefficient at that coordinate.
In other words, we check the four coefficients whose coordinates are in ��i� j�. For each
coefficient that is significant, we transmit a 1, the sign of the coefficient, and then move the
coefficient to the LSP. For the rest we transmit a 0 and add their coordinates to the LIP.
Now that we have removed the coordinates of ��i� j� from the set, what is left is simply the
set ��i� j�. If this set is not empty, we move it to the end of the LIS and mark it to be of
type �. Note that this new entry into the LIS has to be examined during this pass. If the set
is empty, we remove the coordinate �i� j� from the list.

If the set is of type �, we add each coordinate in ��i� j� to the end of the LIS as the
root of a set of type �. Again, note that these new entries in the LIS have to be examined
during this pass. We then remove �i� j� from the LIS.

Once we have processed each of the sets in the LIS (including the newly formed ones),
we proceed to the refinement step. In the refinement step we examine each coefficient that
was in the LSP prior to the current pass and output the nth most significant bit of

∣
∣ci�j

∣
∣.

508 15 W A V E L E T - B A S E D C O M P R E S S I O N

We ignore the coefficients that have been added to the list in this pass because, by declaring
them significant at this particular level, we have already informed the decoder of the value
of the nth most significant bit.

This completes one pass. Depending on the availability of more bits or external factors,
if we decide to continue with the coding process, we decrement n by one and continue. Let’s
see the functioning of this algorithm on an example.

Example 15 . 8 . 1:

Let’s use the same example we used for demonstrating the EZW algorithm:

26 6 13 10

−7 7 6 4

4 −4 4 −3

2 −2 −2 0

We will go through three passes at the encoder and generate the transmitted bitstream, then
decode this bitstream.

First Pass The value for n in this case is 4. The three lists at the encoder are

LIP � ��0� 0� → 26� �0� 1� → 6� �1� 0� → −7� �1� 1� → 7�

LIS � ��0� 1��� �1� 0��� �1� 1���

LSP � ��

In the listing for LIP, we have included the → # to make it easier to follow the example.
Beginning our algorithm, we examine the contents of LIP. The coefficient at location (0, 0) is
greater than 16. In other words, it is significant; therefore, we transmit a 1, then a 0 to indicate
the coefficient is positive and move the coordinate to LSP. The next three coefficients are
all insignificant at this value of the threshold; therefore, we transmit a 0 for each coefficient
and leave them in LIP. The next step is to examine the contents of LIS. Looking at the
descendants of the coefficient at location (0, 1) (13, 10, 6, and 4), we see that none of them
are significant at this value of the threshold so we transmit a 0. Looking at the descendants
of c10 and c11, we can see that none of these are significant at this value of the threshold.
Therefore, we transmit a 0 for each set. As this is the first pass, there are no elements from
the previous pass in LSP; therefore, we do not do anything in the refinement pass. We have
transmitted a total of 8 bits at the end of this pass (10000000), and the situation of the three
lists is as follows:

LIP � ��0� 1� → 6� �1� 0� → −7� �1� 1� → 7�

LIS � ��0� 1��� �1� 0��� �1� 1���

LSP � ��0� 0� → 26�

15.8 Set Partitioning in Hierarchical Trees 509

Second Pass For the second pass we decrement n by 1 to 3, which corresponds to a threshold
value of 8. Again, we begin our pass by examining the contents of LIP. There are three
elements in LIP. Each is insignificant at this threshold so we transmit three 0s. The next
step is to examine the contents of LIS. The first element of LIS is the set containing the
descendants of the coefficient at location (0, 1). Of this set, both 13 and 10 are significant at
this value of the threshold; in other words, the set ��0� 1� is significant. We signal this by
sending a 1 and examine the offsprings of c01. The first offspring has a value of 13, which
is significant and positive, so we send a 1 followed by a 0. The same is true for the second
offspring, which has a value of 10. So we send another 1 followed by a 0. We move the
coordinates of these two to the LSP. The next two offsprings are both insignificant at this
level; therefore, we move these to LIP and transmit a 0 for each. As ��0� 1� = ��, we remove
�0� 1�� from LIS. Looking at the other elements of LIS, we can clearly see that both of
these are insignificant at this level; therefore, we send a 0 for each. In the refinement pass
we examine the contents of LSP from the previous pass. There is only one element in there
that is not from the current sorting pass, and it has a value of 26. The third MSB of 26 is 1;
therefore, we transmit a 1 and complete this pass. In the second pass we have transmitted 13
bits: 0001101000001. The condition of the lists at the end of the second pass is as follows:

LIP � ��0� 1� → 6� �1� 0� → −7� �1� 1� → 7�1� 2� → 6� �1� 3� → 4�

LIS � ��1� 0��� �1� 1���

LSP � ��0� 0� → 26� �0� 2� → 13� �0� 3� → 10�

Third Pass The third pass proceeds with n = 2. As the threshold is now smaller, there
are significantly more coefficients that are deemed significant, and we end up sending 26
bits. You can easily verify for yourself that the transmitted bitstream for the third pass is
10111010101101100110000010. The condition of the lists at the end of the third pass is as
follows:

LIP � ��3� 0� → 2� �3� 1� → −2� �2� 3� → −3� �3� 2� → −2� �3� 3� → 0�

LIS � ��

LSP � ��0� 0� → 26� �0� 2� → 13� �0� 3� → 10� �0� 1� → 6� �1� 0� → −7� �1� 1� → 7�

�1� 2� → 6� �1� 3� → 4�2� 0� → 4� �2� 1� → −4� �2� 2� → 4�

Now for decoding this sequence. At the decoder we also start out with the same lists as
the encoder:

LIP � ��0� 0�� �0� 1�� �1� 0�� �1� 1��

LIS � ��0� 1��� �1� 0��� �1� 1���

LSP � ��

We assume that the initial value of n is transmitted to the decoder. This allows us to set the
threshold value at 16. Upon receiving the results of the first pass (10000000), we can see

510 15 W A V E L E T - B A S E D C O M P R E S S I O N

that the first element of LIP is significant and positive and no other coefficient is significant
at this level. Using the same reconstruction procedure as in EZW, we can reconstruct the
coefficients at this stage as

24 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

and, following the same procedure as at the encoder, the lists can be updated as

LIP � ��0� 1�� �1� 0�� �1� 1��

LIS � ��0� 1��� �1� 0��� �1� 1���

LSP � ��0� 0��

For the second pass we decrement n by one and examine the transmitted bitstream:
0001101000001. Since the first 3 bits are 0 and there are only three entries in LIP, all
the entries in LIP are still insignificant. The next 9 bits give us information about the sets
in LIS. The fourth bit of the received bitstream is 1. This means that the set with root
at coordinate (0,1) is significant. Since this set is of type �, the next bits relate to its
offsprings. The 101000 sequence indicates that the first two offsprings are significant at
this level and positive and the last two are insignificant. Therefore, we move the first two
offsprings to LSP and the last two to LIP. We can also approximate these two significant
coefficients in our reconstruction by 1�5×23 = 12. We also remove �0� 1�� from LIS. The
next two bits are both 0, indicating that the two remaining sets are still insignificant. The
final bit corresponds to the refinement pass. It is a 1, so we update the reconstruction of the
(0, 0) coefficient to 24+8/2 = 28. The reconstruction at this stage is

28 0 12 12

0 0 0 0

0 0 0 0

0 0 0 0

and the lists are as follows:

LIP � ��0� 1�� �1� 0�� �1� 1�� �1� 2�� �1� 3��

LIS � ��1� 0��� �1� 1���

LSP � ��0� 0�� �0� 2�� �0� 3��

15.8 Set Partitioning in Hierarchical Trees 511

For the third pass we again decrement n, which is now 2, giving a threshold value of 4.
Decoding the bitstream generated during the third pass (10111010101101100110000010),
we update our reconstruction to

26 6 14 10

−6 6 6 6

6 −6 6 0

0 0 0 0

and our lists become

LIP � �3� 0�� �3� 1��

LIS � ��

LSP � ��0� 0�� �0� 2�� �0� 3�� �0� 1�� �1� 0�� �1� 1�� �1� 2�� �2� 0�� �2� 1�� �3� 2��

At this stage we do not have any sets left in LIS and we simply update the values of
the coefficients. �

Finally, let’s look at an example of an image coded using SPIHT. The image shown in
Figure 15.21 is the reconstruction obtained from a compressed representation that used 0.5

F IGURE 15. 21 Reconstruction of Sinan image encoded using SPIHT at 0.5 bits
per pixel.

512 15 W A V E L E T - B A S E D C O M P R E S S I O N

bits per pixel. (The programs used to generate this image were obtained from the authors)
Comparing this with Figure 15.14, we can see a definite improvement in the quality.

Wavelet decomposition has been finding its way into various standards. The earliest
example was the FBI fingerprint image compression standard. The latest is the new image
compression being developed by the JPEG committee, commonly referred to as JPEG 2000.
We take a brief look at the current status of JPEG 2000.

15.9 JPEG 2000

The current JPEG standard provides excellent performance at rates above 0.25 bits per pixel.
However, at lower rates there is a sharp degradation in the quality of the reconstructed
image. To correct this and other shortcomings, the JPEG committee initiated work on another
standard, commonly known as JPEG 2000. The JPEG 2000 is the standard will be based on
wavelet decomposition.

There are actually two types of wavelet filters that are included in the standard. One
type is the wavelet filters we have been discussing in this chapter. Another type consists
of filters that generate integer coefficients; this type is particularly useful when the wavelet
decomposition is part of a lossless compression scheme.

The coding scheme is based on a scheme, originally proposed by Taubman [210] and
Taubman and Zakhor [211], known as EBCOT. The acronym EBCOT stands for “Embedded
Block Coding with Optimized Truncation,” which nicely summarizes the technique. It
is a block coding scheme that generates an embedded bitstream. The block coding is
independently performed on nonoverlapping blocks within individual subbands. Within a
subband all blocks that do not lie on the right or lower boundaries are required to have the
same dimensions. A dimension cannot exceed 256.

Embedding and independent block coding seem inherently contradictory. The way
EBCOT resolves this contradiction is to organize the bitstream in a succession of layers.
Each layer corresponds to a certain distortion level. Within each layer each block is coded
with a variable number of bits (which could be zero). The partitioning of bits between blocks
is obtained using a Lagrangian optimization that dictates the partitioning or truncation points.
The quality of the reproduction is proportional to the numbers of layers received.

The embedded coding scheme is similar in philosophy to the EZW and SPIHT algo-
rithms; however, the data structures used are different. The EZW and SPIHT algorithms
used trees of coefficients from the same spatial location across different bands. In the case
of the EBCOT algorithm, each block resides entirely within a subband, and each block
is coded independently of other blocks, which precludes the use of trees of the type used
by EZW and SPIHT. Instead, the EBCOT algorithm uses a quadtree data structure. At
the lowest level, we have a 2 × 2 set of blocks of coefficients. These are, in turn, orga-
nized into sets of 2 × 2 quads, and so on. A node in this tree is said to be significant
at level n if any of its descendants are significant at that level. A coefficient cij is said
to be significant at level n if

∣
∣cij

∣
∣ ≥ 2n. As in the case of EZW and SPIHT, the algo-

rithm makes multiple passes, including significance map encoding passes and a magnitude
refinement pass. The bits generated during these procedures are encoded using arithmetic
coding.

15.11 Projects and Problems 513

15.10 Summary

In this chapter we have introduced the concepts of wavelets and multiresolution analysis, and
we have seen how we can use wavelets to provide an efficient decomposition of signals prior
to compression. We have also described several compression techniques based on wavelet
decomposition. Wavelets and their applications are currently areas of intensive research.

Fu r t he r Read ing

1. There are a number of excellent introductory books on wavelets. The one I found
most accessible was Introduction to Wavelets and Wavelet Transforms—A Primer, by
C.S. Burrus, R.A. Gopinath, and H. Guo [207].

2. Probably the best mathematical source on wavelets is the book Ten Lectures on
Wavelets, by I. Daubechies [58].

3. There are a number of tutorials on wavelets available on the Internet. The best source
for all matters related to wavelets (and more) on the Internet is “The Wavelet Digest”
(http://www.wavelet.org). This site includes pointers to many other interesting and
useful sites dealing with different applications of wavelets.

4. The JPEG 2000 standard is covered in detail in JPEG 2000: Image Compression
Fundamentals, Standards and Practice, by D. Taubman and M. Marcellin [212].

15.11 Projects and Problems

1. In this problem we consider the boundary effects encountered when using the short-
term Fourier transform. Given the signal

f�t� = sin�2t�

(a) Find the Fourier transform F��� of f�t�.

(b) Find the STFT F1��� of f�t� using a rectangular window

g�t� =
{

1 −2 ≤ t ≤ 2

0 otherwise

for the interval �−2� 2.

(c) Find the STFT F2��� of f�t� using a window

g�t� =
{

1+ cos�	
2 t� −2 ≤ t ≤ 2

0 otherwise.

(d) Plot �F����, �F1����, and �F2����. Comment on the effect of using different
window functions.

514 15 W A V E L E T - B A S E D C O M P R E S S I O N

2. For the function

f�t� =
{

1+ sin�2t� 0 ≤ t ≤ 1

sin�2t� otherwise

using the Haar wavelet find and plot the coefficients �cj�k�, j = 0� 1� 2; k = 0� � � � � 10.

3. For the seven-level decomposition shown below:

21 6 15 12
−6 3 6 3
3 −3 0 −3
3 0 0 0

(a) Find the bitstream generated by the EZW coder.

(b) Decode the bitstream generated in the previous step. Verify that you get the
original coefficient values.

4. Using the coefficients from the seven-level decomposition in the previous problem:

(a) Find the bitstream generated by the SPIHT coder.

(b) Decode the bitstream generated in the previous step. Verify that you get the
original coefficient values.

16
Audio Coding

16.1 Overview

L
ossy compression schemes can be based on a source model, as in the case of
speech compression, or a user or sink model, as is somewhat the case in image
compression. In this chapter we look at audio compression approaches that are
explicitly based on the model of the user. We will look at audio compression
approaches in the context of audio compression standards. Principally, we will

examine the different MPEG standards for audio compression. These include MPEG Layer
I, Layer II, Layer III (or mp3) and the Advanced Audio Coding Standard. As with other
standards described in this book, the goal here is not to provide all the details required for
implementation. Rather the goal is to provide the reader with enough familiarity so that they
can then find it much easier to understand these standards.

16.2 Introduct ion

The various speech coding algorithms we studied in the previous chapter rely heavily on
the speech production model to identify structures in the speech signal that can be used
for compression. Audio compression systems have taken, in some sense, the opposite tack.
Unlike speech signals, audio signals can be generated using a large number of different
mechanisms. Lacking a unique model for audio production, the audio compression methods
have focused on the unique model for audio perception, a psychoacoustic model for hearing.
At the heart of the techniques described in this chapter is a psychoacoustic model of human
perception. By identifying what can and, more important what cannot be heard, the schemes
described in this chapter obtain much of their compression by discarding information that
cannot be perceived. The motivation for the development of many of these perceptual coders
was their potential application in broadcast multimedia. However, their major impact has
been in the distribution of audio over the Internet.

516 16 A U D I O C O D I N G

We live in an environment rich in auditory stimuli. Even an environment described
as quiet is filled with all kinds of natural and artificial sounds. The sounds are always
present and come to us from all directions. Living in this stimulus-rich environment, it is
essential that we have mechanisms for ignoring some of the stimuli and focusing on others.
Over the course of our evolutionary history we have developed limitations on what we
can hear. Some of these limitations are physiological, based on the machinery of hearing.
Others are psychological, based on how our brain processes auditory stimuli. The insight of
researchers in audio coding has been the understanding that these limitations can be useful
in selecting information that needs to be encoded and information that can be discarded.
The limitations of human perception are incorporated into the compression process through
the use of psychoacoustic models. We briefly describe the auditory model used by the most
popular audio compression approaches. Our description is necessarily superficial and we
refer readers interested in more detail to [97, 194].

The machinery of hearing is frequency dependent. The variation of what is perceived
as equally loud at different frequencies was first measured by Fletcher and Munson at
Bell Labs in the mid-1930s [96]. These measurements of perceptual equivalence were later
refined by Robinson and Dadson. This dependence is usually displayed as a set of equal
loudness curves, where the sound pressure level (SPL) is plotted as a function of frequency
for tones perceived to be equally loud. Clearly, what two people think of as equally loud will
be different. Therefore, these curves are actually averages and serve as a guide to human
auditory perception. The particular curve that is of special interest to us is the threshold-of-
hearing curve. This is the SPL curve that delineates the boundary of audible and inaudible
sounds at different frequencies. In Figure 16.1 we show a plot of this audibility threshold in
quiet. Sounds that lie below the threshold are not perceived by humans. Thus, we can see
that a low amplitude sound at a frequency of 3 kHz may be perceptible while the same level
of sound at 100 Hz would not be perceived.

Threshold
of audibility

Audible
region

Inaudible
region

SP
L

 (
dB

)

0

20

40

60

80

Frequency (Hz)
5020 100 200 500 1000 2000 5000 10,000 20,000

F IGURE 16. 1 A typical plot of the audibility threshold.

16.2 Introduction 517

16 . 2 . 1 Spec t ra l Masking

Lossy compression schemes require the use of quantization at some stage. Quantization can
be modeled as as an additive noise process in which the output of the quantizer is the input
plus the quantization noise. To hide quantization noise, we can make use of the fact that
signals below a particular amplitude at a particular frequency are not audible. If we select the
quantizer step size such that the quantization noise lies below the audibility threshold, the
noise will not be perceived. Furthermore, the threshold of audibility is not absolutely fixed
and typically rises when multiple sounds impinge on the human ear. This phenomenon gives
rise to spectral masking. A tone at a certain frequency will raise the threshold in a critical
band around that frequency. These critical bands have a constant Q, which is the ratio of
frequency to bandwidth. Thus, at low frequencies the critical band can have a bandwidth
as low as 100 Hz, while at higher frequencies the bandwidth can be as large as 4 kHz. This
increase of the threshold has major implications for compression. Consider the situation in
Figure 16.2. Here a tone at 1 kHz has raised the threshold of audibility so that the adjacent
tone above it in frequency is no longer audible. At the same time, while the tone at 500 Hz
is audible, because of the increase in the threshold the tone can be quantized more crudely.
This is because increase of the threshold will allow us to introduce more quantization noise
at that frequency. The degree to which the threshold is increased depends on a variety of
factors, including whether the signal is sinusoidal or atonal.

16 . 2 . 2 Tempora l Masking

Along with spectral masking, the psychoacoustic coders also make use of the phenomenon
of temporal masking. The temporal masking effect is the masking that occurs when a sound
raises the audibility threshold for a brief interval preceding and following the sound. In
Figure 16.3 we show the threshold of audibility close to a masking sound. Sounds that occur
in an interval around the masking sound (both after and before the masking tone) can be
masked. If the masked sound occurs prior to the masking tone, this is called premasking

Inaudible
region

Frequency (Hz)

SP
L

 (
dB

)

0

20

40

60

80
Original
threshold

of audibility
Audible
region

Raised
threshold

of audibility

5020 100 200 500 1000 2000 5000 10,000 20,000

F IGURE 16. 2 Change in the audibility threshold.

518 16 A U D I O C O D I N G

SP
L

 (
dB

)

20

40

60

80

0 100 200 300 400

Masking
sound

Pos
tm

as
kin

g

Prem
as

kin
g

–100
Time (msec)

F IGURE 16. 3 Change in the audibility threshold in time.

or backward masking, and if the sound being masked occurs after the masking tone this
effect is called postmasking or forward masking. The forward masking remains in effect for
a much longer time interval than the backward masking.

16 . 2 . 3 Psychoacous t i c Model

These attributes of the ear are used by all algorithms that use a psychoacoustic model.
There are two models used in the MPEG audio coding algorithms. Although they differ
in some details, the general approach used in both cases is the same. The first step in the
psychoacoustic model is to obtain a spectral profile of the signal being encoded. The audio
input is windowed and transformed into the frequency domain using a filter bank or a
frequency domain transform. The Sound Pressure Level (SPL) is calculated for each spectral
band. If the algorithm uses a subband approach, then the SPL for the band is computed from
the SPL for each coefficient Xk. Because tonal and nontonal components have different
effects on the masking level, the next step is to determine the presence and location of
these components. The presence of any tonal components is determined by first looking
for local maxima where a local maximum is declared at location k if �Xk�2 > �Xk−1�2 and
�Xk�2 ≥ �Xk+1�2. A local maximum is determined to be a tonal component if

20 log10

�Xk�
�Xk+j�

≥ 7

where the values j depend on the frequency. The identified tonal maskers are removed from
each critical band and the power of the remaining spectral lines in the band is summed
to obtain the nontonal masking level. Once all the maskers are identified, those with SPL
below the audibility threshold are removed. Furthermore, of those maskers that are very
close to each other in frequency, the lower-amplitude masker is removed. The effects of the
remaining maskers are obtained using a spreading function that models spectral masking.
Finally, the masking due to the audibility level and the maskers is combined to give the final
masking thresholds. These thresholds are then used in the coding process.

16.3 MPEG Audio Coding 519

In the following sections we describe the various audio coding algorithms used in the
MPEG standards. Although these algorithms provide audio that is perceptually noiseless,
it is important to remember that even if we cannot perceive it, there is quantization noise
distorting the original signal. This becomes especially important if the reconstructed audio
signal goes through any postprocessing. Postprocessing may change some of the audio
components, making the previously masked quantization noise audible. Therefore, if there
is any kind of processing to be done, including mixing or equalization, the audio should
be compressed only after the processing has taken place. This “hidden noise” problem also
prevents multiple stages of encoding and decoding or tandem coding.

16.3 MPEG Audio Coding

We begin with the three separate, stand-alone audio compression strategies that are used in
MPEG-1 and MPEG-2 and known as Layer I, Layer II, and Layer III. The Layer III audio
compression algorithm is also referred to as mp3. Most standards have normative sections
and informative sections. The normative actions are those that are required for compliance
to the standard. Most current standards, including the MPEG standards, define the bitstream
that should be presented to the decoder, leaving the design of the encoder to individual
vendors. That is, the bitstream definition is normative, while most guidance about encoding
is informative. Thus, two MPEG-compliant bitstreams that encode the same audio material at
the same rate but on different encoders may sound very different. On the other hand, a given
MPEG bitstream decoded on different decoders will result in essentially the same output.

A simplified block diagram representing the basic strategy used in all three layers is
shown in Figure 16.4. The input, consisting of 16-bit PCM words, is first transformed to
the frequency domain. The frequency coefficients are quantized, coded, and packed into
an MPEG bitstream. Although the overall approach is the same for all layers, the details
can vary significantly. Each layer is progressively more complicated than the previous layer
and also provides higher compression. The three layers are backward compatible. That is,
a decoder for Layer III should be able to decode Layer I– and Layer II–encoded audio.
A decoder for Layer II should be able to decode Layer I– encoded audio. Notice the existence
of a block labeled Psychoacoustic model in Figure 16.4.

Time
frequency
mapping

Quantization
and

coding
Framing

Psycho-
acoustic
model

Input
MPEG

bitstream

F IGURE 16. 4 The MPEG audio coding algorithms.

520 16 A U D I O C O D I N G

16 . 3 . 1 Layer I Coding

The Layer I coding scheme provides a 4:1 compression. In Layer I coding the time frequency
mapping is accomplished using a bank of 32 subband filters. The output of the subband
filters is critically sampled. That is, the output of each filter is down-sampled by 32. The
samples are divided into groups of 12 samples each. Twelve samples from each of the 32
subband filters, or a total of 384 samples, make up one frame of the Layer I coder. Once
the frequency components are obtained the algorithm examines each group of 12 samples
to determine a scalefactor. The scalefactor is used to make sure that the coefficients make
use of the entire range of the quantizer. The subband output is divided by the scalefactor
before being linearly quantized. There are a total of 63 scalefactors specified in the MPEG
standard. Specification of each scalefactor requires 6 bits.

To determine the number of bits to be used for quantization, the coder makes use of the
psychoacoustic model. The inputs to the model include an the Fast Fourier Transform (FFT)
of the audio data as well as the signal itself. The model calculates the masking thresholds in
each subband, which in turn determine the amount of quantization noise that can be tolerated
and hence the quantization step size. As the quantizers all cover the same range, selection
of the quantization stepsize is the same as selection of the number of bits to be used for
quantizing the output of each subband. In Layer I the encoder has a choice of 14 different
quantizers for each band (plus the option of assigning 0 bits). The quantizers are all midtread
quantizers ranging from 3 levels to 65,535 levels. Each subband gets assigned a variable
number of bits. However, the total number of bits available to represent all the subband
samples is fixed. Therefore, the bit allocation can be an iterative process. The objective is
to keep the noise-to-mask ratio more or less constant across the subbands.

The output of the quantization and bit allocation steps are combined into a frame as shown
in Figure 16.5. Because MPEG audio is a streaming format, each frame carries a header,
rather than having a single header for the entire audio sequence. The header is made up of 32
bits. The first 12 bits comprise a sync pattern consisting of all 1s. This is followed by a 1-bit
version ID, a 2-bit layer indicator, a 1-bit CRC protection. The CRC protection bit is set to
0 if there is no CRC protection and is set to a 1 if there is CRC protection. If the layer and
protection information is known, all 16 bits can be used for providing frame synchronization.
The next 4 bits make up the bit rate index, which specifies the bit rate in kbits/sec. There

Header CRC
Bit

allocation
Scale

factors
Subband

data

Frame 2 Frame 3Frame 1

F IGURE 16. 5 Frame structure for Layer 1.

16.3 MPEG Audio Coding 521

TAB L E 16 . 1 Allowable sampling
frequencies in MPEG-1
and MPEG-2.

Index MPEG-1 MPEG-2

00 44.1 kHz 22.05 kHz
01 48 kHz 24 kHz
10 32 kHz 16 kHz
11 Reserved

are 14 specified bit rates to chose from. This is followed by 2 bits that indicate the sampling
frequency. The sampling frequencies for MPEG-1 and MPEG-2 are different (one of the few
differences between the audio coding standards for MPEG-1 and MPEG-2) and are shown in
Table 16.1 These bits are followed by a single padding bit. If the bit is “1,” the frame needs an
additional bit to adjust the bit rate to the sampling frequency. The next two bits indicate the
mode. The possible modes are “stereo,” “joint stereo,” “dual channel,” and “single channel.”
The stereo mode consists of two channels that are encoded separately but intended to be
played together. The joint stereo mode consists of two channels that are encoded together.
The left and right channels are combined to form a mid and a side signal as follows:

M = L+R

2

S = L−R

2

The dual channel mode consists of two channels that are encoded separately and are not
intended to be played together, such as a translation channel. These are followed by two
mode extension bits that are used in the joint stereo mode. The next bit is a copyright bit
(“1” if the material is copy righted, “0” if it is not). The next bit is set to “1” for original
media and “0” for copy. The final two bits indicate the type of de-emphasis to be used.

If the CRC bit is set, the header is followed by a 16-bit CRC. This is followed by the
bit allocations used by each subband and is in turn followed by the set of 6-bit scalefactors.
The scalefactor data is followed by the quantized 384 samples.

16 . 3 . 2 Layer I I Coding

The Layer II coder provides a higher compression rate by making some relatively minor
modifications to the Layer I coding scheme. These modifications include how the samples
are grouped together, the representation of the scalefactors, and the quantization strategy.
Where the Layer I coder puts 12 samples from each subband into a frame, the Layer II
coder groups three sets of 12 samples from each subband into a frame. The total number of
samples per frame increases from 384 samples to 1152 samples. This reduces the amount of
overhead per sample. In Layer I coding a separate scalefactor is selected for each block of 12
samples. In Layer II coding the encoder tries to share a scale factor among two or all three
groups of samples from each subband filter. The only time separate scalefactors are used

522 16 A U D I O C O D I N G

for each group of 12 samples is when not doing so would result in a significant increase in
distortion. The particular choice used in a frame is signaled through the scalefactor selection
information field in the bitstream.

The major difference between the Layer I and Layer II coding schemes is in the quanti-
zation step. In the Layer I coding scheme the output of each subband is quantized using one
of 14 possibilities; the same 14 possibilities for each of the subbands. In Layer II coding the
quantizers used for each of the subbands can be selected from a different set of quantizers
depending on the sampling rate and the bit rates. For some sampling rate and bit rate combi-
nations, many of the higher subbands are assigned 0 bits. That is, the information from those
subbands is simply discarded. Where the quantizer selected has 3, 5, or 9 levels, the Layer
II coding scheme uses one more enhancement. Notice that in the case of 3 levels we have
to use 2 bits per sample, which would have allowed us to represent 4 levels. The situation
is even worse in the case of 5 levels, where we are forced to use 3 bits, wasting three
codewords, and in the case of 9 levels where we have to use 4 bits, thus wasting 7 levels.
To avoid this situation, the Layer II coder groups 3 samples into a granule. If each sample
can take on 3 levels, a granule can take on 27 levels. This can be accommodated using 5
bits. If each sample had been encoded separately we would have needed 6 bits. Similarly, if
each sample can take on 9 values, a granule can take on 729 values. We can represent 729
values using 10 bits. If each sample in the granule had been encoded separately, we would
have needed 12 bits. Using all these savings, the compression ratio in Layer II coding can
be increase from 4:1 to 8:1 or 6:1.

The frame structure for the Layer II coder can be seen in Figure 16.6. The only real
difference between this frame structure and the frame structure of the Layer I coder is the
scalefactor selection information field.

16 . 3 . 3 Layer I I I Coding-—m p 3

Layer III coding, which has become widely popular under the name mp3, is considerably
more complex than the Layer I and Layer II coding schemes. One of the problems with
the Layer I and coding schemes was that with the 32-band decomposition, the bandwidth
of the subbands at lower frequencies is significantly larger than the critical bands. This

Frame 2 Frame 3Frame 1

Header CRC
Bit

allocation

Scalefactor
selection

index

Scale–
factors

Subband
data

F IGURE 16. 6 Frame structure for Layer 2.

16.3 MPEG Audio Coding 523

makes it difficult to make an accurate judgement of the mask-to-signal ratio. If we get a
high amplitude tone within a subband and if the subband was narrow enough, we could
assume that it masked other tones in the band. However, if the bandwidth of the subband is
significantly higher than the critical bandwidth at that frequency, it becomes more difficult
to determine whether other tones in the subband will be be masked.

A simple way to increase the spectral resolution would be to decompose the signal
directly into a higher number of bands. However, one of the requirements on the Layer III
algorithm is that it be backward compatible with Layer I and Layer II coders. To satisfy this
backward compatibility requirement, the spectral decomposition in the Layer III algorithm
is performed in two stages. First the 32-band subband decomposition used in Layer I and
Layer II is employed. The output of each subband is transformed using a modified discrete
cosine transform (MDCT) with a 50% overlap. The Layer III algorithm specifies two sizes
for the MDCT, 6 or 18. This means that the output of each subband can be decomposed into
18 frequency coefficients or 6 frequency coefficients.

The reason for having two sizes for the MDCT is that when we transform a sequence
into the frequency domain, we lose time resolution even as we gain frequency resolution.
The larger the block size the more we lose in terms of time resolution. The problem with
this is that any quantization noise introduced into the frequency coefficients will get spread
over the entire block size of the transform. Backward temporal masking occurs for only a
short duration prior to the masking sound (approximately 20 msec). Therefore, quantization
noise will appear as a pre-echo. Consider the signal shown in Figure 16.7. The sequence
consists of 128 samples, the first 118 of which are 0, followed by a sharp increase in value.
The 128-point DCT of this sequence is shown in Figure 16.8. Notice that many of these
coefficients are quite large. If we were to send all these coefficients, we would have data
expansion instead of data compression. If we keep only the 10 largest coefficients, the

2

0

4

6

8

10

12

14

16

0 20 40 60
Sample number

Amplitute

80 100 120 140

F IGURE 16. 7 Source output sequence.

524 16 A U D I O C O D I N G

−10

−5

0

5

10

Transform
coefficient

0 20 40 60
Coefficient number

80 100 120 140

F IGURE 16. 8 Transformed sequence.

−1

0

1

2

3

4

5

6

7

8

9

0 20 40 60
Sample number

80 100 120 140

Amplitute

F IGURE 16. 9 Reconstructed sequence from 10 DCT coefficients.

reconstructed signal is shown in Figure 16.9. Notice that not only are the nonzero signal
values not well represented, there is also error in the samples prior to the change in value of
the signal. If this were an audio signal and the large values had occurred at the beginning
of the sequence, the forward masking effect would have reduced the perceptibility of the
quantization error. In the situation shown in Figure 16.9, backward masking will mask some
of the quantization error. However, backward masking occurs for only a short duration prior

16.3 MPEG Audio Coding 525

to the masking sound. Therefore, if the length of the block in question is longer than the
masking interval, the distortion will be evident to the listener.

If we get a sharp sound that is very limited in time (such as the sound of castanets) we
would like to keep the block size small enough that it can contain this sharp sound. Then,
when we incur quantization noise it will not get spread out of the interval in which the actual
sound occurred and will therefore get masked. The Layer III algorithm monitors the input
and where necessary substitutes three short transforms for one long transform. What actually
happens is that the subband output is multiplied by a window function of length 36 during
the stationary periods (that is a blocksize of 18 plus 50% overlap from neighboring blocks).
This window is called the long window. If a sharp attack is detected, the algorithm shifts to
a sequence of three short windows of length 12 after a transition window of length 30. This
initial transition window is called the start window. If the input returns to a more stationary
mode, the short windows are followed by another transition window called the stop window
of length 30 and then the standard sequence of long windows. The process of transitioning
between windows is shown in Figure 16.10. A possible set of window transitions is shown
in Figure 16.11. For the long windows we end up with 18 frequencies per subband, resulting
in a total of 576 frequencies. For the short windows we get 6 coefficients per subband for
a total of 192 frequencies. The standard allows for a mixed block mode in which the two
lowest subbands use long windows while the remaining subbands use short windows. Notice
that while the number of frequencies may change depending on whether we are using long
or short windows, the number of samples in a frame stays at 1152. That is 36 samples, or 3
groups of 12, from each of the 32 subband filters.

Long Start

ShortStop

Attack

No attack

No attack

No attack
Attack

Attack

F IGURE 16. 10 State diagram for the window switching process.

526 16 A U D I O C O D I N G

Long Start Stop LongShort

F IGURE 16. 11 Sequence of windows.

The coding and quantization of the output of the MDCT is conducted in an iterative
fashion using two nested loops. There is an outer loop called the distortion control loop
whose purpose is to ensure that the introduced quantization noise lies below the audibility
threshold. The scalefactors are used to control the level of quantization noise. In Layer
III scalefactors are assigned to groups or “bands” of coefficients in which the bands are
approximately the size of critical bands. There are 21 scalefactor bands for long blocks and
12 scalefactor bands for short blocks.

The inner loop is called the rate control loop. The goal of this loop is to make sure that
a target bit rate is not exceeded. This is done by iterating between different quantizers and
Huffman codes. The quantizers used in mp3 are companded nonuniform quantizers. The
scaled MDCT coefficients are first quantized and organized into regions. Coefficients at the
higher end of the frequency scale are likely to be quantized to zero. These consecutive zero
outputs are treated as a single region and the run-length is Huffman encoded. Below this
region of zero coefficients, the encoder identifies the set of coefficients that are quantized to
0 or ±1. These coefficients are grouped into groups of four. This set of quadruplets is the
second region of coefficients. Each quadruplet is encoded using a single Huffman codeword.
The remaining coefficients are divided into two or three subregions. Each subregion is
assigned a Huffman code based on its statistical characteristics. If the result of using this
variable length coding exceeds the bit budget, the quantizer is adjusted to increase the
quantization stepsize. The process is repeated until the target rate is satisfied.

Once the target rate is satisfied, control passes back to the outer, distortion control loop.
The psychoacoustic model is used to check whether the quantization noise in any band
exceeds the allowed distortion. If it does, the scalefactor is adjusted to reduce the quantization
noise. Once all scalefactors have been adjusted, control returns to the rate control loop.
The iterations terminate either when the distortion and rate conditions are satisfied or the
scalefactors cannot be adjusted any further.

There will be frames in which the number of bits used by the Huffman coder is less than
the amount allocated. These bits are saved in a conceptual bit reservoir. In practice what this
means is that the start of a block of data does not necessarily coincide with the header of the
frame. Consider the three frames shown in Figure 16.12. In this example, the main data for
the first frame (which includes scalefactor information and the Huffman coded data) does
not occupy the entire frame. Therefore, the main data for the second frame starts before the
second frame actually begins. The same is true for the remaining data. The main data can
begin in the previous frame. However, the main data for a particular frame cannot spill over
into the following frame.

All this complexity allows for a very efficient encoding of audio inputs. The typical mp3
audio file has a compression ratio of about 10:1. In spite of this high level of compression,
most people cannot tell the difference between the original and the compressed representation.

16.4 MPEG Advanced Audio Coding 527

Header

Frame 2Frame 1 Frame 3

Begin data 1 Begin data 2 Begin data 3 Begin data 4

Side
Information

Main
data 1

Main
data 2

Main
data 3

Main
data 4

F IGURE 16. 12 Sequence of windows.

We say most because trained professionals can at times tell the difference between the
original and compressed versions. People who can identify very minute differences between
coded and original signals have played an important role in the development of audio
coders. By identifying where distortion may be audible they have helped focus effort onto
improving the coding process. This development process has made mp3 the format of choice
for compressed music.

16.4 MPEG Advanced Audio Coding

The MPEG Layer III algorithm has been highly successful. However, it had some built-
in drawbacks because of the constraints under which it had been designed. The principal
constraint was the requirement that it be backward compatible. This requirement for back-
ward compatibility forced the rather awkward decomposition structure involving a subband
decomposition followed by an MDCT decomposition. The period immediately following the
release of the MPEG specifications also saw major developments in hardware capability.
The Advanced Audio Coding (AAC) standard was approved as a higher quality multichannel
alternative to the backward compatible MPEG Layer III in 1997.

The AAC approach is a modular approach based on a set of self-contained tools or
modules. Some of these tools are taken from the earlier MPEG audio standard while others
are new. As with previous standards, the AAC standard actually specifies the decoder. The
decoder tools specified in the AAC standard are listed in Table 16.2. As shown in the table,
some of these tools are required for all profiles while others are only required for some
profiles. By using some or all of these tools, the standard describes three profiles. These
are the main profile, the low complexity profile, and the sampling-rate-scalable profile. The
AAC approach used in MPEG-2 was later enhanced and modified to provide an audio coding
option in MPEG-4. In the following section we first describe the MPEG-2 AAC algorithm,
followed by the MPEG-4 AAC algorithm.

16 . 4 . 1 MPEG-2 AAC

A block diagram of an MPEG-2 AAC encoder is shown in Figure 16.13. Each block
represents a tool. The psychoacoustic model used in the AAC encoder is the same as the

528 16 A U D I O C O D I N G

TAB L E 16 . 2 AAC Decoder Tools [213].

Tool Name

Bitstream Formatter Required
Huffman Decoding Required
Inverse Quantization Required
Rescaling Required
M/S Optional
Interblock Prediction Optional
Intensity Optional
Dependently Switched Coupling Optional
TNS Optional
Block switching / MDCT Required
Gain Control Optional
Independently Switched Coupling Optional

model used in the MPEG Layer III encoder. As in the Layer III algorithm, the psychoacoustic
model is used to trigger switching in the blocklength of the MDCT transform and to produce
the threshold values used to determine scalefactors and quantization thresholds. The audio
data is fed in parallel to both the acoustic model and to the modified Discrete Cosine
Transform.

B lo ck Sw i t c h i ng and MDCT

Because the AAC algorithm is not backward compatible it does away with the requirement of
the 32-band filterbank. Instead, the frequency decomposition is accomplished by a Modified
Discrete Cosine Transform (MDCT). The MDCT is described in Chapter 13. The AAC
algorithm allows switching between a window length of 2048 samples and 256 samples.
These window lengths include a 50% overlap with neighboring blocks. So 2048 time samples
are used to generate 1024 spectral coefficients, and 256 time samples are used to generate
128 frequency coefficients. The kth spectral coefficient of block i, Xi�k is given by:

Xi�k = 2
N−1∑

n=0

zi�n cos
(

2��n+no�

N
�k+ 1

2
�

)

where zi�n is the nth time sample of the ith block, N is the window length and

no = N/2+1
2

�

The longer block length allows the algorithm to take advantage of stationary portions of
the input to get significant improvements in compression. The short block length allows the
algorithm to handle sharp attacks without incurring substantial distortion and rate penalties.
Short blocks occur in groups of eight in order to avoid framing issues. As in the case of MPEG
Layer III, there are four kinds of windows: long, short, start, and stop. The decision about
whether to use a group of short blocks is made by the psychoacoustic model. The coefficients

16.4 MPEG Advanced Audio Coding 529

Gain control

Block switch
MDCT

TNS

Intensity
coupling

Interblock
prediction

M/S

scaling

Quantization

Huffman
coding

Threshold
calculation

Window length
decision

Sp
ec

tr
al

 p
ro

ce
ss

in
g

Q
ua

nt
iz

at
io

n
an

d
co

di
ng

Psychoacoustic
model

Data

Control

Audio signal

B
its

tr
ea

m
 f

or
m

at
te

r

AAC

bitstream

F IGURE 16. 13 An MPEG-2 AAC encoder [213].

are divided into scalefactor bands in which the number of coefficients in the bands reflects
the critical bandwidth. Each scalefactor band is assigned a single scalefactor. The exact
division of the coefficients into scalefactor bands for the different windows and different
sampling rates is specified in the standard [213].

Spe c t r a l P ro ce s s i ng

In MPEG Layer III coding the compression gain is mainly achieved through the unequal
distribution of energy in the different frequency bands, the use of the psychoacoustic model,

530 16 A U D I O C O D I N G

and Huffman coding. The unequal distribution of energy allows use of fewer bits for spectral
bands with less energy. The psychoacoustic model is used to adjust the quantization step size
in a way that masks the quantization noise. The Huffman coding allows further reductions
in the bit rate. All these approaches are also used in the AAC algorithm. In addition, the
algorithm makes use of prediction to reduce the dynamic range of the coefficients and thus
allow further reduction in the bit rate.

Recall that prediction is generally useful only in stationary conditions. By their very
nature, transients are almost impossible to predict. Therefore, generally speaking, predictive
coding would not be considered for signals containing significant amounts of transients.
However, music signals have exactly this characteristic. Although they may contain long
periods of stationary signals, they also generally contain a significant amount of transient
signals. The AAC algorithm makes clever use of the time frequency duality to handle this
situation. The standard contains two kinds of predictors, an intrablock predictor, referred
to as Temporal Noise Shaping (TNS), and an interblock predictor. The interblock predictor
is used during stationary periods. During these periods it is reasonable to assume that the
coefficients at a certain frequency do not change their value significantly from block to
block. Making use of this characteristic, the AAC standard implements a set of parallel
DPCM systems. There is one predictor for each coefficient up to a maximum number of
coefficients. The maximum is different for different sampling frequencies. Each predictor
is a backward adaptive two-tap predictor. This predictor is really useful only in stationary
periods. Therefore, the psychoacoustic model monitors the input and determines when the
output of the predictor is to be used. The decision is made on a scalefactor band by scalefactor
band basis. Because notification of the decision that the predictors are being used has to
be sent to the decoder, this would increase the rate by one bit for each scalefactor band.
Therefore, once the preliminary decision to use the predicted value has been made, further
calculations are made to check if the savings will be sufficient to offset this increase in
rate. If the savings are determined to be sufficient, a predictor_data_present bit is set to
1 and one bit for each scalefactor band (called the prediction_used bit) is set to 1 or 0
depending on whether prediction was deemed effective for that scalefactor band. If not, the
predictor_data_present bit is set to 0 and the prediction_used bits are not sent. Even when
a predictor is disabled, the adaptive algorithm is continued so that the predictor coefficients
can track the changing coefficients. However, because this is a streaming audio format it
is necessary from time to time to reset the coefficients. Resetting is done periodically in a
staged manner and also when a short frame is used.

When the audio input contains transients, the AAC algorithm uses the intraband predictor.
Recall that narrow pulses in time correspond to wide bandwidths. The narrower a signal
in time, the broader its Fourier transform will be. This means that when transients occur
in the audio signal, the resulting MDCT output will contain a large number of correlated
coefficients. Thus, unpredictability in time translates to a high level of predictability in terms
of the frequency components. The AAC uses neighboring coefficients to perform prediction.
A target set of coefficients is selected in the block. The standard suggests a range of 1.5 kHz
to the uppermost scalefactor band as specified for different profiles and sampling rates.
A set of linear predictive coefficients is obtained using any of the standard approaches,
such as the Levinson-Durbin algorithm described in Chapter 15. The maximum order of
the filter ranges from 12 to 20 depending on the profile. The process of obtaining the filter

16.4 MPEG Advanced Audio Coding 531

coefficients also provides the expected prediction gain gp. This expected prediction gain
is compared against a threshold to determine if intrablock prediction is going to be used.
The standard suggests a value of 1.4 for the threshold. The order of the filter is determined
by the first PARCOR coefficient with a magnitude smaller than a threshold (suggested to
be 0.1). The PARCOR coefficients corresponding to the predictor are quantized and coded
for transfer to the decoder. The reconstructed LPC coefficients are then used for prediction.
In the time domain predictive coders, one effect of linear prediction is the spectral shaping
of the quantization noise. The effect of prediction in the frequency domain is the temporal
shaping of the quantization noise, hence the name Temporal Noise Shaping. The shaping of
the noise means that the noise will be higher during time periods when the signal amplitude
is high and lower when the signal amplitude is low. This is especially useful in audio signals
because of the masking properties of human hearing.

Quan t i za t i on and Cod ing

The quantization and coding strategy used in AAC is similar to what is used in MPEG Layer
III. Scalefactors are used to control the quantization noise as a part of an outer distortion
control loop. The quantization step size is adjusted to accommodate a target bit rate in an
inner rate control loop. The quantized coefficients are grouped into sections. The section
boundaries have to coincide with scalefactor band boundaries. The quantized coefficients in
each section are coded using the same Huffman codebook. The partitioning of the coefficients
into sections is a dynamic process based on a greedy merge procedure. The procedure starts
with the maximum number of sections. Sections are merged if the overall bit rate can be
reduced by merging. Merging those sections will result in the maximum reduction in bit
rate. This iterative procedure is continued until there is no further reduction in the bit rate.

S t e reo Cod ing

The AAC scheme uses multiple approaches to stereo coding. Apart from independently
coding the audio channels, the standard allows Mid/Side (M/S) coding and intensity stereo
coding. Both stereo coding techniques can be used at the same time for different frequency
ranges. Intensity coding makes use of the fact that at higher frequencies two channels can
be represented by a single channel plus some directional information. The AAC standard
suggests using this technique for scalefactor bands above 6 kHZ. The M/S approach is used
to reduce noise imaging. As described previously in the joint stereo approach, the two
channels (L and R) are combined to generate sum and difference channels.

P ro f i l e s

The main profile of MPEG-2 AAC uses all the tools except for the gain control tool of
Figure 16.13. The low complexity profile in addition to the gain control tool the interblock
prediction tool is also dropped. In addition the maximum prediction order for intra-band
prediction (TNS) for long windows is 12 for the low complexity profile as opposed to 20
for the main profile.

532 16 A U D I O C O D I N G

The Scalable Sampling Rate profile does not use the coupling and interband prediction
tools. However this profile does use the gain control tool. In the scalable-sampling profile the
MDCT block is preceded by a bank of four equal width 96 tap filters. The filter coefficients
are provided in the standard. The use of this filterbank allows for a reduction in rate and
decoder complexity. By ignoring one or more of the filterbank outputs the output bandwidth
can be reduced. This reduction in bandwidth and sample rate also leads to a reduction in
the decoder complexity. The gain control allows for the attenuation and amplification of
different bands in order to reduce perceptual distortion.

16 . 4 . 2 MPEG-4 AAC

The MPEG-4 AAC adds a perceptual noise substitution (PNS) tool and substitutes a long
term prediction (LTP) tool for the interband prediction tool in the spectral coding block.
In the quantization and coding section the MPEG-4 AAC adds the options of Transform-
Domain Weighted Interleave Vector Quantization (TwinVQ) and Bit Sliced Arithmetic
Coding (BSAC).

Pe r cep t ua l No i s e Sub s t i t u t i on (PNS)

There are portions of music that sound like noise. Although this may sound like a harsh
(or realistic) subjective evaluation, that is not what is meant here. What is meant by noise
here is a portion of audio where the MDCT coefficients are stationary without containing
tonal components [214]. This kind of noise-like signal is the hardest to compress. However,
at the same time it is very difficult to distinguish one noise-like signal from another. The
MPEG-4 AAC makes use of this fact by not transmitting such noise-like scalefactor bands.
Instead the decoder is alerted to this fact and the power of the noise-like coefficients in this
band is sent. The decoder generates a noise-like sequence with the appropriate power and
inserts it in place of the unsent coefficients.

Long Te rm Pred i c t i on

The interband prediction in MPEG-2 AAC is one of the more computationally expensive
parts of the algorithm. MPEG-4 AAC replaces that with a cheaper long term prediction
(LTP) module.

Tw inVQ

The Transform-Domain Weighted Interleave Vector Quantization (TwinVQ) [215] option is
suggested in the MPEG-4 AAC scheme for low bit rates. Developed at NTT in the early
1990s, the algorithm uses a two-stage process for flattening the MDCT coefficients. In
the first stage, a linear predictive coding algorithm is used to obtain the LPC coefficients
for the audio data corresponding to the MDCT coefficients. These coefficients are used to
obtain the spectral envelope for the audio data. Dividing the MDCT coefficients with this
spectral envelope results in some degree of “flattening” of the coefficients. The spectral
envelope computed from the LPC coefficients reflects the gross features of the envelope

16.5 Dolby AC3 (Dolby Digital) 533

of the MDCT coefficients. However, it does not reflect any of the fine structure. This
fine structure is predicted from the previous frame and provides further flattening of the
MDCT coefficients. The flattened coefficients are interleaved and grouped into subvectors
and quantized. The flattening process reduces the dynamic range of the coefficients, allowing
them to be quantized using a smaller VQ codebook than would otherwise have been possible.
The flattening process is reversed in the decoder as the LPC coefficients are transmitted to
the decoder.

B i t S l i c ed A r i t hme t i c Cod i ng (BSAC)

In addition to the Huffman coding scheme of the MPEG-2 AAC scheme, the MPEG-4 AAC
scheme also provides the option of using binary arithmetic coding. The binary arithmetic
coding is performed on the bitplanes of the magnitudes of the quantized MDCT coefficients.
By bitplane we mean the corresponding bit of each coefficient. Consider the sequence of
4-bit coefficients xn � 5� 11� 8� 10� 3� 1. The most significant bitplane would consist of the
MSBs of these numbers, 011100. The next bitplane would be 100000. The next bitplane is
010110. The least significant bitplane is 110011.

The coefficients are divided into coding bands of 32 coefficients each. One probability
table is used to encode each coding band. Because we are dealing with binary data, the
probability table is simply the number of zeros. If a coding band contains only zeros, this is
indicated to the decoder by selecting the probability table 0. The sign bits associated with
the nonzero coefficients are sent after the arithmetic code when the coefficient has a 1 for
the the first time.

The scalefactor information is also arithmetic coded. The maximum scalefactor is coded
as an 8-bit integer. The differences between scalefactors are encoded using an arithmetic
code. The first scalefactor is encoded using the difference between it and the maximum
scalefactor.

16.5 Dolby AC3 (Dolby Digital)

Unlike the MPEG algorithms described in the previous section, the Dolby AC-3 method
became a de facto standard. It was developed in response to the standardization activities
of the Grand Alliance, which was developing a standard for HDTV in the United States.
However, even before it was accepted as the recommendation for HDTV audio, Dolby-AC3
had already made its debut in the movie industry. It was first released in a few theaters during
the showing of Star Trek IV in 1991 and was formally released with the movie Batman
Returns in 1992. It was accepted by the Grand Alliance in October of 1993 and became an
Advanced Television Systems Committee (ATSC) standard in 1995. Dolby AC-3 had the
multichannel capability required by the movie industry along with the ability to downmix the
channels to accommodate the varying capabilities of different applications. The 5.1 channels
include right, center, left, left rear, and right rear, and a narrowband low-frequency effects
channel (the 0.1 channel). The scheme supports downmixing the 5.1 channels to 4, 3, 2, or
1 channel. It is now the standard used for DVDs as well as for Direct Broadcast Satellites
(DBS) and other applications.

534 16 A U D I O C O D I N G

MDCT
Spectral
envelope
coding

Bit
allocation

Mantissa
coding

Framing

F IGURE 16. 14 The Dolby AC3 algorithm.

A block diagram of the Dolby-AC3 algorithm is shown in Figure 16.14. Much of the
Dolby-AC3 scheme is similar to what we have already described for the MPEG algorithms.
As in the MPEG schemes, the Dolby-AC3 algorithm uses the modified DCT (MDCT) with
50% overlap for frequency decomposition. As in the case of MPEG, there are two different
sizes of windows used. For the stationary portions of the audio a window of size 512 is used
to get a 256 coefficient. A surge in the power of the high frequency coefficients is used to
indicate the presence of a transient and the 512 window is replaced by two windows of size
256. The one place where the Dolby-AC3 algorithm differs significantly from the algorithm
described is in the bit allocation.

16 . 5 . 1 Bi t A l locat ion

The Dolby-AC3 scheme has a very interesting method for bit allocation. Like the MPEG
schemes, it uses a psychoacoustic model that incorporates the hearing thresholds and the
presence of noise and tone maskers. However, the input to the model is different. In the
MPEG schemes the audio sequence being encoded is provided to the bit allocation procedure
and the bit allocation is sent to the decoder as side information. In the Dolby-AC3 scheme
the signal itself is not provided to the bit allocation procedure. Instead a crude representation
of the spectral envelope is provided to both the decoder and the bit allocation procedure. As
the decoder then possesses the information used by the encoder to generate the bit allocation,
the allocation itself is not included in the transmitted bitstream.

The representation of the spectral envelope is obtained by representing the MDCT
coefficients in binary exponential notation. The binary exponential notation of a number
110.101 is 0�110101×23, where 110101 is called the mantissa and 3 is the exponent. Given
a sequence of numbers, the exponents of the binary exponential representation provide

16.6 Other Standards 535

an estimate of the relative magnitude of the numbers. The Dolby-AC3 algorithm uses
the exponents of the binary exponential representation of the MDCT coefficients as the
representation of the spectral envelope. This encoding is sent to the bit allocation algorithm,
which uses this information in conjunction with a psychoacoustic model to generate the
number of bits to be used to quantize the mantissa of the binary exponential representation
of the MDCT coefficients. To reduce the amount of information that needs to be sent to the
decoder, the spectral envelope coding is not performed for every audio block. Depending on
how stationary the audio is, the algorithm uses one of three strategies [194].

The D15 Method

When the audio is relatively stationary, the spectral envelope is coded once for every six
audio blocks. Because a frame in Dolby-AC3 consists of six blocks, during each block we
get a new spectral envelope and hence a new bit allocation. The spectral envelope is coded
differentially. The first exponent is sent as is. The difference between exponents is encoded
using one of five values �0�±1�±2	. Three differences are encoded using a 7-bit word.
Note that three differences can take on 125 different combinations. Therefore, using 7 bits,
which can represent 128 different values, is highly efficient.

The D25 and D45 Method s

If the audio is not stationary, the spectral envelope is sent more often. To keep the bit rate
down, the Dolby-AC3 algorithm uses one of two strategies. In the D25 strategy, which is
used for moderate spectral activity, every other coefficient is encoded. In the D45 strategy,
used during transients, every fourth coefficient is encoded. These strategies make use of the
fact that during a transient the fine structure of the spectral envelope is not that important,
allowing for a more crude representation.

16.6 Other Standards

We have described a number of audio compression approaches that make use of the limita-
tions of human audio perception. These are by no means the only ones. Competitors to Dolby
Digital include Digital Theater Systems (DTS) and Sony Dynamic Digital Sound (SDDS).
Both of these proprietary schemes use psychoacoustic modeling. The Adaptive TRansform
Acoustic Coding (ATRAC) algorithm [216] was developed for the minidisc by Sony in the
early 1990s, followed by enhancements in ATRAC3 and ATRAC3plus. As with the other
schemes described in this chapter, the ATRAC approach uses MDCT for frequency decom-
position, though the audio signal is first decomposed into three bands using a two-stage
decomposition. As in the case of the other schemes, the ATRAC algorithm recommends the
use of the limitations of human audio perception in order to discard information that is not
perceptible.

Another algorithm that also uses MDCT and a psychoacoustic model is the open source
encoder Vorbis. The Vorbis algorithm also uses vector quantization and Huffman coding to
reduce the bit rate.

536 16 A U D I O C O D I N G

16.7 Summary

The audio coding algorithms described in this chapter take, in some sense, the opposite tack
from the speech coding algorithms described in the previous chapter. Instead of focusing
on the source of information, as is the case with the speech coding algorithm, the focus in
the audio coding algorithm is on the sink, or user, of the information. By identifying the
components of the source signal that are not perceptible, the algorithms reduce the amount
of data that needs to be transmitted.

Fu r t he r Read ing

1. The book Introduction to Digital Audio Coding and Standards by M. Bosi and
R.E. Goldberg [194] provides a detailed accounting of the standards described here as
well as a comprehensive look at the process of constructing a psychoacoustic model.

2. The MPEG Handbook, by J. Watkinson [214], is an accessible source of information
about aspects of audio coding as well as the MPEG algorithms.

3. An excellent tutorial on the MPEG algorithms is the appropriately named A Tutorial
on MPEG/Audio Compression, by D. Pan [217].

4. A thorough review of audio coding can be found in Perceptual Coding of Digital
Audio, by T. Painter and A. Spanias [218].

5. The website http://www.tnt.uni-hannover.de/project/mpeg/audio/faq/ contains infor-
mation about all the audio coding schemes described here as well as an overview of
MPEG-7 audio.

17
Analysis/Synthesis and Analysis
by Synthesis Schemes

17.1 Overview

A
nalysis/synthesis schemes rely on the availability of a parametric model of the
source output generation. When such a model exists, the transmitter analyzes
the source output and extracts the model parameters, which are transmit-
ted to the receiver. The receiver uses the model along with the transmitted
parameters to synthesize an approximation to the source output. The differ-

ence between this approach and the techniques we have looked at in previous chapters
is that what is transmitted is not a direct representation of the samples of the source
output; instead, the transmitter informs the receiver how to go about regenerating those
outputs. For this approach to work, a good model for the source has to be available.
Since good models for speech production exist, this approach has been widely used for
the low-rate coding of speech. We describe several different analysis/synthesis techniques
for speech compression. In recent years the fractal approach to image compression has
been gaining in popularity. Because this approach is also one in which the receiver regen-
erates the source output using “instructions” from the transmitter, we describe it in this
chapter.

17.2 Introduct ion

In the previous chapters we have presented a number of lossy compression schemes that
provide an estimate of each source output value to the receiver. Historically, an earlier
approach towards lossy compression is to model the source output and send the model
parameters to the source instead of the estimates of the source output. The receiver tries to
synthesize the source output based on the received model parameters.

538 17 A N A L Y S I S / S Y N T H E S I S

Consider an image transmission system that works as follows. At the transmitter, we have
a person who examines the image to be transmitted and comes up with a description of the
image. At the receiver, we have another person who then proceeds to create that image. For
example, suppose the image we wish to transmit is a picture of a field of sunflowers. Instead
of trying to send the picture, we simply send the words “field of sunflowers.” The person at
the receiver paints a picture of a field of sunflowers on a piece of paper and gives it to the
user. Thus, an image of an object is transmitted from the transmitter to the receiver in a highly
compressed form. This approach towards compression should be familiar to listeners of sports
broadcasts on radio. It requires that both transmitter and receiver work with the same model.
In terms of sports broadcasting, this means that the viewer has a mental picture of the sports
arena, and both the broadcaster and listener attach the same meaning to the same terminology.

This approach works for sports broadcasting because the source being modeled functions
under very restrictive rules. In a basketball game, when the referee calls a dribbling foul,
listeners generally don’t picture a drooling chicken. If the source violates the rules, the
reconstruction would suffer. If the basketball players suddenly decided to put on a ballet
performance, the transmitter (sportscaster) would be hard pressed to represent the scene
accurately to the receiver. Therefore, it seems that this approach to compression can only be
used for artificial activities that function according to man-made rules. Of the sources that
we are interested in, only text fits this description, and the rules that govern the generation
of text are complex and differ widely from language to language.

Fortunately, while natural sources may not follow man-made rules, they are subject to the
laws of physics, which can prove to be quite restrictive. This is particularly true of speech.
No matter what language is being spoken, the speech is generated using machinery that is not
very different from person to person. Moreover, this machinery has to obey certain physical
laws that substantially limit the behavior of outputs. Therefore, speech can be analyzed in
terms of a model, and the model parameters can be extracted and transmitted to the receiver.
At the receiver the speech can be synthesized using the model. This analysis/synthesis
approach was first employed by Homer Dudley at Bell Laboratories, who developed what is
known as the channel vocoder (described in the next section). Actually, the synthesis portion
had been attempted even earlier by Kempelen Farkas Lovag (1734–1804). He developed a
“speaking machine” in which the vocal tract was modeled by a flexible tube whose shape
could be modified by an operator. Sound was produced by forcing air through this tube
using bellows [219].

Unlike speech, images are generated in a variety of different ways; therefore, the analy-
sis/synthesis approach does not seem very useful for image or video compression. However,
if we restrict the class of images to “talking heads” of the type we would encounter in a video-
conferencing situation, we might be able to satisfy the conditions required for this approach.
When we talk, our facial gestures are restricted by the way our faces are constructed and by
the physics of motion. This realization has led to the new field of model-based video coding
(see Chapter 16).

A totally different approach to image compression based on the properties of self-
similarity is the fractal coding approach. While this approach does not explicitly depend
on some physical limitations, it fits in with the techniques described in this chapter; that
is, what is stored or transmitted is not the samples of the source output, but a method for
synthesizing the output. We will study this approach in Section 17.5.1.

17.3 Speech Compression 539

17.3 Speech Compression

A very simplified model of speech synthesis is shown in Figure 17.1. As we described in
Chapter 7, speech is produced by forcing air first through an elastic opening, the vocal cords,
and then through the laryngeal, oral, nasal, and pharynx passages, and finally through the
mouth and the nasal cavity. Everything past the vocal cords is generally referred to as the
vocal tract. The first action generates the sound, which is then modulated into speech as it
traverses through the vocal tract.

In Figure 17.1, the excitation source corresponds to the sound generation, and the vocal
tract filter models the vocal tract. As we mentioned in Chapter 7, there are several different
sound inputs that can be generated by different conformations of the vocal cords and the
associated cartilages.

Therefore, in order to generate a specific fragment of speech, we have to generate a
sequence of sound inputs or excitation signals and the corresponding sequence of appropriate
vocal tract approximations.

At the transmitter, the speech is divided into segments. Each segment is analyzed to
determine an excitation signal and the parameters of the vocal tract filter. In some of the
schemes, a model for the excitation signal is transmitted to the receiver. The excitation signal
is then synthesized at the receiver and used to drive the vocal tract filter. In other schemes,
the excitation signal itself is obtained using an analysis-by-synthesis approach. This signal
is then used by the vocal tract filter to generate the speech signal.

Over the years many different analysis/synthesis speech compression schemes have
been developed, and substantial research into the development of new approaches and the
improvement of existing schemes continues. Given the large amount of information, we can
only sample some of the more popular approaches in this chapter. See [220, 221, 222] for
more detailed coverage and pointers to the vast literature on the subject.

The approaches we will describe in this chapter include channel vocoders, which are of
special historical interest; the linear predictive coder, which is the U.S. Government standard
at the rate of 2.4 kbps; code excited linear prediction (CELP) based schemes; sinusoidal
coders, which provide excellent performance at rates of 4.8 kbps and higher and are also a
part of several national and international standards; and mixed excitation linear prediction,
which is to be the new 2.4 kbps federal standard speech coder. In our description of these
approaches, we will use the various national and international standards as examples.

17 . 3 . 1 The Channel Vocoder

In the channel vocoder [223], each segment of input speech is analyzed using a bank of
band-pass filters called the analysis filters. The energy at the output of each filter is estimated
at fixed intervals and transmitted to the receiver. In a digital implementation, the energy

Excitation
source

Vocal tract
filter

Speech

F IGURE 17. 1 A model for speech synthesis.

540 17 A N A L Y S I S / S Y N T H E S I S

−3

−2

−1

0

1

2

3

800 900 1000 1100 1200 1300 1400 1500 1600

F IGURE 17. 2 The sound /e/ in test.

estimate may be the average squared value of the filter output. In analog implementations,
this is the sampled output of an envelope detector. Generally, an estimate is generated
50 times every second. Along with the estimate of the filter output, a decision is made as
to whether the speech in that segment is voiced, as in the case of the sounds /a/ /e/ /o/, or
unvoiced, as in the case for the sounds /s/ /f/. Voiced sounds tend to have a pseudoperiodic
structure, as seen in Figure 17.2, which is a plot of the /e/ part of a male voice saying the
word test. The period of the fundamental harmonic is called the pitch period. The transmitter
also forms an estimate of the pitch period, which is transmitted to the receiver.

Unvoiced sounds tend to have a noiselike structure, as seen in Figure 17.3, which is the
/s/ sound in the word test.

At the receiver, the vocal tract filter is implemented by a bank of band-pass filters. The
bank of filters at the receiver, known as the synthesis filters, is identical to the bank of
analysis filters. Based on whether the speech segment was deemed to be voiced or unvoiced,
either a pseudonoise source or a periodic pulse generator is used as the input to the synthesis
filter bank. The period of the pulse input is determined by the pitch estimate obtained for
the segment being synthesized at the transmitter. The input is scaled by the energy estimate
at the output of the analysis filters. A block diagram of the synthesis portion of the channel
vocoder is shown in Figure 17.4.

Since the introduction of the channel vocoder, a number of variations have been devel-
oped. The channel vocoder matches the frequency profile of the input speech. There is no
attempt to reproduce the speech samples per se. However, not all frequency components of
speech are equally important. In fact, as the vocal tract is a tube of nonuniform cross section,
it resonates at a number of different frequencies. These frequencies are known as formants
[105]. The formant values change with different sounds; however, we can identify ranges
in which they occur. For example, the first formant occurs in the range 200–800 Hz for a
male speaker, and in the range 250–1000 Hz for a female speaker. The importance of these

17.3 Speech Compression 541

−3

−2

−1

0

1

2

3

2400 2500 2600 2700 2800 2900 3000 3100 3200

F IGURE 17. 3 The sound /s/ in test.

Synthesis
filter 1

From analysis filter 1

Synthesis
filter 2

From analysis filter 2

Pitch period

Voiced/unvoiced decision

From analysis filter n

Synthesis
filter n

Noise
source

.

.

.

.

.

.Pulse
source

F IGURE 17. 4 The channel vocoder receiver.

formants has led to the development of formant vocoders, which transmit an estimate of
the formant values (usually four formants are considered sufficient) and an estimate of the
bandwidth of each formant. At the receiver the excitation signal is passed through tunable
filters that are tuned to the formant frequency and bandwidth.

542 17 A N A L Y S I S / S Y N T H E S I S

An important development in the history of the vocoders was an understanding of the
importance of the excitation signal. Schemes that require the synthesis of the excitation signal
at the receiver spend a considerable amount of computational resources to obtain accurate
voicing information and accurate pitch periods. This expense can be avoided through the
use of voice excitation. In the voice-excited channel vocoder, the voice is first filtered using
a narrow-band low-pass filter. The output of the low-pass filter is sampled and transmitted
to the receiver. At the receiver, this low-pass signal is passed through a nonlinearity to
generate higher-order harmonics that, together with the low-pass signal, are used as the
excitation signal. Voice excitation removes the problem of pitch extraction. It also removes
the necessity for declaring every segment either voiced or unvoiced. As there are usually
quite a few segments that are neither totally voiced or unvoiced, this can result in a substantial
increase in quality. Unfortunately, the increase in quality is reflected in the high cost of
transmitting the low-pass filtered speech signal.

The channel vocoder, although historically the first approach to analysis/synthesis—
indeed the first approach to speech compression—is not as popular as some of the other
schemes described here. However, all the different schemes can be viewed as descendants
of the channel vocoder.

17 . 3 . 2 The L inear Predi c t ive Coder
(Government Standard LPC-10)

Of the many descendants of the channel vocoder, the most well-known is the linear predictive
coder (LPC). Instead of the vocal tract being modeled by a bank of filters, in the linear
predictive coder the vocal tract is modeled as a single linear filter whose output yn is related
to the input �n by

yn =
M∑

i=1

biyn−i +G�n (17.1)

where G is called the gain of the filter. As in the case of the channel vocoder, the input
to the vocal tract filter is either the output of a random noise generator or a periodic pulse
generator. A block diagram of the LPC receiver is shown in Figure 17.5.

At the transmitter, a segment of speech is analyzed. The parameters obtained include a
decision as to whether the segment of speech is voiced or unvoiced, the pitch period if the
segment is declared voiced, and the parameters of the vocal tract filter. In this section, we will
take a somewhat detailed look at the various components that make up the linear predictive
coder. As an example, we will use the specifications for the 2.4-kbit U.S. Government
Standard LPC-10.

The input speech is generally sampled at 8000 samples per second. In the LPC-10
standard, the speech is broken into 180 sample segments, corresponding to 22.5 milliseconds
of speech per segment.

The Vo i c ed/Unvo i c ed De c i s i on

If we compare Figures 17.2 and 17.3, we can see there are two major differences. Notice
that the samples of the voiced speech have larger amplitude; that is, there is more energy in

17.3 Speech Compression 543

Vocal tract
filter

Noise
source

V/UV
switch

Pulse
source

(Voiced)

Pitch

(Unvoiced)

Speech

F IGURE 17. 5 A model for speech synthesis.

the voiced speech. Also, the unvoiced speech contains higher frequencies. As both speech
segments have average values close to zero, this means that the unvoiced speech waveform
crosses the x = 0 line more often than the voiced speech sample. Therefore, we can get a
fairly good idea about whether the speech is voiced or unvoiced based on the energy in the
segment relative to background noise and the number of zero crossings within a specified
window. In the LPC-10 algorithm, the speech segment is first low-pass filtered using a filter
with a bandwidth of 1 kHz. The energy at the output relative to the background noise is used
to obtain a tentative decision about whether the signal in the segment should be declared
voiced or unvoiced. The estimate of the background noise is basically the energy in the
unvoiced speech segments. This tentative decision is further refined by counting the number
of zero crossings and checking the magnitude of the coefficients of the vocal tract filter.
We will talk more about this latter point later in this section. Finally, it can be perceptually
annoying to have a single voiced frame sandwiched between unvoiced frames. The voicing
decision of the neighboring frames is considered in order to prevent this from happening.

E s t ima t i ng t he P i t c h Pe r i od

Estimating the pitch period is one of the most computationally intensive steps of the analysis
process. Over the years a number of different algorithms for pitch extraction have been
developed. In Figure 17.2, it would appear that obtaining a good estimate of the pitch
should be relatively easy. However, we should keep in mind that the segment shown in
Figure 17.2 consists of 800 samples, which is considerably more than the samples available
to the analysis algorithm. Furthermore, the segment shown here is noise-free and consists
entirely of a voiced input. For a machine to extract the pitch from a short noisy segment,
which may contain both voiced and unvoiced components, can be a difficult undertaking.

Several algorithms make use of the fact that the autocorrelation of a periodic function
Rxx�k� will have a maximum when k is equal to the pitch period. Coupled with the fact
that the estimation of the autocorrelation function generally leads to a smoothing out of the
noise, this makes the autocorrelation function a useful tool for obtaining the pitch period.

544 17 A N A L Y S I S / S Y N T H E S I S

Unfortunately, there are also some problems with the use of the autocorrelation. Voiced
speech is not exactly periodic, which makes the maximum lower than we would expect
from a periodic signal. Generally, a maximum is detected by checking the autocorrelation
value against a threshold; if the value is greater than the threshold, a maximum is declared
to have occurred. When there is uncertainty about the magnitude of the maximum value,
it is difficult to select a value for the threshold. Another problem occurs because of the
interference due to other resonances in the vocal tract. There are a number of algorithms
that resolve these problems in different ways. (see [105, 104] for details).

In this section, we will describe a closely related technique, employed in the LPC-10
algorithm, that uses the average magnitude difference function (AMDF). The AMDF is
defined as

AMDF�P� = 1
N

k0+N∑

i=k0+1

�yi −yi−P � (17.2)

If a sequence �yn� is periodic with period P0, samples that are P0 apart in the �yn� sequence
will have values close to each other, and therefore the AMDF will have a minimum at P0.
If we evaluate this function using the /e/ and /s/ sequences, we get the results shown in
Figures 17.6 and 17.7. Notice that not only do we have a minimum when P equals the
pitch period, but any spurious minimums we may obtain in the unvoiced segments are very
shallow; that is, the difference between the minimum and average values is quite small.
Therefore, the AMDF can serve a dual purpose: it can be used to identify the pitch period
as well as the voicing condition.

The job of pitch extraction is simplified by the fact that the pitch period in humans tends
to fall in a limited range. Thus, we do not have to evaluate the AMDF for all possible values
of P. For example, the LPC-10 algorithm assumes that the pitch period is between 2.5 and

0.2

0.4

0.6

0.8

1.0

1.2AMDF (P)

1.4

1.6

1.8

2.0

2.2

20 40 60 80
Pitch period (P)

100 120 140 160

F IGURE 17. 6 AMDF function for the sound /e/ in test.

17.3 Speech Compression 545

0

0.05

0.10

0.15

0.20AMDF (P)

0.25

0.30

0.35

0.40

20 40 60 80
Pitch period (P)

100 120 140 160

F IGURE 17. 7 AMDF function for the sound /s/ in test.

19.5 milliseconds. Assuming a sampling rate of 8000 samples a second, this means that P
is between 20 and 160.

Ob ta i n i ng t he Vo ca l T r a c t F i l t e r

In linear predictive coding, the vocal tract is modeled by a linear filter with the input-output
relationship shown in Equation (17.1). At the transmitter, during the analysis phase we obtain
the filter coefficients that best match the segment being analyzed in a mean squared error
sense. That is, if �yn� are the speech samples in that particular segment, then we want to
choose �ai� to minimize the average value of e2

n where

e2
n =

(

yn −
M∑

i=1

aiyn−i −G�n

)2

� (17.3)

If we take the derivative of the expected value of e2
n with respect to the coefficients �aj�,

we get a set of M equations:

�

�aj

E

⎡

⎣

(

yn −
M∑

i=1

aiyn−i −G�n

)2
⎤

⎦= 0 (17.4)

⇒ −2E

[(

yn −
M∑

i=1

aiyn−i −G�n

)

yn−j

]

= 0 (17.5)

⇒
M∑

i=1

aiE
[
yn−iyn−j

]= E
[
ynyn−j

]
(17.6)

546 17 A N A L Y S I S / S Y N T H E S I S

where in the last step we have made use of the fact that E	�nyn−j
 is zero for j �= 0. In
order to solve (17.6) for the filter coefficients, we need to be able to estimate E	yn−iyn−j
.
There are two different approaches for estimating these values, called the autocorrelation
approach and the autocovariance approach, each leading to a different algorithm. In the
autocorrelation approach, we assume that the �yn� sequence is stationary and therefore

E
[
yn−1yn−j

]= Ryy��i− j�� (17.7)

Furthermore, we assume that the �yn� sequence is zero outside the segment for which we
are calculating the filter parameters. Therefore, the autocorrelation function is estimated as

Ryy�k� =
n0+N∑

n=n0+1+k

ynyn−k (17.8)

and the M equations of the form of (17.6) can be written in matrix form as

RA = P (17.9)

where

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ryy�0� Ryy�1� Ryy�2� · · · Ryy�M −1�
Ryy�1� Ryy�0� Ryy�1� · · · Ryy�M −2�
Ryy�2� Ryy�1� Ryy�0� · · · Ryy�M −3�

���
���

���
���

Ryy�M −1� Ryy�M −2� Ryy�M −3� · · · Ryy�0�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(17.10)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1

a2

a3
���

aM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(17.11)

and

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ryy�1�
Ryy�2�
Ryy�3�

���
Ryy�M�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(17.12)

This matrix equation can be solved directly to find the filter coefficients

A = R−1P� (17.13)

17.3 Speech Compression 547

However, the special form of the matrix R obviates the need for computing R−1. Note
that not only is R symmetric, but also each diagonal of R consists of the same element. For
example, the main diagonal contains only the element Ryy�0�, while the diagonals above
and below the main diagonal contain only the element Ryy�1�. This special type of matrix
is called a Toeplitz matrix, and there are a number of efficient algorithms available for
the inversion of Toeplitz matrices [224]. Because R is Toeplitz, we can obtain a recursive
solution to (17.9) that is computationally very efficient and that has an added attractive
feature from the point of view of compression. This algorithm is known as the Levinson-
Durbin algorithm [225, 226]. We describe the algorithm without derivation. For details of
the derivation, see [227, 105].

In order to compute the filter coefficients of an Mth-order filter, the Levinson-Durbin
algorithm requires the computation of all filters of order less than M . Furthermore, during
the computation of the filter coefficients, the algorithm generates a set of constants ki

known as the reflection coefficients, or partial correlation (PARCOR) coefficients. In the
algorithm description below, we denote the order of the filter using superscripts. Thus, the
coefficients of the fifth-order filter would be denoted by �a

�5�
i �. The algorithm also requires

the computation of the estimate of the average error E	e2
n
. We will denote the average error

using an mth-order filter by Em. The algorithm proceeds as follows:

1. Set E0 = Ryy�0�, i = 0.

2. Increment i by one.

3. Calculate ki =
(∑i−1

j=1 a
�i−1�
j Ryy�i− j +1�−Ryy�i�

)
/Ei−1.

4. Set a
�i�
i = ki.

5. Calculate a
�i�
j = a

�i−1�
j +kia

i−1
i−j for j = 1� 2� � � � � i−1.

6. Calculate Ei = (
1−k2

i

)
Ei−1.

7. If i < M , go to step 2.

In order to get an effective reconstruction of the voiced segment, the order of the vocal
tract filter needs to be sufficiently high. Generally, the order of the filter is 10 or more.
Because the filter is an IIR filter, error in the coefficients can lead to instability, especially
for the high orders necessary in linear predictive coding. As the filter coefficients are to be
transmitted to the receiver, they need to be quantized. This means that quantization error is
introduced into the value of the coefficients, and that can lead to instability.

This problem can be avoided by noticing that if we know the PARCOR coefficients, we
can obtain the filter coefficients from them. Furthermore, PARCOR coefficients have the
property that as long as the magnitudes of the coefficients are less than one, the filter obtained
from them is guaranteed to be stable. Therefore, instead of quantizing the coefficients �ai�

and transmitting them, the transmitter quantizes and transmits the coefficients �ki�. As long
as we make sure that all the reconstruction values for the quantizer have magnitudes less
than one, it is possible to use relatively high-order filters in the analysis/synthesis schemes.

548 17 A N A L Y S I S / S Y N T H E S I S

The assumption of stationarity that was used to obtain (17.6) is not really valid for speech
signals. If we discard this assumption, the equations to obtain the filter coefficients change.
The term E	yn−iyn−j
 is now a function of both i and j. Defining

cij = E	yn−iyn−j
 (17.14)

we get the equation

CA = S (17.15)

where

C =

⎡

⎢
⎢
⎢
⎣

c11 c12 c13 · · · c1M

c21 c22 c23 · · · c2M

���
���

���
���

cM1 cM2 cM3 · · · cMM

⎤

⎥
⎥
⎥
⎦

(17.16)

and

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c10

c20

c30
���

cM0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(17.17)

The elements cij are estimated as

cij =
n0+N∑

n=n0+1

yn−iyn−j � (17.18)

Notice that we no longer assume that the values of yn outside of the segment under con-
sideration are zero. This means that in calculating the C matrix for a particular segment,
we use samples from previous segments. This method of computing the filter coefficients is
called the covariance method.

The C matrix is symmetric but no longer Toeplitz, so we can’t use the Levinson-Durbin
recursion to solve for the filter coefficients. The equations are generally solved using a
technique called the Cholesky decomposition. We will not describe the solution technique
here. (You can find it in most texts on numerical techniques; an especially good source
is [178].) For an in-depth study of the relationship between the Cholesky decomposition and
the reflection coefficients, see [228].

The LPC-10 algorithm uses the covariance method to obtain the reflection coefficients.
It also uses the PARCOR coefficients to update the voicing decision. In general, for voiced
signals the first two PARCOR coefficients have values close to one. Therefore, if both
the first two PARCOR coefficients have very small values, the algorithm sets the voicing
decision to unvoiced.

17.3 Speech Compression 549

T ran sm i t t i ng t he Pa rame te r s

Once the various parameters have been obtained, they need to be coded and transmitted to
the receiver. There are a variety of ways this can be done. Let us look at how the LPC-10
algorithm handles this task.

The parameters that need to be transmitted include the voicing decision, the pitch period,
and the vocal tract filter parameters. One bit suffices to transmit the voicing information.
The pitch is quantized to 1 of 60 different values using a log-companded quantizer. The LPC-
10 algorithm uses a 10th-order filter for voiced speech and a 4th-order filter for unvoiced
speech. Thus, we have to send 11 values (10 reflection coefficients and the gain) for voiced
speech and 5 for unvoiced speech.

The vocal tract filter is especially sensitive to errors in reflection coefficients that have
magnitudes close to one. As the first few coefficients are most likely to have values close to
one, the LPC-10 algorithm specifies the use of nonuniform quantization for k1 and k2. The
nonuniform quantization is implemented by first generating the coefficients

gi = 1+ki

1−ki

(17.19)

which are then quantized using a 5-bit uniform quantizer. The coefficients k3 and k4 are both
quantized using a 5-bit uniform quantizer. In the voiced segments, coefficients k5 through k8

are quantized using a 4-bit uniform quantizer, k9 is quantized using a 3-bit uniform quantizer,
and k10 is quantized using a 2-bit uniform quantizer. In the unvoiced segments, the 21 bits
used to quantize k5 through k10 in the voiced segments are used for error protection.

The gain G is obtained by finding the root mean squared (rms) value of the segment and
quantized using 5-bit log-companded quantization. Including an additional bit for synchro-
nization, we end up with a total of 54 bits per frame. Multiplying this by the total number
of frames per second gives us the target rate of 2400 bits per second.

Syn the s i s

At the receiver, the voiced frames are generated by exciting the received vocal tract filter
by a locally stored waveform. This waveform is 40 samples long. It is truncated or padded
with zeros depending on the pitch period. If the frame is unvoiced, the vocal tract is excited
by a pseudorandom number generator.

The LPC-10 coder provides intelligible reproduction at 2.4 kbits. The use of only two
kinds of excitation signals gives an artificial quality to the voice. This approach also suffers
when used in noisy environments. The encoder can be fooled into declaring segments of
speech unvoiced because of background noise. When this happens, the speech information
gets lost.

17 . 3 . 3 Code Exc i ted L inear Predi c ton (CELP)

As we mentioned earlier, one of the most important factors in generating natural-sounding
speech is the excitation signal. As the human ear is especially sensitive to pitch errors, a great
deal of effort has been devoted to the development of accurate pitch detection algorithms.

550 17 A N A L Y S I S / S Y N T H E S I S

However, no matter how accurate the pitch is in a system using the LPC vocal tract filter,
the use of a periodic pulse excitation that consists of a single pulse per pitch period leads
to a “buzzy twang” [229]. In 1982, Atal and Remde [230] introduced the idea of multipulse
linear predictive coding (MP-LPC), in which several pulses were used during each segment.
The spacing of these pulses is determined by evaluating a number of different patterns from
a codebook of patterns.

A codebook of excitation patterns is constructed. Each entry in this codebook is an
excitation sequence that consists of a few nonzero values separated by zeros. Given a
segment from the speech sequence to be encoded, the encoder obtains the vocal tract filter
using the LPC analysis described previously. The encoder then excites the vocal tract filter
with the entries of the codebook. The difference between the original speech segment and
the synthesized speech is fed to a perceptual weighting filter, which weights the error using
a perceptual weighting criterion. The codebook entry that generates the minimum average
weighted error is declared to be the best match. The index of the best-match entry is sent to
the receiver along with the parameters for the vocal tract filter.

This approach was improved upon by Atal and Schroeder in 1984 with the introduction
of the system that is commonly known as code excited linear prediction (CELP). In CELP,
instead of having a codebook of pulse patterns, we allow a variety of excitation signals. For
each segment the encoder finds the excitation vector that generates synthesized speech that
best matches the speech segment being encoded. This approach is closer in a strict sense
to a waveform coding technique such as DPCM than to the analysis/synthesis schemes.
However, as the ideas behind CELP are similar to those behind LPC, we included CELP
in this chapter. The main components of the CELP coder include the LPC analysis, the
excitation codebook, and the perceptual weighting filter. Each component of the CELP coder
has been investigated in great detail by a large number of researchers. For a survey of some
of the results, see [220]. In the rest of the section, we give two examples of very different
kinds of CELP coders. The first algorithm is the U.S. Government Standard 1016, a 4.8 kbps
coder; the other is the CCITT (now ITU-T) G.728 standard, a low-delay 16 kbps coder.

Besides CELP, the MP-LPC algorithm had another descendant that has become a stan-
dard. In 1986, Kroon, Deprettere, and Sluyter [231] developed a modification of the MP-LPC
algorithm. Instead of using excitation vectors in which the nonzero values are separated by an
arbitrary number of zero values, they forced the nonzero values to occur at regularly spaced
intervals. Furthermore, they allowed the nonzero values to take on a number of different
values. They called this scheme regular pulse excitation (RPE) coding. A variation of RPE,
called regular pulse excitation with long-term prediction (RPE-LTP) [232], was adopted as
a standard for digital cellular telephony by the Group Speciale Mobile (GSM) subcommittee
of the European Telecommunications Standards Institute at the rate of 13 kbps.

Fede ra l S t anda rd 1016

The vocal tract filter used by the CELP coder in FS 1016 is given by

yn =
10∑

i=1

biyn−i +yn−P +G�n (17.20)

17.3 Speech Compression 551

where P is the pitch period and the term yn−P is the contribution due to the pitch periodicity.
The input speech is sampled at 8000 samples per second and divided into 30-millisecond
frames containing 240 samples. Each frame is divided into four subframes of length 7.5
milliseconds [233]. The coefficients �bi� for the 10th-order short-term filter are obtained
using the autocorrelation method.

The pitch period P is calculated once every subframe. In order to reduce the compu-
tational load, the pitch value is assumed to lie between between 20 and 147 every odd
subframe. In every even subframe, the pitch value is assumed to lie within 32 samples of
the pitch value in the previous frame.

The FS 1016 algorithm uses two codebooks [234], a stochastic codebook and an adaptive
codebook. An excitation sequence is generated for each subframe by adding one scaled
element from the stochastic codebook and one scaled element from the adaptive codebook.
The scale factors and indices are selected to minimize the perceptual error between the input
and synthesized speech.

The stochastic codebook contains 512 entries. These entries are generated using a
Gaussian random number generator, the output of which is quantized to −1, 0, or 1. If the
input is less than −1�2, it is quantized to −1; if it is greater than 1.2, it is quantized to 1;
and if it lies between −1�2 and 1.2, it is quantized to 0. The codebook entries are adjusted
so that each entry differs from the preceding entry in only two places. This structure helps
reduce the search complexity.

The adaptive codebook consists of the excitation vectors from the previous frame. Each
time a new excitation vector is obtained, it is added to the codebook. In this manner, the
codebook adapts to local statistics.

The FS 1016 coder has been shown to provide excellent reproductions in both quiet and
noisy environments at rates of 4.8 kbps and above [234]. Because of the richness of the
excitation signals, the reproduction does not suffer from the problem of sounding artificial.
The lack of a voicing decision makes it more robust to background noise. The quality of the
reproduction of this coder at 4.8 kbps has been shown to be equivalent to a delta modulator
operating at 32 kbps [234]. The price for this quality is much higher complexity and a much
longer coding delay. We will address this last point in the next section.

CC I T T G .728 Spee ch S tanda rd

By their nature, the schemes described in this chapter have some coding delay built into
them. By “coding delay,” we mean the time between when a speech sample is encoded to
when it is decoded if the encoder and decoder were connected back-to-back (i.e., there were
no transmission delays). In the schemes we have studied, a segment of speech is first stored
in a buffer. We do not start extracting the various parameters until a complete segment
of speech is available to us. Once the segment is completely available, it is processed. If
the processing is real time, this means another segment’s worth of delay. Finally, once the
parameters have been obtained, coded, and transmitted, the receiver has to wait until at
least a significant part of the information is available before it can start decoding the first
sample. Therefore, if a segment contains 20 milliseconds’ worth of data, the coding delay
would be approximately somewhere between 40 to 60 milliseconds. This kind of delay may
be acceptable for some applications; however, there are other applications where such long

552 17 A N A L Y S I S / S Y N T H E S I S

delays are not acceptable. For example, in some situations there are several intermediate
tandem connections between the initial transmitter and the final receiver. In such situations,
the total delay would be a multiple of the coding delay of a single connection. The size of
the delay would depend on the number of tandem connections and could rapidly become
quite large.

For such applications, CCITT approved recommendation G.728, a CELP coder with
a coder delay of 2 milliseconds operating at 16 kbps. As the input speech is sampled at
8000 samples per second, this rate corresponds to an average rate of 2 bits per sample.

In order to lower the coding delay, the size of each segment has to be reduced significantly
because the coding delay will be some multiple of the size of the segment. The G.728
recommendation uses a segment size of five samples. With five samples and a rate of 2 bits
per sample, we only have 10 bits available to us. Using only 10 bits, it would be impossible
to encode the parameters of the vocal tract filter as well as the excitation vector. Therefore,
the algorithm obtains the vocal tract filter parameters in a backward adaptive manner; that is,
the vocal tract filter coefficients to be used to synthesize the current segment are obtained by
analyzing the previous decoded segments. The CCITT requirements for G.728 included the
requirement that the algorithm operate under noisy channel conditions. It would be extremely
difficult to extract the pitch period from speech corrupted by channel errors. Therefore, the
G.728 algorithm does away with the pitch filter. Instead, the algorithm uses a 50th-order
vocal tract filter. The order of the filter is large enough to model the pitch of most female
speakers. Not being able to use pitch information for male speakers does not cause much
degradation [235]. The vocal tract filter is updated every fourth frame, which is once every
20 samples or 2.5 milliseconds. The autocorrelation method is used to obtain the vocal tract
parameters.

As the vocal tract filter is completely determined in a backward adaptive manner, we
have all 10 bits available to encode the excitation sequence. Ten bits would be able to
index 1024 excitation sequences. However, to examine 1024 excitation sequences every
0.625 milliseconds is a rather large computational load. In order to reduce this load, the
G.728 algorithm uses a product codebook where each excitation sequence is represented by
a normalized sequence and a gain term. The final excitation sequence is a product of the
normalized excitation sequence and the gain. Of the 10 bits, 3 bits are used to encode the
gain using a predictive encoding scheme, while the remaining 7 bits form the index to a
codebook containing 127 sequences.

Block diagrams of the encoder and decoder for the CCITT G.728 coder are shown in
Figure 17.8. The low-delay CCITT G.728 CELP coder operating at 16 kbps provides recon-
structed speech quality superior to the 32 kbps CCITT G.726 ADPCM algorithm described
in Chapter 10. Various efforts are under way to reduce the bit rate for this algorithm without
compromising too much on quality and delay.

17 . 3 . 4 Sinuso ida l Coders

A competing approach to CELP in the low-rate region is a relatively new form of coder
called the sinusoidal coder [220]. Recall that the main problem with the LPC coder was the
paucity of excitation signals. The CELP coder resolved this problem by using a codebook
of excitation signals. The sinusoidal coders solve this problem by using an excitation signal

17.3 Speech Compression 553

Excitation
codebook

Variable
gain

Synthesized speech
+

−

Input speech

Codebook index to channel

Buffer

Backward
gain

adaptation

Backward
LPC

analysis

50th-order
FIR filter

Perceptual
weighting

filter

Encoder

Decoder

Excitation
codebook

Codebook
index from
channel

Output
speech

Variable
gain

Decoded speech

Backward
gain

adaptation

Backward
LPC

analysis

50th-order
FIR filter

Adaptive
postfilter

F IGURE 17. 8 Encoder and decoder for the CCITT G.728 16kbps speech coder.

that is the sum of sine waves of arbitrary amplitudes, frequencies, and phases. Thus, the
excitation signal is of the form

en =
L∑

l=1

al cos�n�l +�l� (17.21)

554 17 A N A L Y S I S / S Y N T H E S I S

where the number of sinusoids L required for each frame depends on the contents of the
frame. If the input to a linear system is a sinusoid with frequency �l, the output will also
be a sinusoid with frequency �l, albeit with different amplitude and phase. The vocal tract
filter is a linear system. Therefore, if the excitation signal is of the form of (17.21), the
synthesized speech �sn� will be of the form

sn =
L∑

i=1

Al cos�n�l +�l�� (17.22)

Thus, each frame is characterized by a set of spectral amplitudes Al, frequencies �l, and
phase terms �l. The number of parameters required to represent the excitation sequence is the
same as the number of parameters required to represent the synthesized speech. Therefore,
rather than estimate and transmit the parameters of both the excitation signal and vocal
tract filter and then synthesize the speech at the receiver by passing the excitation signal
through the vocal tract filter, the sinusoidal coders directly estimate the parameters required
to synthesize the speech at the receiver.

Just like the coders discussed previously, the sinusoidal coders divide the input speech
into frames and obtain the parameters of the speech separately for each frame. If we
synthesized the speech segment in each frame independent of the other frames, we would
get synthetic speech that is discontinuous at the frame boundaries. These discontinuities
severely degrade the quality of the synthetic speech. Therefore, the sinusoidal coders use
different interpolation algorithms to smooth the transition from one frame to another.

Transmitting all the separate frequencies �l would require significant transmission
resources, so the sinusoidal coders obtain a fundamental frequency w0 for which the approx-
imation

ŷn =
K��0�∑

k=1

Â�k�0� cos�nk�0 +�k� (17.23)

is close to the speech sequence yn. Because this is a harmonic approximation, the approximate
sequence �ŷn� will be most different from the speech sequence �yn� when the segment of
speech being encoded is unvoiced. Therefore, this difference can be used to decide whether
the frame or some subset of it is unvoiced.

The two most popular sinusoidal coding techniques today are represented by the sinu-
soidal transform coder (STC) [236] and the multiband excitation coder (MBE) [237]. While
the STC and MBE are similar in many respects, they differ in how they handle unvoiced
speech. In the MBE coder, the frequency range is divided into bands, each consisting of
several harmonics of the fundamental frequency �0. Each band is checked to see if it is
unvoiced or voiced. The voiced bands are synthesized using a sum of sinusoids, while the
unvoiced bands are obtained using a random number generator. The voiced and unvoiced
bands are synthesized separately and then added together.

In the STC, the proportion of the frame that contains a voiced signal is measured using
a “voicing probability” Pv. The voicing probability is a function of how well the harmonic
model matches the speech segment. Where the harmonic model is close to the speech signal,

17.3 Speech Compression 555

the voicing probability is taken to be unity. The sine wave frequencies are then generated by

wk =
{

kw0 for kw0 ≤ wcPv

k∗w0 + �k−k∗�wu for kw0 > wcPv

(17.24)

where wc corresponds to the cutoff frequency (4 kHz), wu is the unvoiced pitch corresponding
to 100 Hz, and k∗ is the largest value of k for which k∗w0 ≤ wcPv. The speech is then
synthesized as

ŷn =
K∑

k=1

Â�wk� cos�nwk +�k�� (17.25)

Both the STC and the MBE coders have been shown to perform well at low rates.
A version of the MBE coder known as the improved MBE (IMBE) coder has been approved
by the Association of Police Communications Officers (APCO) as the standard for law
enforcement.

17 . 3 . 5 Mixed Exc i ta t ion L inear Predi c t ion (MELP)

The mixed excitation linear prediction (MELP) coder was selected to be the new federal
standard for speech coding at 2.4 kbps by the Defense Department Voice Processing Con-
sortium (DDVPC). The MELP algorithm uses the same LPC filter to model the vocal tract.
However, it uses a much more complex approach to the generation of the excitation signal.

Adaptive
spectral

enhancement

Pulse
dispersion

filter

Synthesized speech

LPC
synthesis

filter

Gain

Pulse
generation

Shaping
filter

Noise
generator

Shaping
filter

Aperiodic
flag

Fourier
magnitudes

Pitch

F IGURE 17. 9 Block diagram of MELP decoder.

556 17 A N A L Y S I S / S Y N T H E S I S

A block diagram of the decoder for the MELP system is shown in Figure 17.9. As
evident from the figure, the excitation signal for the synthesis filter is no longer simply noise
or a periodic pulse but a multiband mixed excitation. The mixed excitation contains both a
filtered signal from a noise generator as well as a contribution that depends directly on the
input signal.

The first step in constructing the excitation signal is pitch extraction. The MELP algorithm
obtains the pitch period using a multistep approach. In the first step an integer pitch value
P1 is obtained by

1. first filtering the input using a low-pass filter with a cutoff of 1 kHz

2. computing the normalized autocorrelation for lags between 40 and 160

The normalized autocorrelation r��� is defined as

r��� = c��0� ��
√

c��0� 0�c���� ��

where

c��m�n� =
−��/2�+79∑

−��/2�−80

yk+myk+n�

The first estimate of the pitch P1 is obtained as the value of � that maximizes the normalized
autocorrelation function. This value is refined by looking at the signal filtered using a filter
with passband in the 0–500 Hz range. This stage uses two values of P1, one from the current
frame and one from the previous frame, as candidates. The normalized autocorrelation values
are obtained for lags from five samples less to five samples more than the candidate P1 values.
The lags that provide the maximum normalized autocorrelation value for each candidate are
used for fractional pitch refinement. The idea behind fractional pitch refinement is that if
the maximum value of r��� is found for some � = T , then the maximum could be in the
interval �T −1� T
 or 	T�T +1�. The fractional offset is computed using

� = cT �0� T +1�cT �T�T�− cT �0� T�cT �T�T +1�

cT �0� T +1�	cT �T�T�− cT �T�T +1�
+ cT �0� T�	cT �T +1� T +1�− cT �T�T +1�

�

(17.26)

The normalized autocorrelation at the fractional pitch values are given by

r�T +�� = �1−��cT �0� T�+�cT �0� T +1�
√

cT �0� 0�	�1−��2cT �T�T�+2��1−��cT �T�T +1�+�2cT �T +1� T +1�

�

(17.27)

The fractional estimate that gives the higher autocorrelation is selected as the refined pitch
value P2.

The final refinements of the pitch value are obtained using the linear prediction residuals.
The residual sequence is generated by filtering the input speech signal with the filter obtained
using the LPC analysis. For the purposes of pitch refinement the residual signal is filtered
using a low-pass filter with a cutoff of 1 kHz. The normalized autocorrelation function is

17.3 Speech Compression 557

computed for this filtered residual signal for lags from five samples less to five samples
more than the candidate P2 value, and a candidate value of P3 is obtained. If r�P3� ≥ 0�6,
we check to make sure that P3 is not a multiple of the actual pitch. If r�P3� < 0�6, we do
another fractional pitch refinement around P2 using the input speech signal. If in the end
r�P3� < 0�55, we replace P3 with a long-term average value of the pitch. The final pitch
value is quantized on a logarithmic scale using a 99-level uniform quantizer.

The input is also subjected to a multiband voicing analysis using five filters with
passbands 0–500, 500–1000, 1000–2000, 2000–3000, and 3000–4000 Hz. The goal of the
analysis is to obtain the voicing strengths Vbpi for each band used in the shaping filters.
Noting that P2 was obtained using the output of the lowest band filter, r�P2� is assigned as
the lowest band voicing strength Vbp1. For the other bands, Vbpi is the larger of r�P2� for
that band and the correlation of the envelope of the band-pass signal. If the value of Vbp1 is
small, this indicates a lack of low-frequency structure, which in turn indicates an unvoiced or
transition input. Thus, if Vbp1 < 0�5, the pulse component of the excitation signal is selected
to be aperiodic, and this decision is communicated to the decoder by setting the aperiodic
flag to 1. When Vbp1 > 0�6, the values of the other voicing strengths are quantized to 1 if
their value is greater than 0.6, and to 0 otherwise. In this way signal energy in the different
bands is turned on or off depending on the voicing strength. There are several exceptions
to this quantization rule. If Vbp2, Vbp3, and Vbp4 all have magnitudes less than 0.6 and
Vbp5 has a value greater than 0.6, they are all (including Vbp5) quantized to 0. Also, if the
residual signal contains a few large values, indicating sudden transitions in the input signal,
the voicing strengths are adjusted. In particular, the peakiness is defined as

peakiness =
√

1
160

∑160
n=1 d2

n

1
160

∑160
n=1 �dn�

� (17.28)

If this value exceeds 1.34, Vbp1 is forced to 1. If the peakiness value exceeds 1.6, Vbp1,
Vbp2, and Vbp3 are all set to 1.

In order to generate the pulse input, the algorithm measures the magnitude of the discrete
Fourier transform coefficients corresponding to the first 10 harmonics of the pitch. The
prediction residual is generated using the quantized predictor coefficients. The algorithm
searches in a window of width �512/P̂3� samples around the initial estimates of the pitch
harmonics for the actual harmonics where P̂3 is the quantized value of P3. The magnitudes
of the harmonics are quantized using a vector quantizer with a codebook size of 256. The
codebook is searched using a weighted Euclidean distance that emphasizes lower frequencies
over higher frequencies.

At the decoder, using the magnitudes of the harmonics and information about the peri-
odicity of the pulse train, the algorithm generates one excitation signal. Another signal is
generated using a random number generator. Both are shaped by the multiband shaping filter
before being combined. This mixture signal is then processed through an adaptive spectral
enhancement filter, which is based on the LPC coefficients, to form the final excitation
signal. Note that in order to preserve continuity from frame to frame, the parameters used
for generating the excitation signal are adjusted based on their corresponding values in
neighboring frames.

558 17 A N A L Y S I S / S Y N T H E S I S

17.4 Wideband Speech Compression-—ITU-T
G.722.2

One of the earliest forms of (remote) speech communication was over the telephone. This
experience set the expectations for quality rather low. When technology advanced, people
still did not demand higher quality in their voice communications. However, the multimedia
revolution is changing that. With ever-increasing quality in video and audio there is an
increasing demand for higher quality in speech communication. Telephone-quality speech is
limited to the band between 200 Hz and 3400 Hz. This range of frequency contains enough
information to make speech intelligible and provide some degree of speaker identification.
To improve the quality of speech, it is necessary to increase the bandwidth of speech.
Wideband speech is bandlimited to 50–7000 Hz. The higher frequencies give more clarity to
the voice signal while the lower frequencies contribute timbre and naturalness. The ITU-T
G.722.2 standard, approved in January of 2002, provides a multirate coder for wideband
speech coding.

Wideband speech is sampled at 16,000 samples per second. The signal is split into two
bands, a lower band from 50–6400 Hz and a narrow upper band from 6400–7000 Hz. The
coding resources are devoted to the lower band. The upper band is reconstructed at the
receiver based on information from the lower band and using random excitation. The lower
band is downsampled to 12.8 kHz.

The coding method is a code-excited linear prediction method that uses an algebraic
codebook as the fixed codebook. The adaptive codebook contains low-pass interpolated past
excitation vectors. The basic idea is the same as in CELP. A synthesis filter is derived from
the input speech. An excitation vector consisting of a weighted sum of the fixed and adaptive
codebooks is used to excite the synthesis filter. The perceptual closeness of the output of
the filter to the input speech is used to select the combination of excitation vectors. The
selection, along with the parameters of the synthesis filter, is communicated to the receiver,
which then synthesizes the speech. A voice activity detector is used to reduce the rate during
silence intervals. Let us examine the various components in slightly more detail.

The speech is processed in 20-ms frames. Each frame is composed of four 5-ms sub-
frames. The LP analysis is conducted once per frame using an overlapping 30-ms window.
Autocorrelation values are obtained for the windowed speech and the Levinson-Durbin algo-
rithm is used to obtain the LP coefficients. These coefficients are transformed to Immitance
Spectral Pairs (ISP), which are quantized using a vector quantizer. The reason behind the
transformation is that we will need to quantize whatever representation we have of the
synthesis filters. The elements of the ISP representation are uncorrelated if the underlying
process is stationary, which means that error in one coefficient will not cause the entire
spectrum to get distorted.

Given a set of sixteen LP coefficients �ai�, define two polynomials

f ′
1�z� = A�z�+ z−16A�z−1� (17.29)

f ′
2�z� = A�z�− z−16A�z−1� (17.30)

Clearly, if we know the polynomials their sum will give us A�z�. Instead of sending the
polynomials, we can send the roots of these polynomials. These roots are known to all lie

17.5 Image Compression 559

on the unit circle, and the roots of the two polynomials alternate. The polynomial f ′
2�z� has

two roots at z = 1 and z = −1. These are removed and we get the two polynomials

f1�z� = f ′
1�z� (17.31)

f2�z� = f ′
2�z�

1− z−2
(17.32)

These polynomials can now be factored as follows

f1�z� = �1+a16�
∏

i=0�2� � � � �14

(
1−2qiz

−i + z−2
)

(17.33)

f2�z� = �1+a16�
∏

i=1�3� � � � �13

(
1−2qiz

−i + z−2
)

(17.34)

where qi = cos��i� and �i are the immitance spectral frequencies. The ISP coefficients
are quantized using a combination of differential encoding and vector quantization. The
vector of sixteen frequencies is split into subvectors and these vectors are quantized in two
stages. The quantized ISPs are transformed to LP coefficients, which are then used in the
fourth subframe for synthesis. The ISP coefficients used in the the other three subframes are
obtained by interpolating the coefficients in the neighboring subframes.

For each 5-ms subframe we need to generate an excitation vector. As in CELP, the exci-
tation is a sum of vectors from two codebooks, a fixed codebook and an adaptive codebook.
One of the problems with vector codebooks has always been the storage requirements. The
codebook should be large enough to provide for a rich set of excitations. However, with a
dimension of 64 samples (for 5 ms), the number of possible combinations can get enormous.
The G.722.2 algorithm solves this problem by imposing an algebraic structure on the fixed
codebook. The 64 positions are divided into four tracks. The first track consists of positions
0� 4� 8� � � � � 60. The second track consists of the positions 1�5� 9� � � � � 61. The third track
consists of positions 2� 6� 10� � � � � 62 and the final track consists of the remaining positions.
We can place a single signed pulse in each track by using 4 bits to denote the position and a
fifth bit for the sign. This effectively gives us a 20-bit fixed codebook. This corresponds to
a codebook size of 220. However, we do not need to store the codebook. By assigning more
or fewer pulses per track we can dramatically change the “size” of the codebook and get
different coding rates. The standard details a rapid search procedure to obtain the excitation
vectors.

The voice activity detector allows the encoder to significantly reduce the rate during
periods of speech pauses. During these periods the background noise is coded at a low rate
by transmitting parameters describing the noise. This comfort noise is synthesized at the
decoder.

17.5 Image Compression

Although there have been a number of attempts to mimic the linear predictive coding
approach for image compression, they have not been overly successful. A major reason for
this is that while speech can be modeled as the output of a linear filter, most images cannot.

560 17 A N A L Y S I S / S Y N T H E S I S

However, a totally different analysis/synthesis approach, conceived in the mid-1980s, has
found some degree of success—fractal compression.

17 . 5 . 1 Frac ta l Compress ion

There are several different ways to approach the topic of fractal compression. Our approach
is to use the idea of fixed-point transformation. A function f�·� is said to have a fixed point
x0 if f�x0� = x0. Suppose we restrict the function f�·� to be of the form ax+b. Then, except
for when a = 1, this equation always has a fixed point:

ax0 +b = xo

⇒ x0 = b

1−a
� (17.35)

This means that if we wanted to transmit the value of x0, we could instead transmit the
values of a and b and obtain x0 at the receiver using (17.35). We do not have to solve this
equation to obtain x0. Instead, we could take a guess at what x0 should be and then refine
the guess using the recursion

x
�n+1�
0 = ax

�n�
0 +b� (17.36)

Example 17 . 5 . 1:

Suppose that instead of sending the value x0 = 2, we sent the values of a and b as 0.5 and
1.0. The receiver starts out with a guess for x0 as x

�0�
0 = 1. Then

x
�1�
0 = ax

�0�
0 +b = 1�5

x
�2�
0 = ax

�1�
0 +b = 1�75

x
�3�
0 = ax

�2�
0 +b = 1�875

x
�4�
0 = ax

�3�
0 +b = 1�9375

x
�5�
0 = ax

�4�
0 +b = 1�96875

x
�6�
0 = ax

�5�
0 +b = 1�984375 (17.37)

and so on. As we can see, with each iteration we come closer and closer to the actual x0

value of 2. This would be true no matter what our initial guess was. �

Thus, the value of x0 is accurately specified by specifying the fixed-point equation. The
receiver can retrieve the value either by the solution of (17.35) or via the recursion (17.36).

Let us generalize this idea. Suppose that for a given image � (treated as an array of
integers), there exists a function f�·� such that f�� � = � . If it was cheaper in terms of
bits to represent f�·� than it was to represent � , we could treat f�·� as the compressed
representation of � .

17.5 Image Compression 561

This idea was first proposed by Michael Barnsley and Alan Sloan [238] based on the
idea of self-similarity. Barnsley and Sloan noted that certain natural-looking objects can be
obtained as the fixed point of a certain type of function. If an image can be obtained as
a fixed point of some function, can we then solve the inverse problem? That is, given an
image, can we find the function for which the image is the fixed point? The first practical
public answer to this came from Arnaud Jacquin in his Ph.D. dissertation [239] in 1989. The
technique we describe in this section is from Jacquin’s 1992 paper [240].

Instead of generating a single function directly for which the given image is a fixed point,
we partition the image into blocks Rk, called range blocks, and obtain a transformation fk

for each block. The transformations fk are not fixed-point transformations since they do not
satisfy the equation

fk�Rk� = Rk� (17.38)

Instead, they are a mapping from a block of pixels Dk from some other part of the image.
While each individual mapping fk is not a fixed-point mapping, we will see later that we
can combine all these mappings to generate a fixed-point mapping. The image blocks Dk are
called domain blocks, and they are chosen to be larger than the range blocks. In [240], the
domain blocks are obtained by sliding a K ×K window over the image in steps of K/2 or
K/4 pixels. As long as the window remains within the boundaries of the image, each K ×K
block thus encountered is entered into the domain pool. The set of all domain blocks does
not have to partition the image. In Figure 17.10 we show the range blocks and two possible
domain blocks.

Range blocks

Domain blocks

F IGURE 17. 10 Range blocks and examples of domain blocks.

562 17 A N A L Y S I S / S Y N T H E S I S

The transformations fk are composed of a geometric transformation gk and a massic
transformation mk. The geometric transformation consists of moving the domain block to
the location of the range block and adjusting the size of the domain block to match the size
of the range block. The massic transformation adjusts the intensity and orientation of the
pixels in the domain block after it has been operated on by the geometric transform. Thus,

R̂k = fk�Dk� = mk�gk�Dk��� (17.39)

We have used R̂k instead of Rk on the left-hand side of (17.39) because it is generally
not possible to find an exact functional relationship between domain and range blocks.
Therefore, we have to settle for some degree of loss of information. Generally, this loss is
measured in terms of mean squared error.

The effect of all these functions together can be represented as the transformation f�·�.
Mathematically, this transformation can be viewed as a union of the transformations fk:

f =⋃

k

fk� (17.40)

Notice that while each transformation fk maps a block of different size and location to the
location of Rk, looking at it from the point of view of the entire image, it is a mapping from
the image to the image. As the union of Rk is the image itself, we could represent all the
transformations as

Î = f�Î� (17.41)

where we have used Î instead of I to account for the fact that the reconstructed image is an
approximation to the original.

We can now pose the encoding problem as that of obtaining Dk, gk, and mk such that the
difference d�Rk� R̂k� is minimized, where d�Rk� R̂k� can be the mean squared error between
the blocks Rk and R̂k.

Let us first look at how we would obtain gk and mk assuming that we already know which
domain block Dk we are going to use. We will then return to the question of selecting Dk.

Knowing which domain block we are using for a given range block automatically
specifies the amount of displacement required. If the range blocks Rk are of size M ×M ,
then the domain blocks are usually taken to be of size 2M ×2M . In order to adjust the size
of Dk to be the same as that of Rk, we generally replace each 2 × 2 block of pixels with
their average value. Once the range block has been selected, the geometric transformation
is easily obtained.

Let’s define Tk = gk�Dk�, and tij as the ijth pixel in Tk i� j = 0� 1� � � � �M −1. The massic
transformation mk is then given by

mk�tij� = i��ktij +�k� (17.42)

where i�·� denotes a shuffling or rearrangement of the pixels with the block. Possible
rearrangements (or isometries) include the following:

1. Rotation by 90 degrees, i�tij� = tj�M−1−i�

2. Rotation by 180 degrees, i�tij� = t�M−1−i��M−1−j�

17.5 Image Compression 563

3. Rotation by −90 degrees, i�tij� = t�M−1−i�j

4. Reflection about midvertical axis, i�tij� = ti�M−1−j�

5. Reflection about midhorizontal axis, i�tij� = t�M−1−i�j

6. Reflection about diagonal, i�tij� = tji

7. Reflection about cross diagonal, i�tij� = t�M−1−j��M−1−i�

8. Identity mapping, i�tij� = tij

Therefore, for each massic transformation mk, we need to find values of �k��k, and an
isometry. For a given range block Rk, in order to find the mapping that gives us the closest
approximation R̂k, we can try all possible combinations of transformations and domain
blocks—a massive computation. In order to reduce the computations, we can restrict the
number of domain blocks to search. However, in order to get the best possible approximation,
we would like the pool of domain blocks to be as large as possible. Jacquin [240] resolves
this situation in the following manner. First, he generates a relatively large pool of domain
blocks by the method described earlier. The elements of the domain pool are then divided
into shade blocks, edge blocks, and midrange blocks. The shade blocks are those in which
the variance of pixel values within the block is small. The edge block, as the name implies,
contains those blocks that have a sharp change of intensity values. The midrange blocks
are those that fit into neither category—not too smooth but with no well-defined edges.
The shade blocks are then removed from the domain pool. The reason is that, given the
transformations we have described, a shade domain block can only generate a shade range
block. If the range block is a shade block, it is much more cost effective simply to send the
average value of the block rather than attempt any more complicated transformations.

The encoding procedure proceeds as follows. A range block is first classified into one of
the three categories described above. If it is a shade block, we simply send the average value
of the block. If it is a midrange block, the massic transformation is of the form �ktij +�k.
The isometry is assumed to be the identity isometry. First �k is selected from a small
set of values—Jacquin [240] uses the values (0.7, 0.8, 0.9, 1.0)—such that d�Rk��kTk� is
minimized. Thus, we have to search over the possible values of � and the midrange domain
blocks in the domain pool in order to find the ��k�Dk� pair that will minimize d�Rk��kTk�.
The value of �k is then selected as the difference of the average values of Rk and �kTk.

If the range block Rk is classified as an edge block, selection of the massic transformation
is a somewhat more complicated process. The block is first divided into a bright and a dark
region. The dynamic range of the block rd�Rk� is then computed as the difference of the
average values of the light and dark regions. For a given domain block, this is then used to
compute the value of �k by

�k = min
{

rd�Rk�

rd�Tj�
��max

}

(17.43)

where �max is an upper bound on the scaling factor. The value of �k obtained in this manner
is then quantized to one of a small set of values. Once the value of �k has been obtained, �k

is obtained as the difference of either the average values of the bright regions or the average
values of the dark regions, depending on whether we have more pixels in the dark regions

564 17 A N A L Y S I S / S Y N T H E S I S

or the light regions. Finally, each of the isometries is tried out to find the one that gives the
closest match between the transformed domain block and the range block.

Once the transformations have been obtained, they are communicated to the receiver in
terms of the following parameters: the location of the selected domain block and a single
bit denoting whether the block is a shade block or not. If it is a shade block, the average
intensity value is transmitted; if it is not, the quantized scale factor and offset are transmitted
along with the label of the isometry used.

The receiver starts out with some arbitrary initial image I0. The transformations are
then applied for each of the range blocks to obtain the first approximation. Then the
transformations are applied to the first approximation to get the second approximation, and
so on. Let us see an example of the decoding process.

Example 17 . 5 . 2:

The image Elif, shown in Figure 17.11, was encoded using the fractal approach. The original
image was of size 256×256, and each pixel was coded using 8 bits. Therefore, the storage
space required was 65,536 bytes. The compressed image consisted of the transformations
described above. The transformations required a total of 4580 bytes, which translates to an
average rate of 0�56 bits per pixel. The decoding process started with the transformations
being applied to an all-zero image. The first six iterations of the decoding process are shown
in Figure 17.12. The process converged in nine iterations. The final image is shown in
Figure 17.13. Notice the difference in this reconstructed image and the low-rate reconstructed
image obtained using the DCT. The blocking artifacts are for the most part gone. However,

F IGURE 17. 11 Original Elif image.

17.5 Image Compression 565

F IGURE 17. 12 The first six iterations of the fractal decoding process.

566 17 A N A L Y S I S / S Y N T H E S I S

F IGURE 17. 13 Final reconstructed Elif image.

this does not mean that the reconstruction is free of distortions and artifacts. They are
especially visible in the chin and neck region. �

In our discussion (and illustration) we have assumed that the size of the range blocks
is constant. If so, how large should we pick the range block? If we pick the size of the
range block to be large, we will have to send fewer transformations, thus improving the
compression. However, if the size of the range block is large, it becomes more difficult
to find a domain block that, after appropriate transformation, will be close to the range
block, which in turn will increase the distortion in the reconstructed image. One compromise
between picking a large or small value for the size of the range block is to start out with a
large size and, if a good enough match is not found, to progressively reduce the size of the
range block until we have either found a good match or reached a minimum size. We could
also compute a weighted sum of the rate and distortion

J = D+R

where D is a measure of the distortion, and R represents the number of bits required to
represent the block. We could then either subdivide or not depending on the value of J .

We can also start out with range blocks that have the minimum size (also called the
atomic blocks) and obtain larger blocks via merging smaller blocks.

There are a number of ways in which we can perform the subdivision. The most
commonly known approach is quadtree partitioning, initially introduced by Samet [241].
In quadtree partitioning we start by dividing up the image into the maximum-size range

17.5 Image Compression 567

F IGURE 17. 14 An example of quadtree partitioning.

blocks. If a particular block does not have a satisfactory reconstruction, we can divide it up
into four blocks. These blocks in turn can also, if needed, be divided into four blocks. An
example of quadtree partitioning can be seen in Figure 17.14. In this particular case there
are three possible sizes for the range blocks. Generally, we would like to keep the minimum
size of the range block small if fine detail in the image is of greater importance [242]. Since
we have multiple sizes for the range blocks, we also need multiple sizes for the domain
blocks.

Quadtree partitioning is not the only method of partitioning available. Another popular
method of partitioning is the HV method. In this method we allow the use of rectangular
regions. Instead of dividing a square region into four more square regions, rectangular
regions are divided either vertically or horizontally in order to generate more homogeneous
regions. In particular, if there are vertical or horizontal edges in a block, it is partitioned
along these edges. One way to obtain the locations of partitions for a given M ×N range
block is to calculate the biased vertical and horizontal differences:

vi = min�i�N − i−1�

N −1

(
∑

j

�i�j −∑
j

�i+1�j

)

hj = min�j�M − j −1�

M −1

(
∑

j

�i�j −∑
j

�i�j+1

)

�

568 17 A N A L Y S I S / S Y N T H E S I S

The values of i and j for which �vi� and
∣
∣hj

∣
∣ are the largest indicate the row and column

for which there is maximum difference between two halves of the block. Depending on
whether �vi� or

∣
∣hj

∣
∣ is larger, we can divide the rectangle either vertically or horizontally.

Finally, partitioning does not have to be rectangular, or even regular. People have
experimented with triangle partitions as well as irregular-shaped partitions [243].

The fractal approach is a novel way of looking at image compression. At present the
quality of the reconstructions using the fractal approach is about the same as the quality
of the reconstruction using the DCT approach employed in JPEG. However, the fractal
technique is relatively new, and further research may bring significant improvements. The
fractal approach has one significant advantage: decoding is simple and fast. This makes it
especially useful in applications where compression is performed once and decompression
is performed many times.

17.6 Summary

We have looked at two very different ways of using the analysis/synthesis approach. In
speech coding the approach works because of the availability of a mathematical model for
the speech generation process. We have seen how this model can be used in a number of
different ways, depending on the constraints of the problem. Where the primary objective is
to achieve intelligible communication at the lowest rate possible, the LPC algorithm provides
a very nice solution. If we also want the quality of the speech to be high, CELP and the
different sinusoidal techniques provide higher quality at the cost of more complexity and
processing delay. If delay also needs to be kept below a threshold, one particular solution
is the low-delay CELP algorithm in the G.728 recommendation. For images, fractal coding
provides a very different way to look at the problem. Instead of using the physical structure
of the system to generate the source output, it uses a more abstract view to obtain an
analysis/synthesis technique.

Fu r t he r Read ing

1. For information about various aspects of speech processing, Voice and Speech Pro-
cessing, by T. Parsons [105], is a very readable source.

2. The classic tutorial on linear prediction is “Linear Prediction,” by J. Makhoul [244],
which appeared in the April 1975 issue of the Proceedings of the IEEE.

3. For a thorough review of recent activity in speech compression, see “Advances in
Speech and Audio Compression,” by A. Gersho [220], which appeared in the June
1994 issue of the Proceedings of the IEEE.

4. An excellent source for information about speech coders is Digital Speech: Coding
for Low Bit Rate Communication Systems, by A. Kondoz [127].

5. An excellent description of the G.728 algorithm can be found in “A Low Delay CELP
Coder for the CCITT 16 kb/s Speech Coding Standard,” by J.-H. Chen, R.V. Cox,

17.7 Projects and Problems 569

Y.-C. Lin, N. Jayant, and M.J. Melchner [235], in the June 1992 issue of the IEEE
Journal on Selected Areas in Communications.

6. A good introduction to fractal image compression is Fractal Image Compression:
Theory and Application, Y. Fisher (ed.) [242], New York: Springer-Verlag, 1995.

7. The October 1993 issue of the Proceedings of the IEEE contains a special section on
fractals with a tutorial on fractal image compression by A. Jacquin.

17.7 Projects and Problems

1. Write a program for the detection of voiced and unvoiced segments using the AMDF
function. Test your algorithm on the test.snd sound file.

2. The testf.raw file is a female voice saying the word test. Isolate 10 voiced and
unvoiced segments from the testm.raw file and the testf.snd file. (Try to pick
the same segments in the two files.) Compute the number of zero crossings in each
segment and compare your results for the two files.

3. (a) Select a voiced segment from the testf.raw file. Find the fourth-, sixth-, and
tenth-order LPC filters for this segment using the Levinson-Durbin algorithm.

(b) Pick the corresponding segment from the testf.snd file. Find the fourth-,
sixth-, and tenth-order LPC filters for this segment using the Levinson-Durbin
algorithm.

(c) Compare the results of (a) and (b).

4. Select a voiced segment from the test.raw file. Find the fourth-, sixth-, and tenth-
order LPC filters for this segment using the Levinson-Durbin algorithm. For each of
the filters, find the multipulse sequence that results in the closest approximation to the
voiced signal.

18
Video Compression

18.1 Overview

V
ideo compression can be viewed as image compression with a temporal com-
ponent since video consists of a time sequence of images. From this point of
view, the only “new” technique introduced in this chapter is a strategy to take
advantage of this temporal correlation. However, there are different situations
in which video compression becomes necessary, each requiring a solution

specific to its peculiar conditions. In this chapter we briefly look at video compression
algorithms and standards developed for different video communications applications.

18.2 Introduct ion

Of all the different sources of data, perhaps the one that produces the largest amount of data
is video. Consider a video sequence generated using the CCIR 601 format (Section 18.4).
Each image frame is made up of more than a quarter million pixels. At the rate of 30 frames
per second and 16 bits per pixel, this corresponds to a data rate of about 21 Mbytes or 168
Mbits per second. This is certainly a change from the data rates of 2.4, 4.8, and 16 kbits per
second that are the targets for speech coding systems discussed in Chapter 17.

Video compression can be viewed as the compression of a sequence of images; in other
words, image compression with a temporal component. This is essentially the approach we
will take in this chapter. However, there are limitations to this approach. We do not perceive
motion video in the same manner as we perceive still images. Motion video may mask
coding artifacts that would be visible in still images. On the other hand, artifacts that may not
be visible in reconstructed still images can be very annoying in reconstructed motion video
sequences. For example, consider a compression scheme that introduces a modest random
amount of change in the average intensity of the pixels in the image. Unless a reconstructed

572 18 V I D E O C O M P R E S S I O N

still image was being compared side by side with the original image, this artifact may go
totally unnoticed. However, in a motion video sequence, especially one with low activity,
random intensity changes can be quite annoying. As another example, poor reproduction
of edges can be a serious problem in the compression of still images. However, if there is
some temporal activity in the video sequence, errors in the reconstruction of edges may go
unnoticed.

Although a more holistic approach might lead to better compression schemes, it is
more convenient to view video as a sequence of correlated images. Most of the video
compression algorithms make use of the temporal correlation to remove redundancy. The
previous reconstructed frame is used to generate a prediction for the current frame. The
difference between the prediction and the current frame, the prediction error or residual, is
encoded and transmitted to the receiver. The previous reconstructed frame is also available
at the receiver. Therefore, if the receiver knows the manner in which the prediction was
performed, it can use this information to generate the prediction values and add them to
the prediction error to generate the reconstruction. The prediction operation in video coding
has to take into account motion of the objects in the frame, which is known as motion
compensation (described in the next section).

We will also describe a number of different video compression algorithms. For
the most part, we restrict ourselves to discussions of techniques that have found their
way into international standards. Because there are a significant number of products that
use proprietary video compression algorithms, it is difficult to find or include descriptions
of them.

We can classify the algorithms based on the application area. While attempts have
been made to develop standards that are “generic,” the application requirements can play
a large part in determining the features to be used and the values of parameters. When
the compression algorithm is being designed for two-way communication, it is necessary
for the coding delay to be minimal. Furthermore, compression and decompression should
have about the same level of complexity. The complexity can be unbalanced in a broadcast
application, where there is one transmitter and many receivers, and the communication is
essentially one-way. In this case, the encoder can be much more complex than the receiver.
There is also more tolerance for encoding delays. In applications where the video is to
be decoded on workstations and personal computers, the decoding complexity has to be
extremely low in order for the decoder to decode a sufficient number of images to give the
illusion of motion. However, as the encoding is generally not done in real time, the encoder
can be quite complex. When the video is to be transmitted over packet networks, the effects
of packet loss have to be taken into account when designing the compression algorithm.
Thus, each application will present its own unique requirements and demand a solution that
fits those requirements.

We will assume that you are familiar with the particular image compression technique
being used. For example, when discussing transform-based video compression techniques,
we assume that you have reviewed Chapter 13 and are familiar with the descriptions of
transforms and the JPEG algorithm contained in that chapter.

18.3 Motion Compensation 573

18.3 Motion Compensation

In most video sequences there is little change in the contents of the image from one frame to
the next. Even in sequences that depict a great deal of activity, there are significant portions
of the image that do not change from one frame to the next. Most video compression schemes
take advantage of this redundancy by using the previous frame to generate a prediction for
the current frame. We have used prediction previously when we studied differential encoding
schemes. If we try to apply those techniques blindly to video compression by predicting the
value of each pixel by the value of the pixel at the same location in the previous frame, we
will run into trouble because we would not be taking into account the fact that objects tend
to move between frames. Thus, the object in one frame that was providing the pixel at a
certain location �i0� j0� with its intensity value might be providing the same intensity value
in the next frame to a pixel at location �i1� j1�. If we don’t take this into account, we can
actually increase the amount of information that needs to be transmitted.

Example 18 . 3 . 1:

Consider the two frames of a motion video sequence shown in Figure 18.1. The only
differences between the two frames are that the devious looking individual has moved slightly
downward and to the right of the frame, while the triangular object has moved to the left.
The differences between the two frames are so slight, you would think that if the first frame
was available to both the transmitter and receiver, not much information would need to be
transmitted to the receiver in order to reconstruct the second frame. However, if we simply

F IGURE 18. 1 Two frames of a video sequence.

574 18 V I D E O C O M P R E S S I O N

F IGURE 18. 2 Difference between the two frames.

take the difference between the two frames, as shown in Figure 18.2, the displacement of the
objects in the frame results in an image that contains more detail than the original image. In
other words, instead of the differencing operation reducing the information, there is actually
more information that needs to be transmitted. �

In order to use a previous frame to predict the pixel values in the frame being encoded,
we have to take the motion of objects in the image into account. Although a number of
approaches have been investigated, the method that has worked best in practice is a simple
approach called block-based motion compensation. In this approach, the frame being encoded
is divided into blocks of size M ×M . For each block, we search the previous reconstructed
frame for the block of size M × M that most closely matches the block being encoded.
We can measure the closeness of a match, or distance, between two blocks by the sum of
absolute differences between corresponding pixels in the two blocks. We would obtain the
same results if we used the sum of squared differences between the corresponding pixels
as a measure of distance. Generally, if the distance from the block being encoded to the
closest block in the previous reconstructed frame is greater than some prespecified threshold,
the block is declared uncompensable and is encoded without the benefit of prediction. This
decision is also transmitted to the receiver. If the distance is below the threshold, then a
motion vector is transmitted to the receiver. The motion vector is the relative location of
the block to be used for prediction obtained by subtracting the coordinates of the upper-left
corner pixel of the block being encoded from the coordinates of the upper-left corner pixel
of the block being used for prediction.

Suppose the block being encoded is an 8×8 block between pixel locations (24, 40) and
(31, 47); that is, the upper-left corner pixel of the 8 × 8 block is at location (24, 40). If
the block that best matches it in the previous frame is located between pixels at location
(21, 43) and (28, 50), then the motion vector would be �−3� 3�. The motion vector was

18.3 Motion Compensation 575

obtained by subtracting the location of the upper-left corner of the block being encoded
from the location of the upper-left corner of the best matching block. Note that the blocks
are numbered starting from the top-left corner. Therefore, a positive x component means
that the best matching block in the previous frame is to the right of the location of the block
being encoded. Similarly, a positive y component means that the best matching block is at
a location below that of the location of the block being encoded.

Example 18 . 3 . 2:

Let us again try to predict the second frame of Example 18.3.1 using motion compensation.
We divide the image into blocks and then predict the second frame from the first in the
manner described above. Figure 18.3 shows the blocks in the previous frame that were used
to predict some of the blocks in the current frame.

F IGURE 18. 3 Motion-compensated prediction.

Notice that in this case all that needs to be transmitted to the receiver are the motion
vectors. The current frame is completely predicted by the previous frame. �

We have been describing motion compensation where the displacement between the block
being encoded and the best matching block is an integer number of pixels in the horizontal
and vertical directions. There are algorithms in which the displacement is measured in half
pixels. In order to do this, pixels of the coded frame being searched are interpolated to obtain
twice as many pixels as in the original frame. This “doubled” image is then searched for the
best matching block.

576 18 V I D E O C O M P R E S S I O N

TAB L E 18 . 1 “Doubled” image.

A h1 B
v1 c v2

C h2 D

The doubled image is obtained as follows: Consider Table 18.1. In this image A, B, C,
and D are the pixels of the original frame. The pixels h1� h2� v1, and v2 are obtained by
interpolating between the two neighboring pixels:

h1 =
⌊

A+B

2
+0�5

⌋

h2 =
⌊

C +D

2
+0�5

⌋

v1 =
⌊

A+C

2
+0�5

⌋

v2 =
⌊

B+D

2
+0�5

⌋

(18.1)

while the pixel c is obtained as the average of the four neighboring pixels from the coded
original:

c =
⌊

A+B+C +D

4
+0�5

⌋

�

We have described motion compensation in very general terms in this section. The
various schemes in this chapter use specific motion compensation schemes that differ from
each other. The differences generally involve the region of search for the matching block
and the search procedure. We will look at the details with the study of the compression
schemes. But before we begin our study of compression schemes, we briefly discuss how
video signals are represented in the next section.

18.4 Video Signal Representat ion

The development of different representations of video signals has depended a great deal on
past history. We will also take a historical view, starting with black-and-white television
proceeding to digital video formats. The history of the development of analog video signal
formats for the United States has been different than for Europe. Although we will show the
development using the formats used in the United States, the basic ideas are the same for
all formats.

A black-and-white television picture is generated by exciting the phosphor on the tele-
vision screen using an electron beam whose intensity is modulated to generate the image
we see. The path that the modulated electron beam traces is shown in Figure 18.4. The line
created by the horizontal traversal of the electron beam is called a line of the image. In order

18.4 Video Signal Representation 577

Trace

Retrace with
electron gun off

F IGURE 18. 4 The path traversed by the electron beam in a television.

to trace a second line, the electron beam has to be deflected back to the left of the screen.
During this period, the gun is turned off in order to prevent the retrace from becoming
visible. The image generated by the traversal of the electron gun has to be updated rapidly
enough for persistence of vision to make the image appear stable. However, higher rates of
information transfer require higher bandwidths, which translate to higher costs.

In order to keep the cost of bandwidth low it was decided to send 525 lines 30 times
a second. These 525 lines are said to constitute a frame. However, a thirtieth of a second
between frames is long enough for the image to appear to flicker. To avoid the flicker, it
was decided to divide the image into two interlaced fields. A field is sent once every sixtieth
of a second. First, one field consisting of 262.5 lines is traced by the electron beam. Then,
the second field consisting of the remaining 262.5 lines is traced between the lines of the
first field. The situation is shown schematically in Figure 18.5. The first field is shown with

Odd field
Even field

F IGURE 18. 5 A frame and its constituent fields.

578 18 V I D E O C O M P R E S S I O N

solid lines while the second field is shown with dashed lines. The first field begins on a full
line and ends on a half line while the second field begins on a half line and ends on a full
line. Not all 525 lines are displayed on the screen. Some are lost due to the time required for
the electron gun to position the beam from the bottom to the top of the screen. We actually
see about 486 lines per frame.

In a color television, instead of a single electron gun, we have three electron guns that
act in unison. These guns excite red, green, and blue phosphor dots embedded in the screen.
The beam from each gun strikes only one kind of phosphor, and the gun is named according
to the color of the phosphor it excites. Thus, the red gun strikes only the red phosphor,
the blue gun strikes only the blue phosphor, and the green gun strikes only the green
phosphor. (Each gun is prevented from hitting a different type of phosphor by an aperture
mask.)

In order to control the three guns we need three signals: a red signal, a blue signal, and
a green signal. If we transmitted each of these separately, we would need three times the
bandwidth. With the advent of color television, there was also the problem of backward
compatibility. Most people had black-and-white television sets, and television stations did
not want to broadcast using a format that most of the viewing audience could not see on
their existing sets. Both issues were resolved with the creation of a composite color sig-
nal. In the United States, the specifications for the composite signal were created by the
National Television Systems Committee, and the composite signal is often called an NTSC
signal. The corresponding signals in Europe are PAL (Phase Alternating Lines), devel-
oped in Germany, and SECAM (Séquential Coleur avec Mémoire), developed in France.
There is some (hopefully) good-natured rivalry between proponents of the different sys-
tems. Some problems with color reproduction in the NTSC signal have led to the name
Never Twice the Same Color, while the idiosyncracies of the SECAM system have led
to the name Systéme Essentiallement Contre les Américains (system essentially against
the Americans).

The composite color signal consists of a luminance component, corresponding to the
black-and-white television signal, and two chrominance components. The luminance com-
ponent is denoted by Y :

Y = 0�299R+0�587G+0�114B (18.2)

where R is the red component, G is the green component, and B is the blue component.
The weighting of the three components was obtained through extensive testing with human
observers. The two chrominance signals are obtained as

Cb = B−Y (18.3)

Cr = R−Y� (18.4)

These three signals can be used by the color television set to generate the red, blue, and
green signals needed to control the electron guns. The luminance signal can be used directly
by the black-and-white televisions.

Because the eye is much less sensitive to changes of the chrominance in an image,
the chrominance signal does not need to have higher frequency components. Thus, lower
bandwidth of the chrominance signals along with a clever use of modulation techniques

18.4 Video Signal Representation 579

permits all three signals to be encoded without need of any bandwidth expansion. (A simple
and readable explanation of television systems can be found in [245].)

The early efforts toward digitization of the video signal were devoted to sampling the
composite signal, and in the United States the Society of Motion Picture and Television
Engineers developed a standard that required sampling the NTSC signal at a little more than
14 million times a second. In Europe, the efforts at standardization of video were centered
around the characteristics of the PAL signal. Because of the differences between NTSC
and PAL, this would have resulted in different “standards.” In the late 1970s, this approach
was dropped in favor of sampling the components and the development of a worldwide
standard. This standard was developed under the auspices of the International Consulta-
tive Committee on Radio (CCIR) and was called CCIR recommendation 601-2. CCIR is
now known as ITU-R, and the recommendation is officially known as ITU-R recommen-
dation BT.601-2. However, the standard is generally referred to as recommendation 601 or
CCIR 601.

The standard proposes a family of sampling rates based on the sampling frequency of
3.725 MHz (3.725 million samples per second). Multiples of this sampling frequency permit
samples on each line to line up vertically, thus generating the rectangular array of pixels
necessary for digital processing. Each component can be sampled at an integer multiple of
3.725 MHz, up to a maximum of four times this frequency. The sampling rate is represented
as a triple of integers, with the first integer corresponding to the sampling of the luminance
component and the remaining two corresponding to the chrominance components. Thus,
4:4:4 sampling means that all components were sampled at 13.5 MHz. The most popular
sampling format is the 4:2:2 format, in which the luminance signal is sampled at 13.5 MHz,
while the lower-bandwidth chrominance signals are sampled at 6.75 MHz. If we ignore the
samples of the portion of the signal that do not correspond to active video, the sampling rate
translates to 720 samples per line for the luminance signal and 360 samples per line for the
chrominance signal. The sampling format is shown in Figure 18.6. The luminance component
of the digital video signal is also denoted by Y , while the chrominance components are
denoted by U and V . The sampled analog values are converted to digital values as follows.
The sampled values of YCbCr are normalized so that the sampled Y values, Ys, take on
values between 0 and 1, and the sampled chrominance values, Crs and Cbs, take on values

Y
U
V

F IGURE 18. 6 Recommendation 601 4:2:2 sampling format.

580 18 V I D E O C O M P R E S S I O N

between −1
2 and 1

2 . These normalized values are converted to 8-bit numbers according to the
transformations

Y = 219Ys +16 (18.5)

U = 224Cbs +128 (18.6)

V = 224Crs +128� (18.7)

Thus, the Y component takes on values between 16 and 235, and the U and V components
take on values between 16 and 240.

An example of the Y component of a CCIR 601 frame is shown in Figure 18.7. In
the top image we show the fields separately, while in the bottom image the fields have
been interlaced. Notice that in the interlaced image the smaller figure looks blurred. This is
because the individual moved in the sixtieth of a second between the two fields. (This is
also proof—if any was needed—that a three-year-old cannot remain still, even for a sixtieth
of a second!)

The YUV data can also be arranged in other formats. In the Common Interchange Format
(CIF), which is used for videoconferencing, the luminance of the image is represented by an
array of 288 × 352 pixels, and the two chrominance signals are represented by two arrays
consisting of 144×176 pixels. In the QCIF (Quarter CIF) format, we have half the number
of pixels in both the rows and columns.

The MPEG-1 algorithm, which was developed for encoding video at rates up to 1.5 Mbits
per second, uses a different subsampling of the CCIR 601 format to obtain the MPEG-SIF
format. Starting from a 4:2:2, 480-line CCIR 601 format, the vertical resolution is first
reduced by taking only the odd field for both the luminance and the chrominance compo-
nents. The horizontal resolution is then reduced by filtering (to prevent aliasing) and then
subsampling by a factor of two in the horizontal direction. This results in 360×240 samples
of Y and 180 × 240 samples each of U and V . The vertical resolution of the chrominance
samples is further reduced by filtering and subsampling in the vertical direction by a factor
of two to obtain 180 × 120 samples for each of the chrominance signals. The process is
shown in Figure 18.8, and the resulting format is shown in Figure 18.9.

In the following we describe several of the video coding standards in existence today. Our
order of description follows the historical development of the standards. As each standard
has built upon features of previous standards this seems like a logical plan of attack. As in
the case of image compression, most of the standards for video compression are based on
the discrete cosine transform (DCT). The standard for teleconferencing applications, ITU-T
recommendation H.261, is no exception. Most systems currently in use for videoconferencing
use proprietary compression algorithms. However, in order for the equipment from different
manufacturers to communicate with each other, these systems also offer the option of using
H.261. We will describe the compression algorithm used in the H.261 standard in the next
section. We will follow that with a description of the MPEG algorithms used in Video CDs,
DVDs and HDTV, and a discussion of the latest joint offering from ITU and MPEG.

We will also describe a new approach towards compression of video for videophone
applications called three-dimensional model-based coding. This approach is far from matu-
rity, and our description will be rather cursory. The reason for including it here is the great
promise it holds for the future.

18.4 Video Signal Representation 581

F IGURE 18. 7 Top: Fields of a CCIR 601 frame. Bottom: An interlaced CCIR 601
frame.

582 18 V I D E O C O M P R E S S I O N

CCIR 601
Y SIF

Select odd
field

Horizontal filter
and subsample

720 × 480
720 × 240 360 × 240

CCIR 601
U, V

Select odd
field

Horizontal filter
and subsample

Vertical filter
and subsample

360 × 480 360 × 240 180 × 240

SIF

180 × 120

F IGURE 18. 8 Generation of an SIF frame.

Y
U
V

4:2:2 CCIR-601 MPEG-SIF

F IGURE 18. 9 CCIR 601 to MPEG-SIF.

18 .5 ITU-T Recommendation H.261

The earliest DCT-based video coding standard is the ITU-T H.261 standard. This algorithm
assumes one of two formats, CIF and QCIF. A block diagram of the H.261 video coder is
shown in Figure 18.10. The basic idea is simple. An input image is divided into blocks of
8×8 pixels. For a given 8×8 block, we subtract the prediction generated using the previous
frame. (If there is no previous frame or the previous frame is very different from the current
frame, the prediction might be zero.) The difference between the block being encoded and

18.5 ITU-T Recommendation H.261 583

+
+

Motion-
compensated

prediction

+

+

−
+

Inverse
transform

Loop filter status

Motion vector

Inverse
quantization

Discrete
cosine

transform
Quantizer

Loop
filter

F IGURE 18. 10 Block diagram of the ITU-T H.261 encoder.

the prediction is transformed using a DCT. The transform coefficients are quantized and the
quantization label encoded using a variable-length code. In the following discussion, we will
take a more detailed look at the various components of the compression algorithm.

18 . 5 . 1 Mot ion Compensat ion

Motion compensation requires a large amount of computation. Consider finding a matching
block for an 8×8 block. Each comparison requires taking 64 differences and then computing
the sum of the absolute value of the differences. If we assume that the closest block in the
previous frame is located within 20 pixels in either the horizontal or vertical direction of the
block to be encoded, we need to perform 1681 comparisons. There are several ways we can
reduce the total number of computations.

One way is to increase the size of the block. Increasing the size of the block means more
computations per comparison. However, it also means that we will have fewer blocks per
frame, so the number of times we have to perform the motion compensation will decrease.
However, different objects in a frame may be moving in different directions. The drawback
to increasing the size of the block is that the probability that a block will contain objects
moving in different directions increases with size. Consider the two images in Figure 18.11.
If we use blocks that are made up of 2×2 squares, we can find a block that exactly matches
the 2×2 block that contains the circle. However, if we increase the size of the block to 4×4
squares, the block that contains the circle also contains the upper part of the octagon. We
cannot find a similar 4×4 block in the previous frame. Thus, there is a trade-off involved.

584 18 V I D E O C O M P R E S S I O N

F IGURE 18. 11 Effect of block size on motion compensation.

Larger blocks reduce the amount of computation; however, they can also result in poor
prediction, which in turn can lead to poor compression performance.

Another way we can reduce the number of computations is by reducing the search
space. If we reduce the size of the region in which we search for a match, the number
of computations will be reduced. However, reducing the search region also increases the
probability of missing a match. Again, we have a trade-off between computation and the
amount of compression.

The H.261 standard has balanced the trade-offs in the following manner. The 8 × 8
blocks of luminance and chrominance pixels are organized into macroblocks, which consist
of four luminance blocks, and one each of the two types of chrominance blocks. The motion-
compensated prediction (or motion compensation) operation is performed on the macroblock
level. For each macroblock, we search the previous reconstructed frame for the macroblock
that most closely matches the macroblock being encoded. In order to further reduce the
amount of computations, only the luminance blocks are considered in this matching operation.
The motion vector for the prediction of the chrominance blocks is obtained by halving
the component values of the motion vector for the luminance macroblock. Therefore, if
the motion vector for the luminance blocks was �−3� 10�, then the motion vector for the
chrominance blocks would be �−1� 5�.

The search area is restricted to ±15 pixels of the macroblock being encoded in the
horizontal and vertical directions. That is, if the upper-left corner pixel of the block being
encoded is �xc� yc�, and the upper-left corner of the best matching macroblock is �xp� yp),
then �xc� yc� and �xp� yp) have to satisfy the constraints

∣
∣xc −xp

∣
∣< 15 and

∣
∣yc −yp

∣
∣< 15.

18 . 5 . 2 The Loop F i l ter

Sometimes sharp edges in the block used for prediction can result in the generation of sharp
changes in the prediction error. This in turn can cause high values for the high-frequency
coefficients in the transforms, which can increase the transmission rate. To avoid this, prior

18.5 ITU-T Recommendation H.261 585

to taking the difference, the prediction block can be smoothed by using a two-dimensional
spatial filter. The filter is separable; it can be implemented as a one-dimensional filter that
first operates on the rows, then on the columns. The filter coefficients are 1

4 � 1
2 � 1

4 , except at
block boundaries where one of the filter taps would fall outside the block. To prevent this
from happening, the block boundaries remain unchanged by the filtering operation.

Example 18 . 5 . 1:

Let’s filter the 4 × 4 block of pixel values shown in Table 18.2 using the filter specified
for the H.261 algorithm. From the pixel values we can see that this is a gray square with
a white L in it. (Recall that small pixel values correspond to darker pixels and large pixel
values correspond to lighter pixels, with 0 corresponding to black and 255 corresponding
to white.)

TAB L E 18 . 2 Original block of pixels.

110 218 116 112
108 210 110 114
110 218 210 112
112 108 110 116

Let’s filter the first row. We leave the first pixel value the same. The second value
becomes

1
4

×110+ 1
2

×218+ 1
4

×116 = 165

where we have assumed integer division. The third filtered value becomes

1
4

×218+ 1
2

×116+ 1
4

×112 = 140�

The final element in the first row of the filtered block remains unchanged. Continuing in
this fashion with all four rows, we get the 4×4 block shown in Table 18.3.

TAB L E 18 . 3 After filtering the rows.

110 165 140 112
108 159 135 114
110 188 187 112
112 109 111 116

Now repeat the filtering operation along the columns. The final 4×4 block is shown in
Table 18.4. Notice how much more homogeneous this last block is compared to the original

586 18 V I D E O C O M P R E S S I O N

block. This means that it will most likely not introduce any sharp variations in the difference
block, and the high-frequency coefficients in the transform will be closer to zero, leading to
compression.

TAB L E 18 . 4 Final block.

110 165 140 112
108 167 148 113
110 161 154 113
112 109 111 116

�

This filter is either switched on or off for each macroblock. The conditions for turning
the filter on or off are not specified by the recommendations.

18 . 5 . 3 The Trans form

The transform operation is performed with a DCT on an 8 × 8 block of pixels or pixel
differences. If the motion compensation operation does not provide a close match, then the
transform operation is performed on an 8 × 8 block of pixels. If the transform operation
is performed on a block level, either a block or the difference between the block and its
predicted value is quantized and transmitted to the receiver. The receiver performs the
inverse operations to reconstruct the image. The receiver operation is also simulated at the
transmitter, where the reconstructed images are obtained and stored in a frame store. The
encoder is said to be in intra mode if it operates directly on the input image without the use
of motion compensation. Otherwise, it is said to be in inter mode.

18 . 5 . 4 Quant izat ion and Coding

Depending on how good or poor the prediction is, we can get a wide variation in the
characteristics of the coefficients that are to be quantized. In the case of an intra block, the
DC coefficients will take on much larger values than the other coefficients. Where there is
little motion from frame to frame, the difference between the block being encoded and the
prediction will be small, leading to small values for the coefficients.

In order to deal with this wide variation, we need a quantization strategy that can
be rapidly adapted to the current situation. The H.261 algorithm does this by switching
between 32 different quantizers, possibly from one macroblock to the next. One quantizer
is reserved for the intra DC coefficient, while the remaining 31 quantizers are used for the
other coefficients. The intra DC quantizer is a uniform midrise quantizer with a step size
of 8. The other quantizers are midtread quantizers with a step size of an even value between
2 and 62. Given a particular block of coefficients, if we use a quantizer with smaller step
size, we are likely to get a larger number of nonzero coefficients. Because of the manner
in which the labels are encoded, the number of bits that will need to be transmitted will
increase. Therefore, the availability of transmission resources will have a major impact on the
quantizer selection. We will discuss this aspect further when we talk about the transmission

18.5 ITU-T Recommendation H.261 587

Macroblock

F IGURE 18. 12 A GOB consisting of 33 macroblocks.

buffer. Once a quantizer is selected, the receiver has to be informed about the selection.
In H.261, this is done in one of two ways. Each macroblock is preceded by a header. The
quantizer being used can be identified as part of this header. When the amount of activity
or motion in the sequence is relatively constant, it is reasonable to expect that the same
quantizer will be used for a large number of macroblocks. In this case, it would be wasteful
to identify the quantizer being used with each macroblock. The macroblocks are organized
into groups of blocks (GOBs), each of which consist of three rows of 11 macroblocks. This
hierarchical arrangement is shown in Figure 18.12. Only the luminance blocks are shown.
The header preceding each GOB contains a 5-bit field for identifying the quantizer. Once
a quantizer has been identified in the GOB header, the receiver assumes that quantizer is
being used, unless this choice is overridden using the macroblock header.

The quantization labels are encoded in a manner similar to, but not exactly the same as,
JPEG. The labels are scanned in a zigzag fashion like JPEG. The nonzero labels are coded
along with the number, or run, of coefficients quantized to zero. The 20 most commonly
occurring combinations of (run, label) are coded with a single variable-length codeword. All
other combinations of (run, label) are coded with a 20-bit word, made up of a 6-bit escape
sequence, a 6-bit code denoting the run, and an 8-bit code for the label.

In order to avoid transmitting blocks that have no nonzero quantized coefficient, the
header preceding each macroblock can contain a variable-length code called the coded block
pattern (CBP) that indicates which of the six blocks contain nonzero labels. The CBP can
take on one of 64 different pattern numbers, which are then encoded by a variable-length
code. The pattern number is given by

CBP = 32P1 +16P2 +8P3 +4P4 +2P5 +P6

where P1 through P6 correspond to the six different blocks in the macroblock, and is one if
the corresponding block has a nonzero quantized coefficient and zero otherwise.

588 18 V I D E O C O M P R E S S I O N

18 . 5 . 5 Rate Contro l

The binary codewords generated by the transform coder form the input to a transmission
buffer. The function of the transmission buffer is to keep the output rate of the encoder
fixed. If the buffer starts filling up faster than the transmission rate, it sends a message back
to the transform coder to reduce the output from the quantization. If the buffer is in danger
of becoming emptied because the transform coder is providing bits at a rate lower than the
transmission rate, the transmission buffer can request a higher rate from the transform coder.
This operation is called rate control.

The change in rate can be affected in two different ways. First, the quantizer being used
will affect the rate. If a quantizer with a large step size is used, a larger number of coefficients
will be quantized to zero. Also, there is a higher probability that those not quantized to
zero will be one of the those values that have a shorter variable-length codeword. Therefore,
if a higher rate is required, the transform coder selects a quantizer with a smaller step size,
and if a lower rate is required, the transform coder selects a quantizer with a larger step
size. The quantizer step size is set at the beginning of each GOB, but can be changed at the
beginning of any macroblock. If the rate cannot be lowered enough and there is a danger of
buffer overflow, the more drastic option of dropping frames from transmission is used.

The ITU-T H.261 algorithm was primarily designed for videophone and videoconferenc-
ing applications. Therefore, the algorithm had to operate with minimal coding delay (less than
150 milliseconds). Furthermore, for videophone applications, the algorithm had to operate at
very low bit rates. In fact, the title for the recommendation is “Video Codec for Audiovisual
Services at p×64 kbit/s,” where p takes on values from 1 to 30. A p value of 2 corresponds
to a total transmission rate of 128 kbps, which is the same as two voice-band telephone chan-
nels. These are very low rates for video, and the ITU-T H.261 recommendations perform
relatively well at these rates.

18.6 Model-Based Coding

In speech coding, a major decrease in rate is realized when we go from coding waveforms to
an analysis/synthesis approach. An attempt at doing the same for video coding is described
in the next section. A technique that has not yet reached maturity but shows great promise
for use in videophone applications is an analysis/synthesis technique. The analysis/synthesis
approach requires that the transmitter and receiver agree on a model for the information to be
transmitted. The transmitter then analyzes the information to be transmitted and extracts the
model parameters, which are transmitted to the receiver. The receiver uses these parameters to
synthesize the source information. While this approach has been successfully used for speech
compression for a long time (see Chapter 15), the same has not been true for images. In a
delightful book, Signals, Systems, and Noise—The Nature and Process of Communications,
published in 1961, J.R. Pierce [14] described his “dream” of an analysis/synthesis scheme
for what we would now call a videoconferencing system:

Imagine that we had at the receiver a sort of rubbery model of the human face.
Or we might have a description of such a model stored in the memory of a huge
electronic computer� � � . Then, as the person before the transmitter talked, the

18.6 Model-Based Coding 589

transmitter would have to follow the movements of his eyes, lips, and jaws, and
other muscular movements and transmit these so that the model at the receiver
could do likewise.

Pierce’s dream is a reasonably accurate description of a three-dimensional model-based
approach to the compression of facial image sequences. In this approach, a generic wireframe
model, such as the one shown in Figure 18.13, is constructed using triangles. When encoding
the movements of a specific human face, the model is adjusted to the face by matching
features and the outer contour of the face. The image textures are then mapped onto this
wireframe model to synthesize the face. Once this model is available to both transmitter
and receiver, only changes in the face are transmitted to the receiver. These changes can be

F IGURE 18. 13 Generic wireframe model.

590 18 V I D E O C O M P R E S S I O N

classified as global motion or local motion [246]. Global motion involves movement of the
head, while local motion involves changes in the features—in other words, changes in facial
expressions. The global motion can be modeled in terms of movements of rigid bodies.
The facial expressions can be represented in terms of relative movements of the vertices of
the triangles in the wireframe model. In practice, separating a movement into global and
local components can be difficult because most points on the face will be affected by both
the changing position of the head and the movement due to changes in facial expression.
Different approaches have been proposed to separate these effects [247, 246, 248].

The global movements can be described in terms of rotations and translations. The local
motions, or facial expressions, can be described as a sum of action units (AU), which are a
set of 44 descriptions of basic facial expressions [249]. For example, AU1 corresponds to the
raising of the inner brow and AU2 corresponds to the raising of the outer brow; therefore,
AU1 + AU2 would mean raising the brow.

Although the synthesis portion of this algorithm is relatively straightforward, the analysis
portion is far from simple. Detecting changes in features, which tend to be rather subtle, is a
very difficult task. There is a substantial amount of research in this area, and if this problem
is resolved, this approach promises rates comparable to the rates of the analysis/synthesis
voice coding schemes. A good starting point for exploring this fascinating area is [250].

18.7 Asymmetric Appl icat ions

There are a number of applications in which it is cost effective to shift more of the com-
putational burden to the encoder. For example, in multimedia applications where a video
sequence is stored on a CD-ROM, the decompression will be performed many times and has
to be performed in real time. However, the compression is performed only once, and there
is no need for it to be in real time. Thus, the encoding algorithms can be significantly more
complex. A similar situation arises in broadcast applications, where for each transmitter there
might be thousands of receivers. In this section we will look at the standards developed for
such asymmetric applications. These standards have been developed by a joint committee of
the International Standards Organization (ISO) and the International Electrotechnical Society
(IEC), which is best known as MPEG (Moving Picture Experts Group). MPEG was initially
set up in 1988 to develop a set of standard algorithms, at different rates, for applications
that required storage of video and audio on digital storage media. Originally, the committee
had three work items, nicknamed MPEG-1, MPEG-2, and MPEG-3, targeted at rates of
1.5, 10, and 40 Mbits per second, respectively. Later, it became clear that the algorithms
developed for MPEG-2 would accommodate the MPEG-3 rates, and the third work item was
dropped [251]. The MPEG-1 work item resulted in a set of standards, ISO/IEC IS 11172,
“Information Technology—Coding of Moving Pictures and Associated Audio for Digital
Storage Media Up to about 1.5 Mbit/s” [252]. During the development of the standard, the
committee felt that the restriction to digital storage media was not necessary, and the set
of standards developed under the second work item, ISO/IEC 13818 or MPEG-2, has been
issued under the title “Information Technology—Generic Coding of Moving Pictures and
Associated Audio Information” [253]. In July of 1993 the MPEG committee began working

18.8 The MPEG-1 Video Standard 591

on MPEG-4, the third and most ambitious of its standards. The goal of MPEG-4 was to
provide an object-oriented framework for the encoding of multimedia. It took two years for
the committee to arrive at a satisfactory definition of the scope of MPEG-4, and the call for
proposals was finally issued in 1996. The standard ISO/IEC 14496 was finalized in 1998
and approved as an international standard in 1999. We have examined the audio standard in
Chapter 16. In this section we briefly look at the video standards.

18.8 The MPEG-1 Video Standard

The basic structure of the compression algorithm proposed by MPEG is very similar to
that of ITU-T H.261. Blocks (8 × 8 in size) of either an original frame or the difference
between a frame and the motion-compensated prediction are transformed using the DCT.
The blocks are organized in macroblocks, which are defined in the same manner as in the
H.261 algorithm, and the motion compensation is performed at the macroblock level. The
transform coefficients are quantized and transmitted to the receiver. A buffer is used to
smooth delivery of bits from the encoder and also for rate control.

The basic structure of the MPEG-1 compression scheme may be viewed as very similar to
that of the ITU-T H.261 video compression scheme; however, there are significant differences
in the details of this structure. The H.261 standard has videophone and videoconferencing
as the main application areas; the MPEG standard at least initially had applications that
require digital storage and retrieval as a major focus. This does not mean that use of either
algorithm is precluded in applications outside its focus, but simply that the features of the
algorithm may be better understood if we keep in mind the target application areas. In
videoconferencing a call is set up, conducted, and then terminated. This set of events always
occurs together and in sequence. When accessing video from a storage medium, we do not
always want to access the video sequence starting from the first frame. We want the ability
to view the video sequence starting at, or close to, some arbitrary point in the sequence.
A similar situation exists in broadcast situations. Viewers do not necessarily tune into a
program at the beginning. They may do so at any random point in time. In H.261 each frame,
after the first frame, may contain blocks that are coded using prediction from the previous
frame. Therefore, to decode a particular frame in the sequence, it is possible that we may
have to decode the sequence starting at the first frame. One of the major contributions of
MPEG-1 was the provision of a random access capability. This capability is provided rather
simply by requiring that there be frames periodically that are coded without any reference
to past frames. These frames are referred to as I frames.

In order to avoid a long delay between the time a viewer switches on the TV to the time
a reasonable picture appears on the screen, or between the frame that a user is looking for
and the frame at which decoding starts, the I frames should occur quite frequently. However,
because the I frames do not use temporal correlation, the compression rate is quite low
compared to the frames that make use of the temporal correlations for prediction. Thus, the
number of frames between two consecutive I frames is a trade-off between compression
efficiency and convenience.

592 18 V I D E O C O M P R E S S I O N

In order to improve compression efficiency, the MPEG-1 algorithm contains two other
kinds of frames, the predictive coded �P� frames and the bidirectionally predictive coded
�B� frames. The P frames are coded using motion-compensated prediction from the last
I or P frame, whichever happens to be closest. Generally, the compression efficiency of
P frames is substantially higher than I frames. The I and P frames are sometimes called
anchor frames, for reasons that will become obvious.

To compensate for the reduction in the amount of compression due to the frequent use
of I frames, the MPEG standard introduced B frames. The B frames achieve a high level
of compression by using motion-compensated prediction from the most recent anchor frame
and the closest future anchor frame. By using both past and future frames for prediction,
generally we can get better compression than if we only used prediction based on the past.
For example, consider a video sequence in which there is a sudden change between one
frame and the next. This is a common occurrence in TV advertisements. In this situation,
prediction based on the past frames may be useless. However, predictions based on future
frames would have a high probability of being accurate. Note that a B frame can only be
generated after the future anchor frame has been generated. Furthermore, the B frame is
not used for predicting any other frame. This means that B frames can tolerate more error
because this error will not be propagated by the prediction process.

The different frames are organized together in a group of pictures (GOP). A GOP is the
smallest random access unit in the video sequence. The GOP structure is set up as a trade-off
between the high compression efficiency of motion-compensated coding and the fast picture
acquisition capability of periodic intra-only processing. As might be expected, a GOP has
to contain at least one I frame. Furthermore, the first I frame in a GOP is either the first
frame of the GOP, or is preceded by B frames that use motion-compensated prediction only
from this I frame. A possible GOP is shown in Figure 18.14.

Bidirectional prediction

Forward prediction

P frameI frame B frame

F IGURE 18. 14 A possible arrangement for a group of pictures.

18.8 The MPEG-1 Video Standard 593

TAB L E 18 . 5 A typical sequence of frames in display order.

I B B P B B P B B P B B I
1 2 3 4 5 6 7 8 9 10 11 12 13

Because of the reliance of the B frame on future anchor frames, there are two different
sequence orders. The display order is the sequence in which the video sequence is displayed
to the user. A typical display order is shown in Table 18.5. Let us see how this sequence
was generated. The first frame is an I frame, which is compressed without reference to
any previous frame. The next frame to be compressed is the fourth frame. This frame is
compressed using motion-compensated prediction from the first frame. Then we compress
frame two, which is compressed using motion-compensated prediction from frame one and
frame four. The third frame is also compressed using motion-compensated prediction from
the first and fourth frames. The next frame to be compressed is frame seven, which uses
motion-compensated prediction from frame four. This is followed by frames five and six,
which are compressed using motion-compensated predictions from frames four and seven.
Thus, there is a processing order that is quite different from the display order. The MPEG
document calls this the bitstream order. The bitstream order for the sequence shown in
Table 18.5 is given in Table 18.6. In terms of the bitstream order, the first frame in a GOP
is always the I frame.

As we can see, unlike the ITU-T H.261 algorithm, the frame being predicted and the
frame upon which the prediction is based are not necessarily adjacent. In fact, the number
of frames between the frame being encoded and the frame upon which the prediction is
based is variable. When searching for the best matching block in a neighboring frame, the
region of search depends on assumptions about the amount of motion. More motion will
lead to larger search areas than a small amount of motion. When the frame being predicted
is always adjacent to the frame upon which the prediction is based, we can fix the search
area based on our assumption about the amount of motion. When the number of frames
between the frame being encoded and the prediction frame is variable, we make the search
area a function of the distance between the two frames. While the MPEG standard does not
specify the method used for motion compensation, it does recommend using a search area
that grows with the distance between the frame being coded and the frame being used for
prediction.

Once motion compensation has been performed, the block of prediction errors is trans-
formed using the DCT and quantized, and the quantization labels are encoded. This procedure
is the same as that recommended in the JPEG standard and is described in Chapter 12. The
quantization tables used for the different frames are different and can be changed during the
encoding process.

TAB L E 18 . 6 A typical sequence of frames in bitstream order.

I P B B P B B P B B I B B
1 4 2 3 7 5 6 10 8 9 13 11 12

594 18 V I D E O C O M P R E S S I O N

Rate control in the MPEG standard can be performed at the sequence level or at the
level of individual frames. At the sequence level, any reduction in bit rate first occurs with
the B frames because they are not essential for the encoding of other frames. At the level
of the individual frames, rate control takes place in two steps. First, as in the case of the
H.261 algorithm, the quantizer step sizes are increased. If this is not sufficient, then the
higher-order frequency coefficients are dropped until the need for rate reduction is past.

The format for MPEG is very flexible. However, the MPEG committee has provided
some suggested values for the various parameters. For MPEG-1 these suggested values are
called the constrained parameter bitstream (CPB). The horizontal picture size is constrained
to be less than or equal to 768 pixels, and the vertical size is constrained to be less than
or equal to 576 pixels. More importantly, the pixel rate is constrained to be less than 396
macroblocks per frame if the frame rate is 25 frames per second or less, and 330 macroblocks
per frame if the frame rate is 30 frames per second or less. The definition of a macroblock
is the same as in the ITU-T H.261 recommendations. Therefore, this corresponds to a frame
size of 352 × 288 pixels at the 25-frames-per-second rate, or a frame size of 352 × 240
pixels at the 30-frames-per-second rate. Keeping the frame at this size allows the algorithm
to achieve bit rates of between 1 and 1.5 Mbits per second. When referring to MPEG-1
parameters, most people are actually referring to the CPB.

The MPEG-1 algorithm provides reconstructed images of VHS quality for moderate-
to low-motion video sequences, and worse than VHS quality for high-motion sequences at
rates of around 1.2 Mbits per second. As the algorithm was targeted to applications such as
CD-ROM, there is no consideration of interlaced video. In order to expand the applicability
of the basic MPEG algorithm to interlaced video, the MPEG committee provided some
additional recommendations, the MPEG-2 recommendations.

18.9 The MPEG-2 Video Standard-—H.262

While MPEG-1 was specifically proposed for digital storage media, the idea behind MPEG-2
was to provide a generic, application-independent standard. To this end, MPEG-2 takes a
“tool kit” approach, providing a number of subsets, each containing different options from
the set of all possible options contained in the standard. For a particular application, the
user can select from a set of profiles and levels. The profiles define the algorithms to be
used, while the levels define the constraints on the parameters. There are five profiles:
simple, main, snr-scalable (where snr stands for signal-to-noise ratio), spatially scalable,
and high. There is an ordering of the profiles; each higher profile is capable of decoding
video encoded using all profiles up to and including that profile. For example, a decoder
designed for profile snr-scalable could decode video that was encoded using profiles simple,
main, and snr-scalable. The simple profile eschews the use of B frames. Recall that the B
frames require the most computation to generate (forward and backward prediction), require
memory to store the coded frames needed for prediction, and increase the coding delay
because of the need to wait for “future” frames for both generation and reconstruction.
Therefore, removal of the B frames makes the requirements simpler. The main profile is very
much the algorithm we have discussed in the previous section. The snr-scalable, spatially
scalable, and high profiles may use more than one bitstream to encode the video. The base

18.9 The MPEG-2 Video Standard-—H.262 595

bitstream is a lower-rate encoding of the video sequence. This bitstream could be decoded
by itself to provide a reconstruction of the video sequence. The other bitstream is used to
enhance the quality of the reconstruction. This layered approach is useful when transmitting
video over a network, where some connections may only permit a lower rate. The base
bitstream can be provided to these connections while providing the base and enhancement
layers for a higher-quality reproduction over the links that can accommodate the higher bit
rate. To understand the concept of layers, consider the following example.

Example 18 . 9 . 1:

Suppose after the transform we obtain a set of coefficients, the first eight of which are

29.75 6.1 −6�03 1.93 −2�01 1.23 −0�95 2.11

Let us suppose we quantize this set of coefficients using a step size of 4. For simplicity we
will use the same step size for all coefficients. Recall that the quantizer label is given by

lij =
⌊

�ij

Qt
ij

+0�5
⌋

(18.8)

and the reconstructed value is given by

�̂ij = lij ×Qt
ij� (18.9)

Using these equations and the fact that Qt
ij = 4, the reconstructed values of the coefficients

are

28 8 −8 0 −4 0 −0 4

The error in the reconstruction is

1.75 −1�9 1.97 1.93 1.99 1.23 −0�95 −1�89

Now suppose we have some additional bandwidth made available to us. We can quantize
the difference and send that to enhance the reconstruction. Suppose we used a step size of 2
to quantize the difference. The reconstructed values for this enhancement sequence would be

2 −2 2 2 2 2 0 −2

Adding this to the previous base-level reconstruction, we get an enhanced reconstruction of

30 6 −6 2 −2 2 0 2

which results in an error of

−0�25 0.1 −0�03 −0�07 −0�01 −0�77 −0�95 0.11

596 18 V I D E O C O M P R E S S I O N

The layered approach allows us to increase the accuracy of the reconstruction when
bandwidth is available, while at the same time permitting a lower-quality reconstruction
when there is not sufficient bandwidth for the enhancement. In other words, the quality is
scalable. In this particular case, the error between the original and reconstruction decreases
because of the enhancement. Because the signal-to-noise ratio is a measure of error, this can
be called snr-scalable. If the enhancement layer contained a coded bitstream corresponding
to frames that would occur between frames of the base layer, the system could be called
temporally scalable. If the enhancement allowed an upsampling of the base layer, the system
is spatially scalable. �

The levels are low, main, high 1440, and high. The low level corresponds to a frame
size of 352 × 240, the main level corresponds to a frame size of 720 × 480, the high 1440
level corresponds to a frame size of 1440×1152, and the high level corresponds to a frame
size of 1920 ×1080. All levels are defined for a frame rate of 30 frames per second. There
are many possible combinations of profiles and levels, not all of which are allowed in the
MPEG-2 standard. Table 18.7 shows the allowable combinations [251]. A particular profile-
level combination is denoted by XX@YY where XX is the two-letter abbreviation for the
profile and YY is the two-letter abbreviation for the level. There are a large number of issues,
such as bounds on parameters and decodability between different profile-level combinations,
that we have not addressed here because they do not pertain to our main focus, compression
(see the international standard [253] for these details).

Because MPEG-2 has been designed to handle interlaced video, there are field, based
alternatives to the I, P and B frames. The P and B frames can be replaced by two P fields or
two B fields. The I frame can be replaced by two I fields or an I field and a P field where
the P field is obtained by predicting the bottom field by the top field. Because an 8×8 field
block actually covers twice the spatial distance in the vertical direction as an 8 frame block,
the zigzag scanning is adjusted to adapt to this imbalance. The scanning pattern for an 8×8
field block is shown in Figure 18.15

The most important addition from the point of view of compression in MPEG-2 is
the addition of several new motion-compensated prediction modes: the field prediction and
the dual prime prediction modes. MPEG-1 did not allow interlaced video. Therefore, there
was no need for motion compensation algorithms based on fields. In the P frames, field
predictions are obtained using one of the two most recently decoded fields. When the
first field in a frame is being encoded, the prediction is based on the two fields from the

TAB L E 18 . 7 Allowable profile-level combinations in MPEG-2.

SNR- Spatially
Simple Main Scalable Scalable High
Profile Profile Profile Profile Profile

High Level Allowed Allowed
High 1440 Allowed Allowed Allowed
Main Level Allowed Allowed Allowed Allowed
Low Level Allowed Allowed

18.9 The MPEG-2 Video Standard-—H.262 597

F IGURE 18. 15 Scanning pattern for the DCT coefficients of a field block.

previous frame. However, when the second field is being encoded, the prediction is based
on the second field from the previous frame and the first field from the current frame.
Information about which field is to be used for prediction is transmitted to the receiver. The
field predictions are performed in a manner analogous to the motion-compensated prediction
described earlier.

In addition to the regular frame and field prediction, MPEG-2 also contains two additional
modes of prediction. One is the 16×8 motion compensation. In this mode, two predictions
are generated for each macroblock, one for the top half and one for the bottom half. The
other is called the dual prime motion compensation. In this technique, two predictions are
formed for each field from the two recent fields. These predictions are averaged to obtain
the final prediction.

18 . 9 . 1 The Grand Al l iance HDTV Proposa l

When the Federal Communications Commission (FCC) requested proposals for the HDTV
standard, they received four proposals for digital HDTV from four consortia. After the

598 18 V I D E O C O M P R E S S I O N

evaluation phase, the FCC declined to pick a winner among the four, and instead suggested
that all these consortia join forces and produce a single proposal. The resulting partnership
has the exalted title of the “Grand Alliance.” Currently, the specifications for the digital
HDTV system use MPEG-2 as the compression algorithm. The Grand Alliance system uses
the main profile of the MPEG-2 standard implemented at the high level.

18.10 ITU-T Recommendation H.263

The H.263 standard was developed to update the H.261 video conferencing standard with
the experience acquired in the development of the MPEG and H.262 algorithms. The initial
algorithm provided incremental improvement over H.261. After the development of the core
algorithm, several optional updates were proposed, which significantly improved the com-
pression performance. The standard with these optional components is sometimes referred
to as H�263+ (or H.263++).

In the following sections we first describe the core algorithm and then describe some
of the options. The standard focuses on noninterlaced video. The different picture formats
addressed by the standard are shown in Table 18.8. The picture is divided into Groups of
Blocks (GOBs) or slices. A Group of Blocks is a strip of pixels across the picture with a
height that is a multiple of 16 lines. The number of multiples depends on the size of the
picture, and the bottom-most GOB may have less than 16 lines. Each GOB is divided into
macroblocks, which are defined as in the H.261 recommendation.

A block diagram of the baseline video coder is shown in Figure 18.16. It is very similar
to Figure 18.10, the block diagram for the H.261 encoder. The only major difference is the
ability to work with both predicted or P frames and intra or I frames. As in the case of
H.261, the motion-compensated prediction is performed on a macroblock basis. The vertical
and horizontal components of the motion vector are restricted to the range �−16� 15�5	. The
transform used for representing the prediction errors in the case of the P frame and the
pixels in the case of the I frames is the discrete cosine transform. The transform coefficients
are quantized using uniform midtread quantizers. The DC coefficient of the intra block is
quantized using a uniform quantizer with a step size of 8. There are 31 quantizers available
for the quantization of all other coefficients with stepsizes ranging from 2 to 62. Apart from
the DC coefficient of the intra block, all coefficients in a macroblock are quantized using
the same quantizer.

TAB L E 18 . 8 The standardized H.263 formats [254].

Picture Number of Number of Number of Number of
format luminance luminance chrominance chrominance

pixels (columns) lines (rows) pixels (columns) lines(rows)

sub-QCIF 128 96 64 48
QCIF 176 144 88 72
CIF 352 288 176 144

4CIF 704 576 352 288
16CIF 1408 1152 704 576

18.10 ITU-T Recommendation H.263 599

Coding Control

Inverse
Quantization

Inverse
Transform

Motion
Compensated

Prediction Motion
Vector

Quantizer
Discrete
Cosine

Transform

F IGURE 18. 16 A block diagram of the H.263 video compression algorithm.

The motion vectors are differentially encoded. The prediction is the median of the motion
vectors in the neighboring blocks. The H.263 recommendation allows half pixel motion
compensation as opposed to only integer pixel compensation used in H.261. Notice that the
sign of the component is encoded in the last bit of the variable length code, a “0” for positive
values and a “1” for negative values. Two values that differ only in their sign differ only in
the least significant bit.

The code for the quantized transform coefficients is indexed by three indicators. The first
indicates whether the coefficient being encoded is the last nonzero coefficient in the zigzag
scan. The second indicator is the number of zero coefficients preceding the coefficient being
encoded, and the last indicates the absolute value of the quantized coefficient level. The sign
bit is appended as the last bit of the variable length code.

600 18 V I D E O C O M P R E S S I O N

Here we describe some of the optional modes of the H.263 recommendation. The first
four options were part of the initial H.263 specification. The remaining options were added
later and the resulting standard is sometimes referred to as the H.263+ standard.

18 . 10 . 1 Unres t r i c ted Mot ion Vec tor Mode

In this mode the motion vector range is extended to �−31�5� 31�5	, which is particularly
useful in improving the compression performance of the algorithm for larger picture sizes.
The mode also allows motion vectors to point outside the picture. This is done by repeating
the edge pixels to create the picture beyond its boundary.

18 . 10 . 2 Syntax-Based Ar i thmet i c Coding Mode

In this mode the variable length codes are replaced with an arithmetic coder. The word length
for the upper and lower limits is 16. The option specifies several different Cum Count tables
that can be used for arithmetic coding. There are separate Cum Count tables for encoding
motion vectors, intra DC component, and intra and inter coefficients.

18 . 10 . 3 Advanced Predi c t ion Mode

In the baseline mode a single motion vector is sent for each macroblock. Recall that a
macroblock consists of four 8 × 8 luminance blocks and two chrominance blocks. In the
advanced prediction mode the encoder can send four motion vectors, one for each luminance
block. The chrominance motion vectors are obtained by adding the four luminance motion
vectors and dividing by 8. The resulting values are adjusted to the nearest half pixel position.
This mode also allows for Overlapped Block Motion Compensation (OBMC). In this mode
the motion vector is obtained by taking a weighted sum of the motion vector of the current
block and two of the four vertical and horizontal neighboring blocks.

18 . 10 . 4 PB- f rames and Improved PB- f rames Mode

The PB frame consists of a P picture and a B picture in the same frame. The blocks for
the P frame and the B frame are interleaved so that a macroblock consists of six blocks of
a P picture followed by six blocks of a B picture. The motion vector for the B picture is
derived from the motion vector for the P picture by taking into account the time difference
between the P picture and the B picture. If the motion cannot be properly derived, a delta
correction is included. The improved PB-frame mode updates the PB-frame mode to include
forward, backward, and bidirectional prediction.

18 . 10 . 5 Advanced Int ra Coding Mode

The coefficients for the I frames are obtained directly by transforming the pixels of the
picture. As a result, there can be significant correlation between some of the coefficients
of neighboring blocks. For example, the DC coefficient represents the average value of a

18.10 ITU-T Recommendation H.263 601

block. It is very likely that the average value will not change significantly between blocks.
The same may be true, albeit to a lesser degree, for the low-frequency horizontal and
vertical coefficients. The advanced intra coding mode allows the use of this correlation by
using coefficients from neighboring blocks for predicting the coefficients of the block being
encoded. The prediction errors are then quantized and coded.

When this mode is used, the quantization approach and variable length codes have to
be adjusted to adapt to the different statistical properties of the prediction errors. Further-
more, it might also become necessary to change the scan order. The recommendation pro-
vides alternate scanning patterns as well as alternate variable length codes and quantization
strategies.

18 . 10 . 6 Deblock ing F i l ter Mode

This mode is used to remove blocking effects from the 8×8 block edges. This smoothing of
block boundaries allows for better prediction. This mode also permits the use of four motion
vectors per macroblock and motion vectors that point beyond the edge of the picture.

18 . 10 . 7 Reference Pic ture Se lec t ion Mode

This mode is used to prevent error propagation by allowing the algorithm to use a picture
other than the previous picture to perform prediction. The mode permits the use of a back-
channel that the decoder uses to inform the encoder about the correct decoding of parts of
the picture. If a part of the picture is not correctly decoded, it is not used for prediction.
Instead, an alternate frame is selected as the reference frame. The information about which
frame was selected as the reference frame is transmitted to the decoder. The number of
possible reference frames is limited by the amount of frame memory available.

18 . 10 . 8 Tempora l , SNR, and Spat ia l Sca labi l i ty
Mode

This is very similar to the scalability structures defined earlier for the MPEG-2 algorithm.
Temporal scalability is achieved by using separate B frames, as opposed to the PB frames.
SNR scalability is achieved using the kind of layered coding described earlier. Spatial
scalability is achieved using upsampling.

18 . 10 . 9 Reference Pic ture Resampl ing

Reference picture resampling allows a reference picture to be “warped” in order to permit
the generation of better prediction. It can be used to adaptively alter the resolution of pictures
during encoding.

602 18 V I D E O C O M P R E S S I O N

18 . 10 . 10 Reduced-Reso lu t ion Update Mode

This mode is used for encoding highly active scenes. The macroblock in this mode is
assumed to cover an area twice the height and width of the regular macroblock. The motion
vector is assumed to correspond to this larger area. Using this motion vector a predicted
macroblock is created. The transform coefficients are decoded and then upsampled to create
the expanded texture block. The predicted and texture blocks are then added to obtain the
reconstruction.

18 . 10 . 11 Al ternat ive In ter VLC Mode

The variable length codes for inter and intra frames are designed with different assumptions.
In the case of the inter frames it is assumed that the values of the coefficients will be
small and there can be large numbers of zero values between nonzero coefficients. This is
a result of prediction which, if successfully employed, would reduce the magnitude of the
differences, and hence the coefficients, and would also lead to large numbers of zero-valued
coefficients. Therefore, coefficients indexed with large runs and small coefficient values
are assigned shorter codes. In the case of the intra frames, the opposite is generally true.
There is no prediction, therefore there is a much smaller probability of runs of zero-valued
coefficients. Also, large-valued coefficients are quite possible. Therefore, coefficients
indexed by small run values and larger coefficient values are assigned shorter codes. During
periods of increased temporal activity, prediction is generally not as good and therefore the
assumptions under which the variable length codes for the inter frames were created are
violated. In these situations it is likely that the variable length codes designed for the intra
frames are a better match. The alternative inter VLC mode allows for the use of the intra
codes in these sitations, improving the compression performance. Note that the codewords
used in intra and inter frame coding are the same. What is different is the interpretation. To
detect the proper interpretation, the decoder first decodes the block assuming an inter frame
codebook. If the decoding results in more than 64 coefficients it switches its interpretation.

18 . 10 . 12 Modi f ied Quant izat ion Mode

In this mode, along with changes in the signalling of changes in quantization parameters, the
quantization process is improved in several ways. In the baseline mode, both the luminanace
and chrominance components in a block are quantized using the same quantizer. In the
modified quantization mode, the quantizer used for the luminance coefficients is different
from the quantizer used for the chrominance component. This allows the quantizers to be
more closely matched to the statistics of the input. The modified quantization mode also
allows for the quantization of a wider range of coefficient values, preventing significant
overload. If the coefficient exceeds the range of the baseline quantizer, the encoder sends
an escape symbol followed by an 11-bit representation of the coefficient. This relaxation of
the structured representation of the quantizer outputs makes it more likely that bit errors will
be accepted as valid quantizer outputs. To reduce the chances of this happening, the mode
prohibits “unreasonable” coefficient values.

18.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding 603

18 . 10 . 13 Enhanced Reference Pic ture Se lec t ion
Mode

Motion-compensated prediction is accomplished by searching the previous picture for a block
similar to the block being encoded. The enhanced reference picture selection mode allows
the encoder to search more than one picture to find the best match and then use the best-
suited picture to perform motion-compensated prediction. Reference picture selection can
be accomplished on a macroblock level. The selection of the pictures to be used for motion
compensation can be performed in one of two ways. A sliding window of M pictures can
be used and the last M decoded, with reconstructed pictures stored in a multipicture buffer.
A more complex adaptive memory (not specified by the standard) can also be used in place
of the simple sliding window. This mode significantly enhances the prediction, resulting in
a reduction in the rate for equivalent quality. However, it also increases the computational
and memory requirements on the encoder. This memory burden can be mitigated to some
extent by assigning an unused label to pictures or portions of pictures. These pictures, or
portions of pictures, then do not need to be stored in the buffer. This unused label can also
be used as part of the adaptive memory control to manage the pictures that are stored in the
buffer.

18.11 ITU-T Recommendation H.264, MPEG-4
Part 10, Advanced Video Coding

As described in the previous section, the H.263 recommendation started out as an incremental
improvement over H.261 and ended up with a slew of optional features, which in fact make
the improvement over H.261 more than incremental. In H.264 we have a standard that started
out with a goal of significant improvement over the MPEG-1/2 standards and achieved those
goals. The standard, while initiated by ITU-T’s Video Coding Experts Group (VCEG), ended
up being a collaboration of the VCEG and ISO/IEC’s MPEG committees which joined to
form the Joint Video Team (JVT) in December of 2001 [255]. The collaboration of various
groups in the development of this standard has also resulted in the richness of names. It
is variously known as ITU-T H.264, MPEG-4 Part 10, MPEG-4 Advanced Video Coding
(AVC), as well as the name under which it started its life, H.26L. We will just refer to it as
H.264.

The basic block diagram looks very similar to the previous schemes. There are intra
and inter pictures. The inter pictures are obtained by subtracting a motion compensated
prediction from the original picture. The residuals are transformed into the frequency domain.
The transform coefficients are scanned, quantized, and encoded using variable length codes.
A local decoder reconstructs the picture for use in future predictions. The intra picture is
coded without reference to past pictures.

While the basic block diagram is very similar to the previous standards the details are
quite different. We will look at these details in the following sections. We begin by looking at
the basic structural elements, then look at the decorrelation of the inter frames. The decorre-
lation process includes motion-compensated prediction and transformation of the prediction
error. We then look at the decorrelation of the intra frames. This includes intra prediction

604 18 V I D E O C O M P R E S S I O N

modes and transforms used in this mode. We finally look at the different binary coding
options.

The macroblock structure is the same as used in the other standards. Each macroblock
consists of four 8 × 8 luminance blocks and two chrominance blocks. An integer number
of sequential macroblocks can be put together to form a slice. In the previous standards
the smallest subdivision of the macroblock was into its 8×8 component blocks. The H.264
standard allows 8×8 macroblock partitions to be further divided into sub-macroblocks of size
8×4, 4×8, and 4×4. These smaller blocks can be used for motion-compensated prediction,
allowing for tracking of much finer details than is possible with the other standards. Along
with the 8 × 8 partition, the macroblock can also be partitioned into two 8 × 16 or 16 × 8
blocks. In field mode the H.264 standard groups 16 × 8 blocks from each field to form a
16×16 macroblock.

18 . 11 . 1 Mot ion-Compensated Predi c t ion

The H.264 standard uses its macroblock partitions to develop a tree-structured motion
compensation algorithm. One of the problems with motion-compensated prediction has
always been the selection of the size and shape of the block used for prediction. Different parts
of a video scene will move at different rates in different directions or stay put. A smaller-size
block allows tracking of diverse movement in the video frame, leading to better prediction
and hence lower bit rates. However, more motion vectors need to be encoded and transmitted,
using up valuable bit resources. In fact, in some video sequences the bits used to encode
the motion vectors may make up most of the bits used. If we use small blocks, the number
of motion vectors goes up, as does the bit rate. Because of the variety of sizes and shapes
available to it, the H.264 algorithm provides a high level of accuracy and efficiency in its
prediction. It uses small block sizes in regions of activity and larger block sizes in stationary
regions. The availability of rectangular shapes allows the algorithm to focus more precisely
on regions of activity.

The motion compensation is accomplished using quarter-pixel accuracy. To do this the
reference picture is “expanded” by interpolating twice between neighboring pixels. This
results in a much smoother residual. The prediction process is also enhanced by the use of
filters on the 4 block edges. The standard allows for searching of up to 32 pictures to find
the best matching block. The selection of the reference picture is done on the macroblock
partion level, so all sub-macroblock partitions use the same reference picture.

As in H.263, the motion vectors are differentially encoded. The basic scheme is the same.
The median values of the three neighboring motion vectors are used to predict the current
motion vector. This basic strategy is modified if the block used for motion compensation is
a 16×16, 16×8, or 8×16 block.

For B pictures, as in the case of the previous standards, two motion vectors are allowed for
each macroblock or sub-macroblock partition. The prediction for each pixel is the weighted
average of the two prediction pixels.

Finally, a Pskip type macroblock is defined for which 16 × 16 motion compensation is
used and the prediction error is not transmitted. This type of macroblock is useful for regions
of little change as well as for slow pans.

18.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding 605

18 . 11 . 2 The Trans form

Unlike the previous video coding schemes, the transform used is not an 8 × 8 DCT. For
most blocks the transform used is a 4×4 integer DCT-like matrix. The transform matrix is
given by

H =

⎡

⎢
⎢
⎣

1 1 1 1
2 1 −1 2
1 −1 −1 1
1 −2 2 −1

⎤

⎥
⎥
⎦

The inverse transform matrix is given by

HI =

⎡

⎢
⎢
⎣

1 1 1 1
2

1 1
2 −1 −1

1 − 1
2 −1 1

1 −1 1 − 1
2

⎤

⎥
⎥
⎦

The transform operations can be implemented using addition and shifts. Multiplication by 2
is a single-bit left shift and division by 2 is a single-bit right shift. However, there is a price
for the simplicity. Notice that the norm of the rows is not the same and the product of the
forward and inverse transforms does not result in the identity matrix. This discrepancy is
compensated for by the use of scale factors during quantization. There are several advantages
to using a smaller integer transform. The integer nature makes the implementation simple
and also avoids error accumulation in the transform process. The smaller size allows better
representation of small stationary regions of the image. The smaller blocks are less likely to
contain a wide range of values. Where there are sharp transitions in the blocks, any ringing
effect is contained within a small number of pixels.

18 . 11 . 3 Int ra Predi c t ion

In the previous standards the I pictures were transform coded without any decorrelation.
This meant that the number of bits required for the I frames is substantially higher than for
the other pictures. When asked why he robbed banks, the notorious robber Willie Sutton is
supposed to have said simply, “because that’s where the money is.” Because most of the
bits in video coding are expended in encoding the I frame, it made a lot of sense for the
JVT to look at improving the compression of the I frame in order to substantially reduce
the bitrate.

The H.264 standard contains a number of spatial prediction modes. For 4×4 blocks there
are nine prediction modes. Eight of these are summarized in Figure 18.17. The sixteen pixels
in the block a−p are predicted using the thirteen pixels on the boundary (and extending
from it).1 The arrows corresponding to the mode numbers show the direction of prediction.
For example, mode 0 corresponds to the downward pointing arrow. In this case pixel A is
used to predict pixels a� e� i�m, pixel B is used to predict pixels b� f� j� n, pixel C is used

1 The jump from pixel L to Q is a historical artifact. In an earlier version of the standard, pixels below L were also
used in some prediction modes.

606 18 V I D E O C O M P R E S S I O N

8

1

6

4

5
0

7

3

a b c d

e f g h

i j k l

n o pm

I

J

K

L

Q A B C D E F G H

F IGURE 18. 17 Prediction modes for 4×4 intra prediction.

to predict pixels c� g� k� o, and pixel D is used to predict pixels d�h� l�p. In mode 3, also
called the diagonal down/left mode, B is used to predict a, C is used to predict b� e, pixel
D is used to predict pixels c� f� i, pixel E is used to predict pixels d�g� j�m, pixel F is used
to predict pixels h�k�n, pixel G is used to predict pixels l� o, and pixel H is used to predict
pixel p. If pixels E�F�G, and H are not available, pixel D is repeated four times. Notice that
no direction is availble for mode 2. This is called the DC mode, in which the average of the
left and top boundary pixels is used as a prediction for all sixteen pixels in the 4×4 block.
In most cases the prediction modes used for all the 4×4 blocks in a macroblock are heavily
correlated. The standard uses this correlation to efficiently encode the mode information.

In smooth regions of the picture it is more convenient to use prediction on a macroblock
basis. In case of the full macroblock there are four prediction modes. Three of them cor-
respond to modes 0, 1, and 2 (vertical, horizontal, and DC). The fourth prediction mode is
called the planar prediction mode. In this mode a three-parameter plane is fitted to the pixel
values of the macroblock.

18 . 11 . 4 Quant izat ion

The H.264 standard uses a uniform scalar quantizer for quantizing the coefficients. There
are 52 scalar quantizers indexed by Qstep. The step size doubles for every sixth Qstep.
The quantization incorporates scaling necessitated by the approximations used to make the
transform simple. If
i�j�Qstep� are the weights for the �i� j�th coefficient then

li�j = sign��i�j�

⌊ ��i�j�
i�j�Qstep�

Qstep

⌋

In order to broaden the quantization interval around the origin we add a small value in the
numerator.

li�j = sign��i�j�

⌊ ��i�j�
i�j�Qstep�+f�Qstep�

Qstep

⌋

18.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding 607

In actual implementation we do away with divisions and the quantization is implemented
as [255]

li�j = sign��i�j����i�j�M�QM� r�+f217+QE 	 >> 17+QE

where

QM = Qstep�mod6�

QE =
⌊

Qstep

6

r =
⎧
⎨

⎩

0 i� j even
1 i� j odd
2 otherwise

and M is given in Table 18.9
The inverse quantization is given by

�̂i�j = li�jS�QM� r� << QE

where S is given in Table 18.10
Prior to quantization, the transforms of the 16 × 16 luminance residuals and the 8 × 8

chrominance residuals of the macroblock-based intra prediction are processed to further
remove redundancy. Recall that macroblock-based prediction is used in smooth regions of
the I picture. Therefore, it is very likely that the DC coefficients of the 4 × 4 transforms

TAB L E 18 . 9 M�QM�r� values in H.264.

QM r = 0 r = 1 r = 2

0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

TAB L E 18 . 10 S�QM�r� values in H.264.

QM r = 0 r = 1 r = 2

0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

608 18 V I D E O C O M P R E S S I O N

are heavily correlated. To remove this redundancy, a discrete Walsh-Hadamard transform is
used on the DC coefficients in the macroblock. In the case of the luminance block, this is
a 4 × 4 transform for the sixteen DC coefficients. The smaller chrominance block contains
four DC coefficients, so we use a 2×2 discrete Walsh-Hadamard transform.

18 . 11 . 5 Coding

The H.264 standard contains two options for binary coding. The first uses exponen-
tial Golomb codes to encode the parameters and a context-adaptive variable length code
(CAVLC) to encode the quantizer labels [255]. The second binarizes all the values and then
uses a context-adaptive binary arithmetic code (CABAC) [256].

An exponential Golomb code for a positive number x can be obtained as the unary code
for M = �log2�x+1�� concatenated with the M bit natural binary code for x+1. The unary
code for a number x is given as x zeros followed by a 1. The exponential Golomb code for
zero is 1.

The quantizer labels are first scanned in a zigzag fashion. In many cases the last nonzero
labels in the zigzag scan have a magnitude of 1. The number N of nonzero labels and the
number T of trailing ones are used as an index into a codebook that is selected based on
the values of N and T for the neighboring blocks. The maximum allowed value of T is
3. If the number of trailing labels with a magnitude of 1 is greater than 3, the remaining
are encoded in the same manner as the other nonzero labels. The nonzero labels are then
coded in reverse order. That is, the quantizer labels corresponding to the higher-frequency
coefficients are encoded first. First the signs of the trailing 1s are encoded with 0s signifying
positive values and 1s signifying negative values. Then the remaining quantizer labels are
encoded in reverse scan order. After this, the total number of 0s in the scan between the
beginning of the scan and the last nonzero label is encoded. This will be a number between
0 and 16 −N . Then the run of zeros before each label, starting with the last nonzero label
is encoded until we run out of zeros or coefficients. The number of bits used to code each
zero run will depend on the number of zeros remaining to be assigned.

In the second technique, which provides higher compression, all values are first converted
to binary strings. This binarization is performed, depending on the data type, using unary
codes, truncated unary codes, exponential Golomb codes, and fixed-length codes, plus five
specific binary trees for encoding macroblock and sub-macroblock types. The binary string
is encoded in one of two ways. Redundant strings are encoded using a context-adaptive
binary arithmetic code. Binary strings that are random, such as the suffixes of the exponential
Golomb codes, bypass the arithmetic coder. The arithmetic coder has 399 contexts available
to it, with 325 of these contexts used for encoding the quantizer labels. These numbers
include contexts for both frame and field slices. In a pure frame or field slice only 277 of
the 399 context models are used. These context models are simply Cum_Count tables for
use with a binary arithmetic coder. The H.264 standard recommends a multiplication-free
implementation of binary arithmetic coding.

The H.264 standard is substantially more flexible than previous standards, with a much
broader range of applications. In terms of performance, it claims a 50% reduction in bit rate
over previous standards for equivalent perceptual quality [255].

18.12 MPEG-4 Part 2 609

18.12 MPEG-4 Part 2

The MPEG-4 standard provides a more abstract approach to the coding of multimedia. The
standard views a multimedia “scene” as a collection of objects. These objects can be visual,
such as a still background or a talking head, or aural, such as speech, music, background
noise, and so on. Each of these objects can be coded independently using different techniques
to generate separate elementary bitstreams. These bitstreams are multiplexed along with
a scene description. A language called the Binary Format for Scenes (BIFS) based on
the Virtual Reality Modeling Language (VRML) has been developed by MPEG for scene
descriptions. The decoder can use the scene description and additional input from the user
to combine or compose the objects to reconstruct the original scene or create a variation on
it. The protocol for managing the elementary streams and their multiplexed version, called
the Delivery Multimedia Integration Framework (DMIF), is an important part of MPEG-4.
However, as our focus in this book is on compression, we will not discuss the protocol
(for details, see the standard [213]).

A block diagram for the basic video coding algorithm is shown in Figure 18.18. Although
shape coding occupies a very small portion of the diagram, it is a major part of the algorithm.
The different objects that make up the scene are coded and sent to the multiplexer. The
information about the presence of these objects is also provided to the motion-compensated

Predictor 1

Predictor 2

Predictor 3

Motion
texture
coding

+

–

DCT Q

Q–1

Video
multiplex

Inverse
DCT

Frame
store

Shape
coding

Motion
estimation

Sw
itc

h

+

F IGURE 18. 18 A block diagram for video coding.

610 18 V I D E O C O M P R E S S I O N

predictor, which can use object-based motion compensation algorithms to improve the
compression efficiency. What is left after the prediction can be transmitted using a DCT-
based coder. The video coding algorithm can also use a background “sprite”—generally a
large panoramic still image that forms the background for the video sequence. The sprite is
transmitted once, and the moving foreground video objects are placed in front of different
portions of the sprite based on the information about the background provided by the encoder.

The MPEG-4 standard also envisions the use of model-based coding, where a triangular
mesh representing the moving object is transmitted followed by texture information for
covering the mesh. Information about movement of the mesh nodes can then be transmitted
to animate the video object. The texture coding technique suggested by the standard is the
embedded zerotree wavelet (EZW) algorithm. In particular, the standard envisions the use of
a facial animation object to render an animated face. The shape, texture, and expressions of
the face are controlled using facial definition parameters (FDPs) and facial action parameters
(FAPs). BIFS provides features to support custom models and specialized interpretation of
FAPs.

The MPEG-2 standard allows for SNR and spatial scalability. The MPEG-4 standard
also allows for object scalability, in which certain objects may not be sent in order to reduce
the bandwidth requirement.

18.13 Packet Video

The increasing popularity of communication over networks has led to increased interest in
the development of compression schemes for use over networks. In this section we look at
some of the issues involved in developing video compression schemes for use over networks.

18.14 ATM Networks

With the explosion of information, we have also seen the development of new ways of
transmitting the information. One of the most efficient ways of transferring information
among a large number of users is the use of asynchronous transfer mode (ATM) technology.
In the past, communication has usually taken place over dedicated channels; that is, in
order to communicate between two points, a channel was dedicated only to transferring
information between those two points. Even if there was no information transfer going on
during a particular period, the channel could not be used by anyone else. Because of the
inefficiency of this approach, there is an increasing movement away from it. In an ATM
network, the users divide their information into packets, which are transmitted over channels
that can be used by more than one user.

We could draw an analogy between the movement of packets over a communication
network and the movement of automobiles over a road network. If we break up a message
into packets, then the movement of the message over the network is like the movement of
a number of cars on a highway system going from one point to the other. Although two
cars may not occupy the same position at the same time, they can occupy the same road
at the same time. Thus, more than one group of cars can use the road at any given time.

18.14 ATM Networks 611

Furthermore, not all the cars in the group have to take the same route. Depending on the
amount of traffic on the various roads that run between the origin of the traffic and the
destination, different cars can take different routes. This is a more efficient utilization of
the road than if the entire road was blocked off until the first group of cars completed its
traversal of the road.

Using this analogy, we can see that the availability of transmission capacity, that is, the
number of bits per second that we can transmit, is affected by factors that are outside our
control. If at a given time there is very little traffic on the network, the available capacity
will be high. On the other hand, if there is congestion on the network, the available capacity
will be low. Furthermore, the ability to take alternate routes through the network also means
that some of the packets may encounter congestion, leading to a variable amount of delay
through the network. In order to prevent congestion from impeding the flow of vital traffic,
networks will prioritize the traffic, with higher-priority traffic being permitted to move
ahead of lower-priority traffic. Users can negotiate with the network for a fixed amount of
guaranteed traffic. Of course, such guarantees tend to be expensive, so it is important that
the user have some idea about how much high-priority traffic they will be transmitting over
the network.

18 . 14 . 1 Compress ion Issues in ATM Networks

In video coding, this situation provides both opportunities and challenges. In the video
compression algorithms discussed previously, there is a buffer that smooths the output of
the compression algorithm. Thus, if we encounter a high-activity region of the video and
generate more than the average number of bits per second, in order to prevent the buffer
from overflowing, this period has to be followed by a period in which we generate fewer
bits per second than the average. Sometimes this may happen naturally, with periods of low
activity following periods of high activity. However, it is quite likely that this would not
happen, in which case we have to reduce the quality by increasing the step size or dropping
coefficients, or maybe even entire frames.

The ATM network, if it is not congested, will accommodate the variable rate generated
by the compression algorithm. But if the network is congested, the compression algorithm
will have to operate at a reduced rate. If the network is well designed, the latter situation will
not happen too often, and the video coder can function in a manner that provides uniform
quality. However, when the network is congested, it may remain so for a relatively long
period. Therefore, the compression scheme should have the ability to operate for significant
periods of time at a reduced rate. Furthermore, congestion might cause such long delays that
some packets arrive after they can be of any use; that is, the frame they were supposed to
be a part of might have already been reconstructed.

In order to deal with these problems, it is useful if the video compression algorithm
provides information in a layered fashion, with a low-rate high-priority layer that can be
used to reconstruct the video, even though the reconstruction may be poor, and low-priority
enhancement layers that enhance the quality of the reconstruction. This is similar to the idea
of progressive transmission, in which we first send a crude but low-rate representation of
the image, followed by higher-rate enhancements. It is also useful if the bit rate required for
the high-priority layer does not vary too much.

612 18 V I D E O C O M P R E S S I O N

18 . 14 . 2 Compress ion Algor i thms for Packet Video

Almost any compression algorithm can be modified to perform in the ATM environment, but
some approaches seem more suited to this environment. We briefly present two approaches
(see the original papers for more details).

One compression scheme that functions in an inherently layered manner is subband
coding. In subband coding, the lower-frequency bands can be used to provide the basic
reconstruction, with the higher-frequency bands providing the enhancement. As an example,
consider the compression scheme proposed for packet video by Karlsson and Vetterli [257].
In their scheme, the video is divided into 11 bands. First, the video signal is divided into
two temporal bands. Each band is then split into four spatial bands. The low-low band of the
temporal low-frequency band is then split into four spatial bands. A graphical representation
of this splitting is shown in Figure 18.19. The subband denoted 1 in the figure contains
the basic information about the video sequence. Therefore, it is transmitted with the highest
priority. If the data in all the other subbands are lost, it will still be possible to reconstruct
the video using only the information in this subband. We can also prioritize the output of
the other bands, and if the network starts getting congested and we are required to reduce
our rate, we can do so by not transmitting the information in the lower-priority subbands.
Subband 1 also generates the least variable data rate. This is very helpful when negotiating
with the network for the amount of priority traffic.

Given the similarity of the ideas behind progressive transmission and subband coding,
it should be possible to use progressive transmission algorithms as a starting point in the

Subband 4

Subband 3

Subband 2

Subband 1

HPF
HPF

HPF: High-pass filter
LPF: Low-pass filter

LPF

HPF

Spatial filtersTemporal filters

LPF

HPF

LPF

LPF

HPF

LPF

HPF

LPF

HPF

LPF HPF

LPF

HPF

LPF

Subband 11

Subband 10

Subband 9

Subband 8

Subband 7

Subband 6

Subband 5

F IGURE 18. 19 Analysis filter bank.

18.15 Summary 613

design of layered compression schemes for packet video. Chen, Sayood, and Nelson [258]
use a DCT-based progressive transmission scheme [259] to develop a compression algorithm
for packet video. In their scheme, they first encode the difference between the current frame
and the prediction for the current frame using a 16 × 16 DCT. They only transmit the DC
coefficient and the three lowest-order AC coefficients to the receiver. The coded coefficients
make up the highest-priority layer.

The reconstructed frame is then subtracted from the original. The sum of squared errors
is calculated for each 16 × 16 block. Blocks with squared error greater than a prescribed
threshold are subdivided into four 8×8 blocks, and the coding process is repeated using an
8 × 8 DCT. The coded coefficients make up the next layer. Because only blocks that fail
to meet the threshold test are subdivided, information about which blocks are subdivided is
transmitted to the receiver as side information.

The process is repeated with 4 × 4 blocks, which make up the third layer, and 2 × 2
blocks, which make up the fourth layer. Although this algorithm is a variable-rate coding
scheme, the rate for the first layer is constant. Therefore, the user can negotiate with the
network for a fixed amount of high-priority traffic. In order to remove the effect of delayed
packets from the prediction, only the reconstruction from the higher-priority layers is used
for prediction.

This idea can be used with many different progressive transmission algorithms to make
them suitable for use over ATM networks.

18.15 Summary

In this chapter we described a number of different video compression algorithms. The
only new information in terms of compression algorithms was the description of motion-
compensated prediction. While the compression algorithms themselves have already been
studied in previous chapters, we looked at how these algorithms are used under differ-
ent requirements. The three scenarios that we looked at are teleconferencing, asymmetric
applications such as broadcast video, and video over packet networks. Each application has
slightly different requirements, leading to different ways of using the compression algo-
rithms. We have by no means attempted to cover the entire area of video compression.
However, by now you should have sufficient background to explore the subject further using
the following list as a starting point.

Fu r t he r Read ing

1. An excellent source for information about the technical issues involved with digital
video is the book The Art of Digital Video, by J. Watkinson [260].

2. The MPEG-1 standards document [252], “Information Technology—Coding of Mov-
ing Pictures and Associated Audio for Digital Storage Media Up to about 1.5 Mbit/s,”
has an excellent description of the video compression algorithm.

614 18 V I D E O C O M P R E S S I O N

3. Detailed information about the MPEG-1 and MPEG-2 video standards can also be
found in MPEG Video Compression Standard, by J.L. Mitchell, W.B. Pennebaker,
C.E. Fogg, and D.J. LeGall [261].

4. To find more on model-based coding, see “Model Based Image Coding: Advanced
Video Coding Techniques for Very Low Bit-Rate Applications,” by K. Aizawa and
T.S. Huang [250], in the February 1995 issue of the Proceedings of the IEEE.

5. A good place to begin exploring the various areas of research in packet video is the
June 1989 issue of the IEEE Journal on Selected Areas of Communication.

6. The MPEG 1/2 and MPEG 4 standards are covered in an accesible manner in the
book. The MPEG Handbook by J. Watkinson [261]. Focal press 2001.

7. A good source for information about H.264 and MPEG-4 is H.264 and MPEG-4 video
compression, by I.E.G. Richardson. Wiley, 2003.

18.16 Projects and Problems

1. (a) Take the DCT of the Sinan image and plot the average squared value of each
coefficient.

(b) Circularly shift each line of the image by eight pixels. That is, new_image�i� j	 =
old_image�i� j + 8 �mod 256�	. Take the DCT of the difference and plot the
average squared value of each coefficient.

(c) Compare the results in parts (a) and (b) above. Comment on the differences.

A
Probability and Random Processes

I
n this appendix we will look at some of the concepts relating to probability and
random processes that are important in the study of systems. Our coverage will
be highly selective and somewhat superficial, but enough to use probability
and random processes as a tool in understanding data compression systems.

A.1 Probabi l i ty

There are several different ways of defining and thinking about probability. Each approach
has some merit; perhaps the best approach is the one that provides the most insight into the
problem being studied.

A . 1 . 1 Frequency of Occurrence

The most common way that most people think about probability is in terms of outcomes, or
sets of outcomes, of an experiment. Let us suppose we conduct an experiment E that has N
possible outcomes. We conduct the experiment nT times. If the outcome �i occurs ni times,
we say that the frequency of occurrence of the outcome �i is ni

nT
. We can then define the

probability of occurrence of the outcome �i as

P��i� = lim
nT →�

ni

nT

�

In practice we do not have the ability to repeat an experiment an infinite number of
times, so we often use the frequency of occurrence as an approximation to the probability.
To make this more concrete consider a specific experiment. Suppose we turn on a television
1,000,000 times. Of these times, 800,000 times we turn the television on during a commercial

616 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

and 200,000 times we turn it on and we don’t get a commercial. We could say the frequency
of occurrence, or the estimate of the probability, of turning on a television set in the middle
of a commercial is 0.8. Our experiment E here is the turning on a television set, and
the outcomes are commercial and no commercial. We could have been more careful with
noting what was on when we turned on the television set and noticed whether the program
was a news program (2000 times), a newslike program (20,000 times), a comedy program
(40,000 times), an adventure program (18,000 times), a variety show (20,000 times), a
talk show (90,000 times), or a movie (10,000 times), and whether the commercial was
for products or services. In this case the outcomes would be product commercial, service
commercial, comedy, adventure, news, pseudonews, variety, talk show, and movie. We could
then define an event as a set of outcomes. The event commercial would consist of the
outcomes product commercial, service commercial; the event no commercial would consist
of the outcomes comedy, adventure, news, pseudonews, variety, talk show, movie. We could
also define other events such as programs that may contain news. This set would contain
the outcomes news, pseudonews, and talk shows, and the frequency of occurrence of this set
is 0.112.

Formally, when we define an experiment E, associated with the experiment we also
define a sample space S that consists of the outcomes ��i�. We can then combine these
outcomes into sets that are called events, and assign probabilities to these events. The largest
subset of S (event) is S itself, and the probability of the event S is simply the probability
that the experiment will have an outcome. The way we have defined things, this probability
is one; that is, P�S� = 1.

A . 1 . 2 A Measure of Be l ie f

Sometimes the idea that the probability of an event is obtained through the repetitions of
an experiment runs into trouble. What, for example, is the probability of your getting from
Logan Airport to a specific address in Boston in a specified period of time? The answer
depends on a lot of different factors, including your knowledge of the area, the time of day,
the condition of your transport, and so on. You cannot conduct an experiment and get your
answer because the moment you conduct the experiment, the conditions have changed, and
the answer will now be different. We deal with this situation by defining a priori and a
posteriori probabilities. The a priori probability is what you think or believe the probability
to be before certain information is received or certain events take place; the a posteriori
probability is the probability after you have received further information. Probability is no
longer as rigidly defined as in the frequency of occurrence approach but is a somewhat more
fluid quantity, the value of which changes with changing experience. For this approach to
be useful we have to have a way of describing how the probability evolves with changing
information. This is done through the use of Bayes’ rule, named after the person who first
described it. If P�A� is the a priori probability of the event A and P�A�B� is the a posteriori
probability of the event A given that the event B has occurred, then

P�A�B� = P�A�B�

P�B�
(A.1)

A.1 Probability 617

where P�A�B� is the probability of the event A and the event B occurring. Similarly,

P�B�A� = P�A�B�

P�A�
� (A.2)

Combining (A.1) and (A.2) we get

P�A�B� = P�B�A�P�A�

P�B�
� (A.3)

If the events A and B do not provide any information about each other, it would be
reasonable to assume that

P�A�B� = P�A�

and therefore from (A.1),

P�A�B� = P�A�P�B�� (A.4)

Whenever (A.4) is satisfied, the events A and B are said to be statistically independent, or
simply independent.

Example A . 1 . 1:

A very common channel model used in digital communication is the binary symmetric
channel. In this model the input is a random experiment with outcomes 0 and 1. The output
of the channel is another random event with two outcomes 0 and 1. Obviously, the two
outcomes are connected in some way. To see how, let us first define some events:

A: Input is 0
B: Input is 1
C: Output is 0
D: Output is 1

Let’s suppose the input is equally likely to be a 1 or a 0. So P�A� = P�B� = 0�5. If the
channel was perfect, that is, you got out of the channel what you put in, then we would have

P�C�A� = P�D�B� = 1

and

P�C�B� = P�D�A� = 0�

With most real channels this system is seldom encountered, and generally there is a small
probability 	 that the transmitted bit will be received in error. In this case, our probabilities
would be

P�C�A� = P�D�B� = 1− 	

P�C�B� = P�D�A� = 	�

618 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

How do we interpret P�C� and P�D�? These are simply the probability that at any given
time the output is a 0 or a 1. How would we go about computing these probabilities given
the available information? Using (A.1) we can obtain P�A�C� and P�B�C� from P�C�A�,
P�C�B�, P�A�, and P�B�. These are the probabilities that the input is 0 and the output is 1,
and the input is 1 and the output is 1. The event C—that is, the output is 1—will occur only
when one of the two joint events occurs, therefore,

P�C� = P�A�C�+P�B�C��

Similarly,

P�D� = P�A�D�+P�B�D��

Numerically, this comes out to be

P�C� = P�D� = 0�5� �

A . 1 . 3 The Axiomat i c Approach

Finally, there is an approach that simply defines probability as a measure, without much
regard for physical interpretation. We are very familiar with measures in our daily lives. We
talk about getting a 9-foot cable or a pound of cheese. Just as length and width measure the
extent of certain physical quantities, probability measures the extent of an abstract quantity,
a set. The thing that probability measures is the “size” of the event set. The probability
measure follows similar rules to those followed by other measures. Just as the length of
a physical object is always greater than or equal to zero, the probability of an event is
always greater than or equal to zero. If we measure the length of two objects that have no
overlap, then the combined length of the two objects is simply the sum of the lengths of the
individual objects. In a similar manner the probability of the union of two events that do not
have any outcomes in common is simply the sum of the probability of the individual events.
So as to keep this definition of probability in line with the other definitions, we normalize
this quantity by assigning the largest set, which is the sample space S, the size of 1. Thus,
the probability of an event always lies between 0 and 1. Formally, we can write these rules
down as the three axioms of probability.

Given a sample space S:

� Axiom 1: If A is an event in S, then P�A� ≥ 0.

� Axiom 2: The probability of the sample space is 1; that is, P�S� = 1.

� Axiom 3: If A and B are two events in S and A∩B =
, then P�A∪B� = P�A�+P�B�.

Given these three axioms we can come up with all the other rules we need. For example,
suppose Ac is the complement of A. What is the probability of Ac? We can get the answer
by using Axiom 2 and Axiom 3. We know that

Ac ∪A = S

A.1 Probability 619

and Axiom 2 tells us that P�S� = 1, therefore,

P�Ac ∪A� = 1� (A.5)

We also know that Ac ∩A =
, therefore, from Axiom 3

P�Ac ∪A� = P�Ac�+P�A�� (A.6)

Combining equations (A.5) and (A.6), we get

P�Ac� = 1−P�A�� (A.7)

Similarly, we can use the three axioms to obtain the probability of A∪B when A∩B �=
 as

P�A∪B� = P�A�+P�B�−P�A∩B�� (A.8)

In all of the above we have been using two events A and B. We can easily extend these
rules to more events.

Example A . 1 . 2:

Find P�A∪B∪C� when A∩B = A∩C =
, and B∪C �=
.
Let

D = B∪C�

Then

A∩C =
� A∩B =
 ⇒ A∩D =
�

Therefore, from Axiom 3,

P�A∪D� = P�A�+P�D�

and using (A.8)

P�D� = P�B�+P�C�−P�B∩C��

Combining everything, we get

P�A∪B∪C� = P�A�+P�B�+P�C�−P�B∩C�� �

The axiomatic approach is especially useful when an experiment does not have discrete
outcomes. For example, if we are looking at the voltage on a telephone line, the probability
of any specific value of the voltage is zero because there are an uncountably infinite number
of different values that the voltage can take, and we can assign nonzero values to only a
countably infinite number. Using the axiomatic approach, we can view the sample space as
the range of voltages, and events as subsets of this range.

We have given three different interpretations of probability, and in the process described
some rules by which probabilities can be manipulated. The rules described here (such as

620 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

Bayes’ rule, the three axioms, and the other rules we came up with) work the same way
regardless of which interpretation you hold dear. The purpose of providing you with three
different interpretations was to provide you with a variety of perspectives with which to
view a given situation. For example, if someone says that the probability of a head when
you flip a coin is 0.5, you might interpret that number in terms of repeated experiments (if
I flipped the coin 1000 times, I would expect to get 500 heads). However, if someone tells
you that the probability of your getting killed while crossing a particular street is 0.1, you
might wish to interpret this information in a more subjective manner. The idea is to use the
interpretation that gives you the most insight into a particular problem, while remembering
that your interpretation will not change the mathematics of the situation.

Now that have expended a lot of verbiage to say what probability is, let’s spend a few
lines saying what it is not. Probability does not imply certainty. When we say that the
probability of an event is one, this does not mean that event will happen. On the other hand,
when we say that the probability of an event is zero, that does not mean that event won’t
happen. Remember, mathematics only models reality, it is not reality.

A.2 Random Variables

When we are trying to mathematically describe an experiment and its outcomes, it is much
more convenient if the outcomes are numbers. A simple way to do this is to define a mapping
or function that assigns a number to each outcome. This mapping or function is called a
random variable. To put that more formally: Let S be a sample space with outcomes ��i�.
Then the random variable X is a mapping

X � S → � (A.9)

where � denotes the real number line. Another way of saying the same thing is

X��� = x� � ∈ S�x ∈ �� (A.10)

The random variable is generally represented by an uppercase letter, and this is the
convention we will follow. The value that the random variable takes on is called the
realization of the random variable and is represented by a lowercase letter.

Example A . 2 . 1:

Let’s take our television example and rewrite it in terms of a random variable X:

X�product commercial� = 0

X�service commercial� = 1

X�news� = 2

X�pseudonews� = 3

X�talk show� = 4

A.3 Distribution Functions 621

X�variety� = 5

X�comedy� = 6

X�adventure� = 7

X�movie� = 8

Now, instead of talking about the probability of certain programs, we can talk about
the probability of the random variable X taking on certain values or ranges of values. For
example, P�X��� ≤ 1� is the probability of seeing a commercial when the television is
turned on (generally, we drop the argument and simply write this as P�X ≤ 1�). Similarly,
the P�programs that may contain news� could be written as P�1 < X ≤ 4�, which is
substantially less cumbersome. �

A.3 Distr ibut ion Funct ions

Defining the random variable in the way that we did allows us to define a special probability
P�X ≤ x�. This probability is called the cumulative distribution function (cdf) and is denoted
by FX�x�, where the random variable is the subscript and the realization is the argument. One
of the primary uses of probability is the modeling of physical processes, and we will find
the cumulative distribution function very useful when we try to describe or model different
random processes. We will see more on this later.

For now, let us look at some of the properties of the cdf:

Property 1: 0 ≤ FX�x� ≤ 1. This follows from the definition of the cdf.

Property 2: The cdf is a monotonically nondecreasing function. That is,

x1 ≥ x2 ⇒ FX�x1� ≥ FX�x2��

To show this simply write the cdf as the sum of two probabilities:

FX�x1� = P�X ≤ x1� = P�X ≤ x2�+P�x2 < X ≤ x1�

= FX�x2�+P�x1 < X ≤ x2� ≥ FX�x2�

Property 3:

lim
n→� FX�x� = 1�

Property 4:

lim
n→−� FX�x� = 0�

Property 5: If we define

FX�x−� = P�X < x�

then

P�X = x� = FX�x�−FX�x−��

622 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

Example A . 3 . 1:

Assuming that the frequency of occurrence was an accurate estimate of the probabilities, let
us obtain the cdf for our television example:

FX�x� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

0�4 0 ≤ x < 1

0�8 1 ≤ x < 2

0�802 2 ≤ x < 3

0�822 3 ≤ x < 4

0�912 4 ≤ x < 5

0�932 5 ≤ x < 6

0�972 6 ≤ x < 7

0�99 7 ≤ x < 8

1�00 8 ≤ x �

Notice a few things about this cdf. First, the cdf consists of step functions. This is
characteristic of discrete random variables. Second, the function is continuous from the right.
This is due to the way the cdf is defined.

The cdf is somewhat different when the random variable is a continuous random variable.
For example, if we sampled a speech signal and then took differences of the samples, the
resulting random process would have a cdf that would look something like this:

FX�x� =
{

1
2 e2x x ≤ 0

1− 1
2 e−2x x > 0�

The thing to notice in this case is that because FX�x� is continuous

P�X = x� = FX�x�−FX�x−� = 0�

We can also have processes that have distributions that are continuous over some ranges
and discrete over others.

Along with the cumulative distribution function, another function that also comes in very
handy is the probability density function (pdf). The pdf corresponding to the cdf FX�x� is
written as fX�x�. For continuous cdfs, the pdf is simply the derivative of the cdf. For the
discrete random variables, taking the derivative of the cdf would introduce delta functions,
which have problems of their own. So in the discrete case, we obtain the pdf through
differencing. It is somewhat awkward to have different procedures for obtaining the same
function for different types of random variables. It is possible to define a rigorous unified
procedure for getting the pdf from the cdf for all kinds of random variables. However, in
order to do so, we need some familiarity with measure theory, which is beyond the scope
of this appendix. Let us look at some examples of pdfs.

A.4 Expectation 623

Example A . 3 . 2:

For our television scenario:

fX�x� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0�4 if X = 0

0�4 if X = 1

0�002 if X = 2

0�02 if X = 3

0�09 if X = 4

0�02 if X = 5

0�04 if X = 6

0�018 if X = 7

0�01 if X = 8

0 otherwise �

Example A . 3 . 3:

For our speech example, the pdf is given by

fX�x� = 1
2

e−2�x�� �

A.4 Expectat ion

When dealing with random processes, we often deal with average quantities, like the signal
power and noise power in communication systems, and the mean time between failures
in various design problems. To obtain these average quantities, we use something called
an expectation operator. Formally, the expectation operator E � is defined as follows: The
expected value of a random variable X is given by

EX� =∑

i

xiP�X = xi� (A.11)

when X is a discrete random variable with realizations �xi� and by

EX� =
∫ �

−�
xfX�x�dx (A.12)

where fX�x� is the pdf of X.
The expected value is very much like the average value and, if the frequency of occurrence

is an accurate estimate of the probability, is identical to the average value. Consider the
following example:

Example A . 4 . 1:

Suppose in a class of 10 students the grades on the first test were

10� 9� 8� 8� 7� 7� 7� 6� 6� 2

624 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

The average value is 70
10 , or 7. Now let’s use the frequency of occurrence approach to estimate

the probabilities of the various grades. (Notice in this case the random variable is an identity
mapping, i.e., X��� = �.) The probability estimate of the various values the random variable
can take on are

P�10� = P�9� = P�2� = 0�1� P�8� = P�6� = 0�2� P�7� = 0�3�

P�6� = P�5� = P�4� = P�3� = P�1� = P�0� = 0

The expected value is therefore given by

EX� = �0��0�+ �0��1�+ �0�1��2�+ �0��3�+ �0��4�+ �0��5�+ �0�2��6�

+�0�3��7�+ �0�2��8�+ �0�1��9�+ �0�1��10� = 7� �

It seems that the expected value and the average value are exactly the same! But we
have made a rather major assumption about the accuracy of our probability estimate. In
general the relative frequency is not exactly the same as the probability, and the average
expected values are different. To emphasize this difference and similarity, the expected
value is sometimes referred to as the statistical average, while our everyday average value
is referred to as the sample average.

We said at the beginning of this section that we are often interested in things such as
signal power. The average signal power is often defined as the average of the signal squared.
If we say that the random variable is the signal value, then this means that we have to find
the expected value of the square of the random variable. There are two ways of doing this.
We could define a new random variable Y = X2, then find fY �y� and use (A.12) to find
EY�. An easier approach is to use the fundamental theorem of expectation, which is

Eg�X�� =∑

i

g�xi�P�X = xi� (A.13)

for the discrete case, and

Eg�X�� =
∫ �

−�
g�x�fX�x�dx (A.14)

for the continuous case.
The expected value, because of the way it is defined, is a linear operator. That is,

E�X +�Y� = �EX�+�EY�� � and � are constants�

You are invited to verify this for yourself.
There are several functions g�� whose expectations are used so often that they have been

given special names.

A . 4 . 1 Mean

The simplest and most obvious function is the identity mapping g�X� = X. The expected
value E�X� is referred to as the mean and is symbolically referred to as �X . If we take a

A.5 Types of Distribution 625

random variable X and add a constant value to it, the mean of the new random process is
simply the old mean plus the constant. Let

Y = X +a

where a is a constant value. Then

�Y = EY� = EX +a� = EX�+Ea� = �X +a�

A . 4 . 2 Second Moment

If the random variable X is an electrical signal, the total power in this signal is given by
EX2�, which is why we are often interested in it. This value is called the second moment
of the random variable.

A . 4 . 3 Var iance

If X is a random variable with mean �X , then the quantity E�X − �X�2� is called the
variance and is denoted by �2

X . The square root of this value is called the standard deviation
and is denoted by �. The variance and the standard deviation can be viewed as a measure
of the “spread” of the random variable. We can show that

�2
X = EX2�−�2

X�

If EX2� is the total power in a signal, then the variance is also referred to as the total AC
power.

A.5 Types of Distr ibut ion

There are several specific distributions that are very useful when describing or modeling
various processes.

A . 5 . 1 Uni form Dis t r ibut ion

This is the distribution of ignorance. If we want to model data about which we know nothing
except its range, this is the distribution of choice. This is not to say that there are not
times when the uniform distribution is a good match for the data. The pdf of the uniform
distribution is given by

fX�x� =
{

1
b−a

for a ≤ X ≤ b

0 otherwise.
(A.15)

The mean of the uniform distribution can be obtained as

�X =
∫ b

a
x

1
b−a

dx = b+a

2
�

626 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

Similarly, the variance of the uniform distribution can be obtained as

�2
X = �b−a�2

12
�

Details are left as an exercise.

A . 5 . 2 Gauss ian Dis t r ibut ion

This is the distribution of choice in terms of mathematical tractability. Because of its form,
it is especially useful with the squared error distortion measure. The probability density
function for a random variable with a Gaussian distribution, and mean � and variance �2, is

fX�x� = 1√
2��2

exp− �x−��2

2�2
(A.16)

where the mean of the distribution is � and the variance is �2.

A . 5 . 3 Laplac ian Dis t r ibut ion

Many sources that we will deal with will have probability density functions that are quite
peaked at zero. For example, speech consists mainly of silence; therefore, samples of speech
will be zero or close to zero with high probability. Image pixels themselves do not have
any attraction to small values. However, there is a high degree of correlation among pixels.
Therefore, a large number of the pixel-to-pixel differences will have values close to zero. In
these situations, a Gaussian distribution is not a very close match to the data. A closer match
is the Laplacian distribution, which has a pdf that is peaked at zero. The density function
for a zero mean random variable with Laplacian distribution and variance �2 is

fX�x� = 1√
2�2

exp
−√

2 �x�
�

� (A.17)

A . 5 . 4 Gamma Dis t r ibut ion

A distribution with a pdf that is even more peaked, though considerably less tractable than
the Laplacian distribution, is the Gamma distribution. The density function for a Gamma
distributed random variable with zero mean and variance �2 is given by

fX�x� =
4
√

3
√

8�� �x� exp
−√

3 �x�
2�

� (A.18)

A.6 Stochast ic Process

We are often interested in experiments whose outcomes are a function of time. For example,
we might be interested in designing a system that encodes speech. The outcomes are particular

A.6 Stochastic Process 627

patterns of speech that will be encountered by the speech coder. We can mathematically
describe this situation by extending our definition of a random variable. Instead of the
random variable mapping an outcome of an experiment to a number, we map it to a function
of time. Let S be a sample space with outcomes ��i�. Then the random or stochastic process
X is a mapping

X � S → � (A.19)

where � denotes the set of functions on the real number line. In other words,

X��� = x�t�� � ∈ S� x ∈ � � −� < t < �� (A.20)

The functions x�t� are called the realizations of the random process, and the collection
of functions �x��t�� indexed by the outcomes � is called the ensemble of the stochastic
process. We can define the mean and variance of the ensemble as

��t� = EX�t�� (A.21)

�2�t� = E�X�t�−��t��2�� (A.22)

If we sample the ensemble at some time t0, we get a set of numbers �x��t0�� indexed
by the outcomes �, which by definition is a random variable. By sampling the ensemble at
different times ti, we get different random variables �x��ti��. For simplicity we often drop
the � and t and simply refer to these random variables as �xi�.

Associated with each of these random variables, we will have a distribution function.
We can also define a joint distribution function for two or more of these random variables:
Given a set of random variables �x1� x2� � � � � xN �, the joint cumulative distribution function
is defined as

FX1X2···XN
�x1� x2� � � � � xN � = P�X1 < x1�X2 < x2� � � � �XN < xN � (A.23)

Unless it is clear from the context what we are talking about, we will refer to the cdf of the
individual random variables Xi as the marginal cdf of Xi.

We can also define the joint probability density function for these random variables
fX1X2···XN

�x1� x2� � � � � xN � in the same manner as we defined the pdf in the case of the
single random variable. We can classify the relationships between these random variables
in a number of different ways. In the following we define some relationships between two
random variables. The concepts are easily extended to more than two random variables.

Two random variables X1 and X2 are said to be independent if their joint distribution
function can be written as the product of the marginal distribution functions of each random
variable; that is,

FX1X2
�x1� x2� = FX1

�x1�FX2
�x2�� (A.24)

This also implies that

fX1X2
�x1� x2� = fX1

�x1�fX2
�x2�� (A.25)

If all the random variables X1�X2� � � � are independent and they have the same distribution,
they are said to be independent, identically distributed (iid).

628 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

Two random variables X1 and X2 are said to be orthogonal if

EX1X2� = 0� (A.26)

Two random variables X1 and X2 are said to be uncorrelated if

E�X1 −�1��X2 −�2�� = 0 (A.27)

where �1 = EX1� and �2 = EX2�.
The autocorrelation function of a random process is defined as

Rxx�ti� t2� = EX1X2�� (A.28)

For a given value of N , suppose we sample the stochastic process at N times �ti� to
get the N random variables �Xi� with cdf FX1X2…XN

�x1� x2� � � � � xN �, and another N times
�ti +T� to get the random variables �X′

i� with cdf FX′
1X′

2
…X′

N
�x′

1� x′
2� � � � � x′

N �. If

FX1X2…XN
�x1� x2� � � � � xN � = FX′

1X′
2
…X′

N
�x′

1� x′
2� � � � � x′

N � (A.29)

for all N and T , the process is said to be stationary.
The assumption of stationarity is a rather important assumption because it is a statement

that the statistical characteristics of the process under investigation do not change with
time. Thus, if we design a system for an input based on the statistical characteristics of the
input today, the system will still be useful tomorrow because the input will not change its
characteristics. The assumption of stationarity is also a very strong assumption, and we can
usually make do quite well with a weaker condition, wide sense or weak sense stationarity.

A stochastic process is said to be wide sense or weak sense stationary if it satisfies the
following conditions:

1. The mean is constant; that is, ��t� = � for all t.

2. The variance is finite.

3. The autocorrelation function Rxx�t1� t2� is a function only of the difference between
t1 and t2, and not of the individual values of t1 and t2; that is,

Rxx�t1� t2� = Rxx�t1 − t2� = Rxx�t2 − t1�� (A.30)

Fu r t he r Read ing

1. The classic books on probability are the two-volume set An Introduction to Probability
Theory and Its Applications, by W. Feller [171].

2. A commonly used text for an introductory course on probability and random processes
is Probability, Random Variables, and Stochastic Processes, by A. Papoulis [172].

A.7 Projects and Problems 629

A.7 Projects and Problems

1. If A∩B �=
, show that

P�A∪B� = P�A�+P�B�−P�A∩B��

2. Show that expectation is a linear operator in both the discrete and the continuous case.

3. If a is a constant, show that Ea� = a.

4. Show that for a random variable X,

�2
X = EX2�−�2

X�

5. Show that the variance of the uniform distribution is given by

�2
X = �b−a�2

12
�

B
A Brief Review of Matrix Concepts

I
n this appendix we will look at some of the basic concepts of matrix algebra.
Our intent is simply to familiarize you with some basic matrix operations
that we will need in our study of compression. Matrices are very useful for
representing linear systems of equations, and matrix theory is a powerful tool
for the study of linear operators. In our study of compression techniques we

will use matrices both in the solution of systems of equations and in our study of linear
transforms.

B .1 A Matrix

A collection of real or complex elements arranged in M rows and N columns is called a
matrix of order M ×N

A =

⎡

⎢
⎢
⎢
⎣

a00 a01 · · · a0N−1

a10 a11 · · · a1N−1
���

���
���

a�M−1�0 a�M−1�1 · · · aM−1N−1

⎤

⎥
⎥
⎥
⎦

(B.1)

where the first subscript denotes the row that an element belongs to and the second subscript
denotes the column. For example, the element a02 belongs in row 0 and column 2, and the
element a32 belongs in row 3 and column 2. The generic ijth element of a matrix A is
sometimes represented as �A�ij . If the number of rows is equal to the number of columns
�N = M�, then the matrix is called a square matrix. A special square matrix that we will be
using is the identity matrix I, in which the elements on the diagonal of the matrix are 1 and
all other elements are 0:

�I�ij =
{

1 i = j

0 i �= j�
(B.2)

632 B A B R I E F R E V I E W O F M A T R I X C O N C E P T S

If a matrix consists of a single column �N = 1�, it is called a column matrix or vector of
dimension M . If it consists of a single row �M = 1�, it is called a row matrix or vector of
dimension N .

The transpose AT of a matrix A is the N ×M matrix obtained by writing the rows of
the matrix as columns and the columns as rows:

AT =

⎡

⎢
⎢
⎢
⎣

a00 a10 · · · a�M−1�0

a01 a11 · · · a�M−1�1
���

���
���

a0�N−1� a1�N−1� · · · aM−1N−1

⎤

⎥
⎥
⎥
⎦

(B.3)

The transpose of a column matrix is a row matrix and vice versa.
Two matrices A and B are said to be equal if they are of the same order and their

corresponding elements are equal; that is,

A = B ⇔ aij = bij� i = 0� 1� � � � M −1	 j = 0� 1� � � � N −1� (B.4)

B .2 Matrix Operations

You can add, subtract, and multiply matrices, but since matrices come in all shapes and
sizes, there are some restrictions as to what operations you can perform with what kind of
matrices. In order to add or subtract two matrices, their dimensions have to be identical—
same number of rows and same number of columns. In order to multiply two matrices, the
order in which they are multiplied is important. In general A × B is not equal to B × A.
Multiplication is only defined for the case where the number of columns of the first matrix
is equal to the number of rows of the second matrix. The reasons for these restrictions will
become apparent when we look at how the operations are defined.

When we add two matrices, the resultant matrix consists of elements that are the sum
of the corresponding entries in the matrices being added. Let us add two matrices A and B
where

A =
[
a00 a01 a02

a10 a11 a12

]

and

B =
[
b00 b01 b02

b10 b11 b12

]

The sum of the two matrices, C, is given by

C =
[
c00 c12 c13

c21 c22 c23

]

=
[
a00 +b00 a01 +b01 a02 +b02

a10 +b10 a11 +b11 a12 +b12

]

(B.5)

Notice that each element of the resulting matrix C is the sum of corresponding elements of
the matrices A and B. In order for the two matrices to have corresponding elements, the
dimension of the two matrices has to be the same. Therefore, addition is only defined for
matrices with identical dimensions (i.e., same number of rows and same number of columns).

B.2 Matrix Operations 633

Subtraction is defined in a similar manner. The elements of the difference matrix are made
up of term-by-term subtraction of the matrices being subtracted.

We could have generalized matrix addition and matrix subtraction from our knowledge
of addition and subtraction of numbers. Multiplication of matrices is another kettle of fish
entirely. It is easiest to describe matrix multiplication with an example. Suppose we have
two different matrices A and B where

A =
[
a00 a01 a02

a10 a11 a12

]

and

B =
⎡

⎣
b00 b01

b10 b11

b20 b21

⎤

⎦ (B.6)

The product is given by

C = AB =
[
c00 c01

c10 c11

]

=
[
a00b00 +a01b10 +a02b20 a00b01 +a01b11 +a02b21

a10b00 +a11b10 +a12b20 a10b01 +a11b11 +a12b21

]

You can see that the i� j element of the product is obtained by adding term by term the
product of elements in the ith row of the first matrix with those of the jth column of the
second matrix. Thus, the element c10 in the matrix C is obtained by summing the term-by-
term products of row 1 of the first matrix A with column 0 of the matrix B. We can also
see that the resulting matrix will have as many rows as the matrix to the left and as many
columns as the matrix to the right.

What happens if we reverse the order of the multiplication? By the rules above we will
end up with a matrix with three rows and three columns.

⎡

⎣
b00a00 +b01a10 b00a01 ++b01a11 b00a02 +b01a12

b10a00 +b11a10 b10a01 ++b11a11 b10a02 +b11a12

b20a00 +b21a10 b20a01 ++b21a11 b20a02 +b21a12

⎤

⎦

The elements of the two product matrices are different as are the dimensions.
As we can see, multiplication between matrices follows some rather different rules than

multiplication between real numbers. The sizes have to match up—the number of columns of
the first matrix has to be equal to the number of rows of the second matrix, and the order of
multiplication is important. Because of the latter fact we often talk about premultiplying or
postmultiplying. Premultiplying B by A results in the product AB, while postmultiplying B
by A results in the product BA.

We have three of the four elementary operations. What about the fourth elementary
operation, division? The easiest way to present division in matrices is to look at the formal
definition of division when we are talking about real numbers. In the real number system,
for every number a different from zero, there exists an inverse, denoted by 1/a or a−1, such
that the product of a with its inverse is one. When we talk about a number b divided by a
number a, this is the same as the multiplication of b with the inverse of a. Therefore, we
could define division by a matrix as the multiplication with the inverse of the matrix. A/B

634 B A B R I E F R E V I E W O F M A T R I X C O N C E P T S

would be given by AB−1. Once we have the definition of an inverse of a matrix, the rules
of multiplication apply.

So how do we define the inverse of a matrix? Following the definition for real numbers,
in order to define the inverse of a matrix we need to have the matrix counterpart of 1. In
matrices this counterpart is called the identity matrix. The identity matrix is a square matrix
with diagonal elements being 1 and off-diagonal elements being 0. For example, a 3 × 3
identity matrix is given by

I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (B.7)

The identity matrix behaves like the number one in the matrix world. If we multiply any
matrix with the identity matrix (of appropriate dimension), we get the original matrix back.
Given a square matrix A, we define its inverse, A−1, as the matrix that when premultiplied
or postmultiplied by A results in the identity matrix. For example, consider the matrix

A =
[

3 4
1 2

]

(B.8)

The inverse matrix is given by

A−1 =
[

1 −2
−0�5 1�5

]

(B.9)

To check that this is indeed the inverse matrix, let us multiply them:
[

3 4
1 2

][
1 −2

−0�5 1�5

]

=
[

1 0
0 1

]

(B.10)

and
[

1 −2
−0�5 1�5

][
3 4
1 2

]

=
[

1 0
0 1

]

(B.11)

If A is a vector of dimension M , we can define two specific kinds of products. If A is a
column matrix, then the inner product or dot product is defined as

AT A =
M−1∑

i=0

a2
i0 (B.12)

and the outer product or cross product is defined as

AAT =

⎡

⎢
⎢
⎢
⎣

a00a00 a00a10 · · · a00a�M−1�0

a10a00 a10a10 · · · a10a�M−1�0
���

���
���

a�M−1�0a00 a
�M−1�1�a10 · · · a�M−1�0a�M−1�0

⎤

⎥
⎥
⎥
⎦

(B.13)

Notice that the inner product results in a scalar, while the outer product results in a matrix.

B.2 Matrix Operations 635

In order to find the inverse of a matrix, we need the concepts of determinant and cofactor.
Associated with each square matrix is a scalar value called the determinant of the matrix.
The determinant of a matrix A is denoted as �A�. To see how to obtain the determinant of
an N ×N matrix, we start with a 2×2 matrix. The determinant of a 2×2 matrix is given as

�A� =
∣
∣
∣
∣
a00 a01

a10 a11

∣
∣
∣
∣= a00a11 −a01a10� (B.14)

Finding the determinant of a 2 × 2 matrix is easy. To explain how to get the determinants
of larger matrices, we need to define some terms.

The minor of an element aij of an N ×N matrix is defined to be the determinant of the
N −1×N −1 matrix obtained by deleting the row and column containing aij . For example,
if A is a 4×4 matrix

A =

⎡

⎢
⎢
⎣

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎤

⎥
⎥
⎦ (B.15)

then the minor of the element a12, denoted by M12, is the determinant

M12 =
∣
∣
∣
∣
∣
∣

a00 a01 a03

a20 a21 a23

a30 a31 a33

∣
∣
∣
∣
∣
∣

(B.16)

The cofactor of aij denoted by Aij is given by

Aij = �−1�i+jMij� (B.17)

Armed with these definitions we can write an expression for the determinant of an N ×N
matrix as

�A� =
N−1∑

i=0

aijAij (B.18)

or

�A� =
N−1∑

j=0

aijAij (B.19)

where the aij are taken from a single row or a single column. If the matrix has a particular
row or column that has a large number of zeros in it, we would need fewer computations if
we picked that particular row or column.

Equations (B.18) and (B.19) express the determinant of an N × N matrix in terms
of determinants of N − 1 × N − 1 matrices. We can express each of the N − 1 × N − 1
determinants in terms of N −2×N −2 determinants, continuing in this fashion until we have
everything expressed in terms of 2×2 determinants, which can be evaluated using (B.14).

Now that we know how to compute a determinant, we need one more definition before
we can define the inverse of a matrix. The adjoint of a matrix A, denoted by �A�, is a

636 B A B R I E F R E V I E W O F M A T R I X C O N C E P T S

matrix whose ijth element is the cofactor Aji. The inverse of a matrix A, denoted by A−1,
is given by

A−1 = 1

�A� �A�� (B.20)

Notice that for the inverse to exist the determinant has to be nonzero. If the determinant
for a matrix is zero, the matrix is said to be singular. The method we have described here
works well with small matrices; however, it is highly inefficient if N becomes greater than 4.
There are a number of efficient methods for inverting matrices; see the books in the Further
Reading section for details.

Corresponding to a square matrix A of size N × N are N scalar values called the
eigenvalues of A. The eigenvalues are the N solutions of the equation ��I −A� = 0. This
equation is called the characteristic equation.

Example B . 2 . 1:

Let us find the eigenvalues of the matrix
[

4 5
2 1

]

��I −A� = 0
∣
∣
∣
∣

[
� 0
0 �

]

−
[

4 5
2 1

]∣∣
∣
∣ = 0

��−4���−1�−10 = 0

�1 = −1 �2 = 6 (B.21)

�

The eigenvectors Vk of an N ×N matrix are the N vectors of dimension N that satisfy
the equation

AVk = �kVk� (B.22)

Fu r t he r Read ing

1. The subject of matrices is covered at an introductory level in a number of textbooks.
A good one is Advanced Engineering Mathematics, by E. Kreyszig [129].

2. Numerical methods for manipulating matrices (and a good deal more) are presented
in Numerical Recipes in C, by W.H. Press, S.A. Teukolsky, W.T. Vetterling, and
B.P. Flannery [178].

C
The Root Lattices

D
efine eL

i to be a vector in L dimensions whose ith component is 1 and all other
components are 0. Some of the root systems that are used in lattice vector
quantization are given as follows:

DL ±eL
i ± eL

j , i �= j, i� j = 1� 2� � � � �L

AL ±�eL+1
i − eL+1

j �, i �= j, i� j = 1� 2� � � � �L
EL ±eL

i ± eL
j , i �= j, i� j = 1� 2� � � � �L−1�

1
2 �±e1 ± e2 · · ·± eL−1 ±

√
2− �L−1�

4 eL� L = 6� 7� 8

Let us look at each of these definitions a bit closer and see how they can be used to generate
lattices.

DL Let us start with the DL lattice. For L = 2, the four roots of the D2 algebra are e2
1 +e2

2,
e2

1 − e2
2, −e2

1 + e2
2, and −e2

1 − e2
2, or (1, 1), �1�−1�, �−1� 1�, and �−1�−1�. We can pick any

two independent vectors from among these four to form the basis set for the D2 lattice.
Suppose we picked (1, 1) and �1�−1�. Then any integral combination of these vectors is a
lattice point. The resulting lattice is shown in Figure 10.24 in Chapter 10. Notice that the
sum of the coordinates are all even numbers. This makes finding the closest lattice point to
an input a relatively simple exercise.

AL The roots of the AL lattices are described using L+ 1-dimensional vectors. However,
if we select any L independent vectors from this set, we will find that the points that are
generated all lie in an L-dimensional slice of the L+1-dimensional space. This can be seen
from Figure C.1.

We can obtain an L-dimensional basis set from this using a simple algorithm described
in [139]. In two dimensions, this results in the generation of the vectors �1� 0� and �− 1

2 �
√

3
2 �.

The resulting lattice is shown in Figure 10.25 in Chapter 10. To find the closest point to the
AL lattice, we use the fact that in the embedding of the lattice in L+1 dimensions, the sum
of the coordinates is always zero. The exact procedure can be found in [141, 140].

638 C T H E R O O T L A T T I C E S

−e1 + e3

−e2 + e3

−e1 + e2

e2 − e3

e1 − e3

e1 − e2

F IGURE C. 1 The A2 roots embedded in three dimensions.

EL As we can see from the definition, the EL lattices go up to a maximum dimension of 8.
Each of these lattices can be written as unions of the AL and DL lattices and their translated
version. For example, the E8 lattice is the union of the D8 lattice and the D8 lattice translated
by the vector � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 � 1
2 �. Therefore, to find the closest E8 point to an input x, we

find the closest point of D8 to x, and the closest point of D8 to x − � 1
2 � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 � 1
2 � 1

2 �,
and pick the one that is closest to x.

There are several advantages to using lattices as vector quantizers. There is no need to
store the codebook, and finding the closest lattice point to a given input is a rather simple
operation. However, the quantizer codebook is only a subset of the lattice. How do we know
when we have wandered out of this subset, and what do we do about it? Furthermore, how
do we generate a binary codeword for each of the lattice points that lie within the boundary?
The first problem is easy to solve. Earlier we discussed the selection of a boundary to reduce
the effect of the overload error. We can check the location of the lattice point to see if
it is within this boundary. If not, we are outside the subset. The other questions are more
difficult to resolve. Conway and Sloane [142] have developed a technique that functions by
first defining the boundary as one of the quantization regions (expanded many times) of the
root lattices. The technique is not very complicated, but it takes some time to set up, so we
will not describe it here (see [142] for details).

We have given a sketchy description of lattice quantizers. For a more detailed tutorial
review, see [140]. A more theoretical review and overview can be found in [262].

Bibliography

[1] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Advanced Reference Series.
Prentice Hall, Englewood Cliffs, NJ, 1990.

[2] B.L. van der Waerden. A History of Algebra. Springer-Verlag, 1985.

[3] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons Inc., 1991.

[4] T. Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression.
Prentice-Hall, Englewood Cliffs, NJ, 1971.

[5] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1991.

[6] R.J. McEliece. The Theory of Information and Coding, volume 3 of Encyclopedia of
Mathematics and Its Application. Addison-Wesley, 1977.

[7] C.E. Shannon. A Mathematical Theory of Communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[8] C.E. Shannon. Prediction and Entropy of Printed English. Bell System Technical Jour-
nal, 30:50–64, January 1951.

[9] R.W. Hamming. Coding and Information Theory. 2nd edition, Prentice-Hall, 1986.

[10] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, 1993.

[11] R.G. Gallager. Information Theory and Reliable Communication. Wiley, 1968.

[12] A.A. Sardinas and G.W. Patterson. A Necessary and Sufficient Condition for the Unique
Decomposition of Coded Messages. In IRE Convention Records, pages 104–108.
IRE, 1953.

[13] J. Rissanen. Modeling by the Shortest Data Description. Automatica, 14:465–471, 1978.

[14] J.R. Pierce. Symbols, Signals, and Noise—The Nature and Process of Communications.
Harper, 1961.

[15] R.B. Ash. Information Theory. Dover, 1990. (Originally published by Interscience
Publishers in 1965.)

[16] R.M. Fano. Transmission of Information. MIT Press, Cambridge, MA, 1961.

[17] R.M. Gray. Entropy and Information Theory. Springer-Verlag, 1990.

640 B I B L I O G R A P H Y

[18] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer, 1997.

[19] S. Tate. Complexity Measures. In K. Sayood, editor, Lossless Compression Handbook,
pages 35–54. Academic Press, 2003.

[20] P. Grunwald, I.J. Myung, and M.A. Pitt. Advances in Minimum Description Length.
MIT Press, 2005.

[21] P. Grunwald. Minimum Description Length Tutorial. In P. Grunwald, I.J. Myung,
and M.A. Pitt, editors, Advances in Minimum Description Length, pages 23–80. MIT
Press, 2005.

[22] D.A. Huffman. A method for the construction of minimum redundancy codes. Proc.
IRE, 40:1098–1101, 1951.

[23] R.G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information
Theory, IT-24(6):668–674, November 1978.

[24] N. Faller. An Adaptive System for Data Compression. In Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers, pages 593–597. IEEE, 1973.

[25] D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180, 1985.

[26] J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal of ACM,
34(4):825–845, October 1987.

[27] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, 1975.

[28] S.W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, IT-
12:399–401, July 1966.

[29] R.F. Rice. Some Practical Universal Noiseless Coding Techniques. Technical Report
JPL Publication 79-22, JPL, March 1979.

[30] R.F. Rice, P.S. Yeh, and W. Miller. Algorithms for a very high speed universal noiseless
coding module. Technical Report 91-1, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA, February 1991.

[31] P.S. Yeh, R.F. Rice, and W. Miller. On the optimality of code options for a universal
noiseless coder. Technical Report 91-2, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA, February 1991.

[32] B.P. Tunstall. Synthesis of Noiseless Compression Codes. Ph.D. thesis, Georgia Institute
of Technology, September 1967.

[33] T. Robinson. SHORTEN: Simple Lossless and Near-Lossless Waveform Compression,
1994. Cambridge Univ. Eng. Dept., Cambridge, UK. Technical Report 156.

[34] T. Liebchen and Y.A. Reznik. MPEG-4 ALS: An Emerging Standard for Lossless Audio
Coding. In Proceedings of the Data Compression Conference, DCC ’04. IEEE, 2004.

B I B L I O G R A H Y 641

[35] M. Hans and R.W. Schafer. AudioPak—An Integer Arithmetic Lossless Audio Code.
In Proceedings of the Data Compression Conference, DCC ’98. IEEE, 1998.

[36] S. Pigeon. Huffman Coding. In K. Sayood, editor, Lossless Compression Handbook,
pages 79–100. Academic Press, 2003.

[37] D.A. Lelewer and D.S. Hirschberg. Data Compression. ACM Computing Surveys,
September 1987.

[38] J.A. Storer. Data Compression—Methods and Theory. Computer Science Press, 1988.

[39] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[40] F. Jelinek. Probabilistic Information Theory. McGraw-Hill, 1968.

[41] R. Pasco. Source Coding Algorithms for Fast Data Compression. Ph.D. thesis, Stanford
University, 1976.

[42] J.J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal of
Research and Development, 20:198–203, May 1976.

[43] J.J. Rissanen and G.G. Langdon. Arithmetic coding. IBM Journal of Research and
Development, 23(2):149–162, March 1979.

[44] J. Rissanen and K.M. Mohiuddin. A Multiplication-Free Multialphabet Arithmetic
Code. IEEE Transactions on Communications, 37:93–98, February 1989.

[45] I.H. Witten, R. Neal, and J.G. Cleary. Arithmetic Coding for Data Compression.
Communications of the Association for Computing Machinery, 30:520–540, June 1987.

[46] A. Said. Arithmetic Coding. In K. Sayood, editor, Lossless Compression Handbook,
pages 101–152. Academic Press, 2003.

[47] G.G. Langdon, Jr. An introduction to arithmetic coding. IBM Journal of Research and
Development, 28:135–149, March 1984.

[48] J.J. Rissanen and G.G. Langdon. Universal Modeling and Coding. IEEE Transactions
on Information Theory, IT-27(1):12–22, 1981.

[49] G.G. Langdon and J.J. Rissanen. Compression of black-white images with arithmetic
coding. IEEE Transactions on Communications, 29(6):858–867, 1981.

[50] T. Bell, I.H. Witten, and J.G. Cleary. Modeling for Text Compression. ACM Computing
Surveys, 21:557–591, December 1989.

[51] W.B. Pennebaker, J.L. Mitchell, G.G. Langdon, Jr., and R.B. Arps. An overview of
the basic principles of the Q-coder adaptive binary Arithmetic Coder. IBM Journal of
Research and Development, 32:717–726, November 1988.

[52] J.L. Mitchell and W.B. Pennebaker. Optimal hardware and software arithmetic coding
procedures for the Q-coder. IBM Journal of Research and Development, 32:727–736,
November 1988.

642 B I B L I O G R A P H Y

[53] W.B. Pennebaker and J.L. Mitchell. Probability estimation for the Q-coder. IBM Journal
of Research and Development, 32:737–752, November 1988.

[54] J. Ziv and A. Lempel. A universal algorithm for data compression. IEEE Transactions
on Information Theory, IT-23(3):337–343, May 1977.

[55] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, IT-24(5):530–536, September 1978.

[56] J.A. Storer and T.G. Syzmanski. Data compression via textual substitution. Journal of
the ACM, 29:928–951, 1982.

[57] T.C. Bell. Better OPM/L text compression. IEEE Transactions on Communications,
COM-34:1176–1182, December 1986.

[58] T.A. Welch. A technique for high-performance data compression. IEEE Computer,
pages 8–19, June 1984.

[59] P. Deutsch. RFC 1951–DEFLATE Compressed Data Format Specification Version 1.3,
1996. http://www.faqs.org/rfcs/rfc1951.htm.

[60] M. Nelson and J.-L. Gailly. The Data Compression Book. M&T Books, CA, 1996.

[61] G. Held and T.R. Marshall. Data Compression. 3rd edition, Wiley, 1991.

[62] G. Roelofs. PNG Lossless Compression. In K. Sayood, editor, Lossless Compression
Handbook, pages 371–390. Academic Press, 2003.

[63] S.C. Sahinalp and N.M. Rajpoot. Dictionary-Based Data Compression: An Algorithmic
Perspective. In K. Sayood, editor, Lossless Compression Handbook, pages 153–168.
Academic Press, 2003.

[64] N. Chomsky. The Minimalist Program. MIT Press, 1995.

[65] J.G. Cleary and I.H. Witten. Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

[66] A. Moffat. Implementing the PPM Data Compression Scheme. IEEE Transactions on
Communications, Vol. COM-38:1917–1921, November 1990.

[67] J.G. Cleary and W.J. Teahan. Unbounded length contexts for PPM. The Computer
Journal, Vol. 40:x30–74, February 1997.

[68] M. Burrows and D.J. Wheeler. A Block Sorting Data Compression Algorithm. Tech-
nical Report SRC 124, Digital Systems Research Center, 1994.

[69] P. Fenwick. Symbol-Ranking and ACB Compression. In K. Sayood, editor, Lossless
Compression Handbook, pages 195–204. Academic Press, 2003.

[70] D. Salomon. Data Compression: The Complete Reference. Springer, 1998.

[71] G.V. Cormack and R.N.S. Horspool. Data compression using dynamic Markov mod-
elling. The Computer Journal, Vol. 30:541–337, June 1987.

B I B L I O G R A H Y 643

[72] P. Fenwick. Burrows-Wheeler Compression. In K. Sayood, editor, Lossless Compres-
sion Handbook, pages 169–194. Academic Press, 2003.

[73] G.K. Wallace. The JPEG still picture compression standard. Communications of the
ACM, 34:31–44, April 1991.

[74] X. Wu, N.D. Memon, and K. Sayood. A Context Based Adaptive Lossless/Nearly-
Lossless Coding Scheme for Continuous Tone Images. ISO Working Document
ISO/IEC SC29/WG1/N256, 1995.

[75] X. Wu and N.D. Memon. CALIC—A context based adaptive lossless image coding
scheme. IEEE Transactions on Communications, May 1996.

[76] K. Sayood and S. Na. Recursively indexed quantization of memoryless sources. IEEE
Transactions on Information Theory, IT-38:1602–1609, November 1992.

[77] S. Na and K. Sayood. Recursive Indexing Preserves the Entropy of a Memoryless
Geometric Source, 1996.

[78] N.D. Memon and X. Wu. Recent developments in context-based predictive techniques
for lossless image compression. The Computer Journal, Vol. 40:127–136, 1997.

[79] S.A. Martucci. Reversible compression of HDTV images using median adaptive predic-
tion and arithmetic coding. In IEEE International Symposium on Circuits and Systems,
pages 1310–1313. IEEE Press, 1990.

[80] M. Rabbani and P.W Jones. Digital Image Compression Techniques, volume TT7 of
Tutorial Texts Series. SPIE Optical Engineering Press, 1991.

[81] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, New York, 1994.

[82] S.L. Tanimoto. Image transmission with gross information first. Computer Graphics
and Image Processing, 9:72–76, January 1979.

[83] K.R. Sloan, Jr. and S.L. Tanimoto. Progressive refinement of raster images. IEEE
Transactions on Computers, C-28:871–874, November 1979.

[84] P.J. Burt and E.H. Adelson. The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications, COM-31:532–540, April 1983.

[85] K. Knowlton. Progressive transmission of grey-scale and binary pictures by simple, effi-
cient, and lossless encoding schemes. Proceedings of the IEEE, 68:885–896, July 1980.

[86] H. Dreizen. Content-driven progressive transmission of grey-scale images. IEEE Trans-
actions on Communications, COM-35:289–296, March 1987.

[87] J. Capon. A Probabilistic Model for Run-Length Coding of Pictures. IRE Transactions
on Information Theory, pages 157–163, 1959.

[88] Y. Yasuda. Overview of digital facsimile coding techniques in Japan. IEEE Proceed-
ings, 68:830–845, July 1980.

644 B I B L I O G R A P H Y

[89] R. Hunter and A.H. Robinson. International digital facsimile coding standards. IEEE
Proceedings, 68:854–867, July 1980.

[90] G.G. Langdon, Jr. and J.J. Rissanen. A Simple General Binary Source Code. IEEE
Transactions on Information Theory, IT-28:800–803, September 1982.

[91] R.B. Arps and T.K. Truong. Comparison of international standards for lossless still
image compression. Proceedings of the IEEE, 82:889–899, June 1994.

[92] M. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I Lossless Compression
Algorithm: Principles and Standardization into JPEG-LS. Technical Report HPL-98-
193, Hewlett-Packard Laboratory, November 1998.

[93] W.K. Pratt. Digital Image Processing. Wiley-Interscience, 1978.

[94] F.W. Campbell. The human eye as an optical filter. Proceedings of the IEEE, 56:1009–
1014, June 1968.

[95] J.L. Mannos and D.J. Sakrison. The Effect of a Visual Fidelity Criterion on the
Encoding of Images. IEEE Transactions on Information Theory, IT-20:525–536, July
1974.

[96] H. Fletcher and W.A. Munson. Loudness, its measurement, definition, and calculation.
Journal of the Acoustical Society of America, 5:82–108, 1933.

[97] B.C.J. Moore. An Introduction to the Psychology of Hearing. 3rd edition, Academic
Press, 1989.

[98] S.S. Stevens and H. Davis. Hearing—Its Psychology and Physiology. American Inst.
of Physics, 1938.

[99] M. Mansuripur. Introduction to Information Theory. Prentice-Hall, 1987.

[100] C.E. Shannon. Coding Theorems for a Discrete Source with a Fidelity Criterion.
In IRE International Convention Records, Vol. 7, pages 142–163. IRE, 1959.

[101] S. Arimoto. An Algorithm for Computing the Capacity of Arbitrary Discrete Mem-
oryless Channels. IEEE Transactions on Information Theory, IT-18:14–20, January
1972.

[102] R.E. Blahut. Computation of Channel Capacity and Rate Distortion Functions. IEEE
Transaction on Information Theory, IT-18:460–473, July 1972.

[103] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 1982.

[104] L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals. Signal Pro-
cessing. Prentice-Hall, 1978.

[105] Thomas Parsons. Voice and Speech Processing. McGraw-Hill, 1987.

[106] E.F. Abaya and G.L. Wise. On the Existence of Optimal Quantizers. IEEE Transac-
tions on Information Theory, IT-28:937–940, November 1982.

B I B L I O G R A H Y 645

[107] N. Jayant and L. Rabiner. The application of dither to the quantization of speech
signals. Bell System Technical Journal, 51:1293–1304, June 1972.

[108] J. Max. Quantizing for Minimum Distortion. IRE Transactions on Information Theory,
IT-6:7–12, January 1960.

[109] W.C. Adams, Jr. and C.E. Geisler. Quantizing Characteristics for Signals Having
Laplacian Amplitude Probability Density Function. IEEE Transactions on Communi-
cations, COM-26:1295–1297, August 1978.

[110] N.S. Jayant. Adaptive quantization with one word memory. Bell System Technical
Journal, pages 1119–1144, September 1973.

[111] D. Mitra. Mathematical Analysis of an adaptive quantizer. Bell Systems Technical
Journal, pages 867–898, May–June 1974.

[112] A. Gersho and D.J. Goodman. A Training Mode Adaptive Quantizer. IEEE Transac-
tions on Information Theory, IT-20:746–749, November 1974.

[113] A. Gersho. Quantization. IEEE Communications Magazine, September 1977.

[114] J. Lukaszewicz and H. Steinhaus. On Measuring by Comparison. Zastos. Mat., pages
225–231, 1955 (in Polish).

[115] S.P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory, IT-28:127–135, March 1982.

[116] J.A. Bucklew and N.C. Gallagher, Jr. A Note on Optimal Quantization. IEEE Trans-
actions on Information Theory, IT-25:365–366, May 1979.

[117] J.A. Bucklew and N.C. Gallagher, Jr. Some Properties of Uniform Step Size Quan-
tizers. IEEE Transactions on Information Theory, IT-26:610–613, September 1980.

[118] K. Sayood and J.D. Gibson. Explicit additive noise models for uniform and nonuniform
MMSE quantization. Signal Processing, 7:407–414, 1984.

[119] W.R. Bennett. Spectra of quantized signals. Bell System Technical Journal,
27:446–472, July 1948.

[120] T. Berger, F. Jelinek, and J. Wolf. Permutation Codes for Sources. IEEE Transactions
on Information Theory, IT-18:166–169, January 1972.

[121] N. Farvardin and J.W. Modestino. Optimum Quantizer Performance for a Class of
Non-Gaussian Memoryless Sources. IEEE Transactions on Information Theory, pages
485–497, May 1984.

[122] H. Gish and J.N. Pierce. Asymptotically Efficient Quantization. IEEE Transactions
on Information Theory, IT-14:676–683, September 1968.

[123] N.S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, 1984.

[124] W. Mauersberger. Experimental Results on the Performance of Mismatched Quantiz-
ers. IEEE Transactions on Information Theory, pages 381–386, July 1979.

646 B I B L I O G R A P H Y

[125] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantization design. IEEE
Transactions on Communications, COM-28:84–95, Jan. 1980.

[126] E.E. Hilbert. Cluster Compression Algorithm—A Joint Clustering Data Compression
Concept. Technical Report JPL Publication 77-43, NASA, 1977.

[127] W.H. Equitz. A new vector quantization clustering algorithm. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37:1568–1575, October 1989.

[128] P.A. Chou, T. Lookabaugh, and R.M. Gray. Optimal pruning with applications to tree-
structured source coding and modeling. IEEE Transactions on Information Theory,
35:31–42, January 1989.

[129] L. Breiman, J.H. Freidman, R.A. Olshen, and C.J. Stone. Classification and Regression
Trees. Wadsworth, California, 1984.

[130] E.A. Riskin. Pruned Tree Structured Vector Quantization in Image Coding. In Pro-
ceedings International Conference on Acoustics Speech and Signal Processing, pages
1735–1737. IEEE, 1989.

[131] D.J. Sakrison. A Geometric Treatment of the Source Encoding of a Gaussian Random
Variable. IEEE Transactions on Information Theory, IT-14(481–486):481–486,
May 1968.

[132] T.R. Fischer. A Pyramid Vector Quantizer. IEEE Transactions on Information Theory,
IT-32:568–583, July 1986.

[133] M.J. Sabin and R.M. Gray. Product Code Vector Quantizers for Waveform and Voice
Coding. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-
32:474–488, June 1984.

[134] W.A. Pearlman. Polar Quantization of a Complex Gaussian Random Variable. IEEE
Transactions on Communications, COM-27:892–899, June 1979.

[135] S.G. Wilson. Magnitude Phase Quantization of Independent Gaussian Variates. IEEE
Transactions on Communications, COM-28:1924–1929, November 1980.

[136] P.F. Swaszek and J.B. Thomas. Multidimensional Spherical Coordinates Quantization.
IEEE Transactions on Information Theory, IT-29:570–575, July 1983.

[137] D.J. Newman. The Hexagon Theorem. IEEE Transactions on Information Theory,
IT-28:137–139, March 1982.

[138] J.H. Conway and N.J.A. Sloane. Voronoi Regions of Lattices, Second Moments
of Polytopes and Quantization. IEEE Transactions on Information Theory, IT-28:
211–226, March 1982.

[139] K. Sayood, J.D. Gibson, and M.C. Rost. An Algorithm for Uniform Vector Quantizer
Design. IEEE Transactions on Information Theory, IT-30:805–814, November 1984.

[140] J.D. Gibson and K. Sayood. Lattice Quantization. In P.W. Hawkes, editor, Advances
in Electronics and Electron Physics, pages 259–328. Academic Press, 1990.

B I B L I O G R A H Y 647

[141] J.H. Conway and N.J.A. Sloane. Fast Quantizing and Decoding Algorithms for Lattice
Quantizers and Codes. IEEE Transactions on Information Theory, IT-28:227–232,
March 1982.

[142] J.H. Conway and N.J.A. Sloane. A Fast Encoding Method for Lattice Codes and
Quantizers. IEEE Transactions on Information Theory, IT-29:820–824, November
1983.

[143] H. Abut, editor. Vector Quantization. IEEE Press, 1990.

[144] A. Buzo, A.H. Gray, R.M. Gray, and J.D. Markel. Speech Coding Based Upon
Vector Quantization. IEEE Transactions on Acoustics, Speech, and Signal Processing,
ASSP-28: 562–574, October 1980.

[145] B. Ramamurthi and A. Gersho. Classified Vector Quantization of Images. IEEE
Transactions on Communications, COM-34:1105–1115, November 1986.

[146] V. Ramamoorthy and K. Sayood. A Hybrid LBG/Lattice Vector Quantizer for High
Quality Image Coding. In E. Arikan, editor, Proc. 1990 Bilkent International Con-
ference on New Trends in Communication, Control and Signal Processing. Elsevier,
1990.

[147] B.H. Juang and A.H. Gray. Multiple Stage Vector Quantization for Speech Coding.
In Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 597–600. IEEE, April 1982.

[148] C.F. Barnes and R.L. Frost. Residual Vector Quantizers with Jointly Optimized Code
Books. In Advances in Electronics and Electron Physics, pages 1–59. Elsevier, 1992.

[149] C.F. Barnes and R.L. Frost. Vector quantizers with direct sum codebooks. IEEE
Transactions on Information Theory, 39:565–580, March 1993.

[150] A. Gersho and V. Cuperman. A Pattern Matching Technique for Speech Coding. IEEE
Communications Magazine, pages 15–21, December 1983.

[151] A.G. Al-Araj and K. Sayood. Vector Quantization of Nonstationary Sources. In
Proceedings International Conference on Telecommunications—1994, pages 92–95.
IEEE, 1994.

[152] A.G. Al-Araj. Recursively Indexed Vector Quantization. Ph.D. thesis, University of
Nebraska—Lincoln, 1994.

[153] S. Panchanathan and M. Goldberg. Adaptive Algorithm for Image Coding Using
Vector Quantization. Signal Processing: Image Communication, 4:81–92, 1991.

[154] D. Paul. A 500–800 bps Adaptive Vector Quantization Vocoder Using a Perceptu-
ally Motivated Distortion Measure. In Conference Record, IEEE Globecom, pages
pp. 1079–1082. IEEE, 1982.

[155] A. Gersho and M. Yano. Adaptive Vector Quantization by Progressive Codevector
Replacement. In Proceedings ICASSP. IEEE, 1985.

648 B I B L I O G R A P H Y

[156] M. Goldberg and H. Sun. Image Sequence Coding � � � IEEE Transactions on Com-
munications, COM-34:703–710, July 1986.

[157] O.T.-C. Chen, Z. Zhang, and B.J. Shen. An Adaptive High-Speed Lossy Data Com-
pression. In Proc. Data Compression Conference ’92, pages 349–355. IEEE, 1992.

[158] X. Wang, S.M. Shende, and K. Sayood. Online Compression of Video Sequences
Using Adaptive Vector Quantization. In Proceedings Data Compression Conference
1994. IEEE, 1994.

[159] A.J. Viterbi and J.K. Omura. Principles of Digital Communications and Coding.
McGraw-Hill, 1979.

[160] R.M. Gray. Vector Quantization. IEEE Acoustics, Speech, and Signal Processing
Magazine, 1:4–29, April 1984.

[161] J. Makhoul, S. Roucos, and H. Gish. Vector Quantization in Speech Coding. Pro-
ceedings of the IEEE, 73:1551–1588, 1985.

[162] P. Swaszek. Vector Quantization. In I.F. Blake and H.V. Poor, editors, Communica-
tions and Networks: A Survey of Recent Advances, pages 362–389. Springer-Verlag,
1986.

[163] N.M. Nasrabadi and R.A. King. Image Coding Using Vector Quantization: A Review.
IEEE Transactions on Communications, August 1988.

[164] C.C. Cutler. Differential Quantization for Television Signals. U.S. Patent 2 605 361,
July 29, 1952.

[165] N.L. Gerr and S. Cambanis. Analysis of Adaptive Differential PCM of a Station-
ary Gauss-Markov Input. IEEE Transactions on Information Theory, IT-33:350–359,
May 1987.

[166] H. Stark and J.W. Woods. Probability, Random Processes, and Estimation Theory for
Engineers. 2nd edition, Prentice-Hall, 1994.

[167] J.D. Gibson. Adaptive Prediction in Speech Differential Encoding Systems. Proceed-
ings of the IEEE, pages 488–525, April 1980.

[168] P.A. Maragos, R.W. Schafer, and R.M. Mersereau. Two Dimensional Linear Predic-
tion and its Application to Adaptive Predictive Coding of Images. IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-32:1213–1229, December 1984.

[169] J.D. Gibson, S.K. Jones, and J.L. Melsa. Sequentially Adaptive Prediction and Coding
of Speech Signals. IEEE Transactions on Communications, COM-22:1789–1797,
November 1974.

[170] B. Widrow, J.M. McCool, M.G. Larimore, and C.R. Johnson, Jr. Stationary and
Nonstationary Learning Characteristics of the LMS Adaptive Filter. Proceedings of
the IEEE, pages 1151–1162, August 1976.

[171] N.S. Jayant. Adaptive deltamodulation with one-bit memory. Bell System Technical
Journal, pages 321–342, March 1970.

B I B L I O G R A H Y 649

[172] R. Steele. Delta Modulation Systems. Halstead Press, 1975.

[173] R.L. Auger, M.W. Glancy, M.M. Goutmann, and A.L. Kirsch. The Space Shuttle
Ground Terminal Delta Modulation System. IEEE Transactions on Communications,
COM-26:1660–1670, November 1978. Part I of two parts.

[174] M.J. Shalkhauser and W.A. Whyte, Jr. Digital CODEC for Real Time Signal Process-
ing at 1.8 bpp. In Global Telecommunication Conference, 1989.

[175] D.G. Luenberger. Optimization by Vector Space Methods. Series In Decision and
Control. John Wiley & Sons Inc., 1969.

[176] B.B. Hubbard. The World According to Wavelets. Series In Decision and Control.
A.K. Peters, 1996.

[177] B.P. Lathi. Signal Processing and Linear Systems. Berkeley Cambridge Press, 1998.

[178] W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.P. Flannery. Numerical Recipes
in C. 2nd edition, Cambridge University Press, 1992.

[179] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 1933.

[180] H. Karhunen. Über Lineare Methoden in der Wahrscheinlich-Keitsrechunung. Annales
Academiae Fennicae, Series A, 1947.

[181] M. Loéve. Fonctions Aléatoires de Seconde Ordre. In P. Lévy, editor, Processus
Stochastiques et Mouvement Brownien. Hermann, 1948.

[182] H.P. Kramer and M.V. Mathews. A Linear Encoding for Transmitting a Set of Corre-
lated Signals. IRE Transactions on Information Theory, IT-2:41–46, September 1956.

[183] J.-Y. Huang and P.M. Schultheiss. Block Quantization of Correlated Gaussian Ran-
dom Variables. IEEE Transactions on Communication Systems, CS-11:289–296,
September 1963.

[184] N. Ahmed and K.R. Rao. Orthogonal Transforms for Digital Signal Processing.
Springer-Verlag, 1975.

[185] J.A. Saghri, A.J. Tescher, and J.T. Reagan. Terrain Adaptive Transform Coding of
Multispectral Data. In Proceedings International Conference on Geosciences and
Remote Sensing (IGARSS ’94), pages 313–316. IEEE, 1994.

[186] P.M. Farrelle and A.K. Jain. Recursive Block Coding—A New Approach to Transform
Coding. IEEE Transactions on Communications, COM-34:161–179, February 1986.

[187] M. Bosi and G. Davidson. High Quality, Low Rate Audio Transform Coding for
Transmission and Multimedia Application. In Preprint 3365, Audio Engineering Soci-
ety. AES, October 1992.

[188] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes.
North-Holland, 1977.

[189] M.M. Denn. Optimization by Variational Methods. McGraw-Hill, 1969.

650 B I B L I O G R A P H Y

[190] P.A. Wintz. Transform Picture Coding. Proceedings of the IEEE, 60:809–820,
July 1972.

[191] W.-H. Chen and W.K. Pratt. Scene Adaptive Coder. IEEE Transactions on Commu-
nications, COM-32:225–232, March 1984.

[192] H.S. Malvar. Signal Processing with Lapped Transforms. Artech House, Norwood,
MA, 1992.

[193] J.P. Princen and A.P. Bradley. Analysis/Synthesis Filter Design Based on Time
Domain Aliasing Cancellation. IEEE Transactions on Acoustics Speech and Signal
Processing, ASSP-34:1153–1161, October 1986.

[194] M. Bosi and R.E. Goldberg. Introduction to Digital Audio Coding and Standards.
Kluwer Academic Press, 2003.

[195] D.F. Elliot and K.R. Rao. Fast Transforms—Algorithms, Analysis, Applications.
Academic Press, 1982.

[196] A.K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[197] A. Crosier, D. Esteban, and C. Galand. Perfect Channel Splitting by Use of Inter-
polation/Decimation Techniques. In Proc. International Conference on Information
Science and Systems, Patras, Greece, 1976. IEEE.

[198] J.D. Johnston. A Filter Family Designed for Use in Quadrature Mirror Filter Banks.
In Proceedings ICASSP, pages 291–294. IEEE, April 1980.

[199] M.J.T. Smith and T.P. Barnwell III. A Procedure for Designing Exact Reconstruction
Filter Banks for Tree Structured Subband Coders. In Proceedings IEEE International
Conference on Acoustics Speech and Signal Processing. IEEE, 1984.

[200] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, 1993.

[201] H. Caglar. A Generalized Parametric PR-QMF/Wavelet Transform Design Approach
for Multiresolution Signal Decomposition. Ph.D. thesis, New Jersey Institute of Tech-
nology, May 1992.

[202] A.K. Jain and R.E. Crochiere. Quadrature mirror filter design in the time domain. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 32:353–361, April 1984.

[203] F. Mintzer. Filters for Distortion-free Two-Band Multirate Filter Banks. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, ASSP-33:626–630, June 1985.

[204] Y. Shoham and A. Gersho. Efficient Bit Allocation for an Arbitrary Set of Quan-
tizers. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-36:
1445–1453, September 1988.

[205] J.W. Woods and T. Naveen. A Filter Based Bit Allocation Scheme for Subband
Compression of HDTV. IEEE Transactions on Image Processing, IP-1:436–440,
July 1992.

B I B L I O G R A H Y 651

[206] M. Vetterli. Multirate Filterbanks for Subband Coding. In J.W. Woods, editor, Sub-
band Image Coding, pages 43–100. Kluwer Academic Publishers, 1991.

[207] C.S. Burrus, R.A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet
Transforms. Prentice Hall, 1998.

[208] J.M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coefficients.
IEEE Transactions on Signal Processing, SP-41:3445–3462, December 1993.

[209] A. Said and W.A. Pearlman. A New Fast and Efficient Coder Based on Set Parti-
tioning in Hierarchical Trees. IEEE Transactions on Circuits and Systems for Video
Technologies, pages 243–250, June 1996.

[210] D. Taubman. Directionality and Scalability in Image and Video Compression. Ph.D.
thesis, University of California at Berkeley, May 1994.

[211] D. Taubman and A. Zakhor. Multirate 3-D Subband Coding with Motion Compensa-
tion. IEEE Transactions on Image Processing, IP-3:572–588, September 1994.

[212] D. Taubman and M. Marcellin. JPEG 2000: Image Compression Fundamentals,
Standards and Practice. Kluwer Academic Press, 2001.

[213] ISO/IEC IS 14496. Coding of Moving Pictures and Audio.

[214] J. Watkinson. The MPEG Handbook. Focal Press, 2001.

[215] N. Iwakami, T. Moriya, and S. Miki. High Quality Audio-Coding at Less than 64 kbit/s
by Using Transform Domain Weighted Interleave Vector Quantization TwinVQ.
In Proceedings ICASSP ’95, volume 5, pages 3095–3098. IEEE, 1985.

[216] K. Tsutsui, H. Suzuki, O. Shimoyoshi, M. Sonohara, K. Agagiri, and R.M. Heddle.
ATRAC: Adaptive Transform Acoustic Coding for MiniDisc. In Conference Records
Audio Engineering Society Convention. AES, October 1992.

[217] D. Pan. A Tutorial on MPEG/Audio Compression. IEEE Multimedia, 2:60–74, 1995.

[218] T. Painter and A. Spanias. Perceptual Coding of Digital Audio. Proceedings of the
IEEE, 88:451–513, 2000.

[219] H. Dudley and T.H. Tarnoczy. Speaking machine of Wolfgang Von Kempelen. Jour-
nal of the Acoustical Society of America, 22:151–166, March 1950.

[220] A. Gersho. Advances in speech and audio compression. Proceedings of the IEEE,
82:900–918, 1994.

[221] B.S. Atal, V. Cuperman, and A. Gersho. Speech and Audio Coding for Wireless and
Network Applications. Kluwer Academic Publishers, 1993.

[222] S. Furui and M.M. Sondhi. Advances in Speech Signal Processing. Marcel Dekker
Inc., 1991.

[223] H. Dudley. Remaking speech. Journal of the Acoustical Society of America, 11:
169–177, 1939.

652 B I B L I O G R A P H Y

[224] D.C. Farden. Solution of a Toeplitz Set of Linear Equations. IEEE Transactions on
Antennas and Propagation, 1977.

[225] N. Levinson. The Weiner RMS error criterion in filter design and prediction. Journal
of Mathematical Physics, 25:261–278, 1947.

[226] J. Durbin. The Fitting of Time Series Models. Review of the Institute Inter. Statist.,
28:233–243, 1960.

[227] P.E. Papamichalis. Practical Approaches to Speech Coding. Prentice-Hall, 1987.

[228] J.D. Gibson. On Reflection Coefficients and the Cholesky Decomposition. IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-25:93–96, February
1977.

[229] M.R. Schroeder. Linear Predictive Coding of Speech: Review and Current Directions.
IEEE Communications Magazine, 23:54–61, August 1985.

[230] B.S. Atal and J.R. Remde. A New Model of LPC Excitation for Producing Natural
Sounding Speech at Low Bit Rates. In Proceedings IEEE International Conference
on Acoustics, Speech, and Signal Processing, pages 614–617. IEEE, 1982.

[231] P. Kroon, E.F. Deprettere, and R.J. Sluyter. Regular-Pulse Excitation—A Novel
Approach to Effective and Efficient Multipulse Coding of Speech. IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-34:1054–1063, October 1986.

[232] K. Hellwig, P. Vary, D. Massaloux, and J.P. Petit. Speech Codec for European Mobile
Radio System. In Conference Record, IEEE Global Telecommunication Conference,
pages 1065–1069. IEEE, 1989.

[233] J.P. Campbell, V.C. Welch, and T.E. Tremain. An Expandable Error Protected 4800
bps CELP Coder (U.S. Federal Standard 4800 bps Voice Coder). In Proceedings
International Conference on Acoustics, Speech and Signal Processing, pages 735–738.
IEEE, 1989.

[234] J.P. Campbell, Jr., T.E. Tremain, and V.C. Welch. The DOD 4.8 KBPS Standard
(Proposed Federal Standard 1016). In B.S. Atal, V. Cuperman, and A. Gersho, editors,
Advances in Speech Coding, pages 121–133. Kluwer, 1991.

[235] J.-H. Chen, R.V. Cox, Y.-C. Lin, N. Jayant, and M. Melchner. A low-delay CELP
coder for the CCITT 16 kb/s speech coding standard. IEEE Journal on Selected Areas
in Communications, 10:830–849, 1992.

[236] R.J. McAulay and T.F. Quatieri. Low-Rate Speech Coding Based on the Sinusoidal
Model. In S. Furui and M.M. Sondhi, editors, Advances in Speech Signal Processing,
Chapter 6, pages 165–208. Marcel-Dekker, 1992.

[237] D.W. Griffin and J.S. Lim. Multi-band excitation vocoder. IEEE Transactions on
Acoustics, Speech and Signal Processing, 36:1223–1235, August 1988.

[238] M.F. Barnsley and A.D. Sloan. Chaotic Compression. Computer Graphics World,
November 1987.

B I B L I O G R A H Y 653

[239] A.E. Jacquin. A Fractal Theory of Iterated Markov Operators with Applications to
Digital Image Coding. Ph.D. thesis, Georgia Institute of Technology, August 1989.

[240] A.E. Jacquin. Image coding based on a fractal theory of iterated contractive image
transformations. IEEE Transactions on Image Processing, 1:18–30, January 1992.

[241] H. Samet. The Design and Analysis of Spatial Data Structures. Addison–Wesley,
Reading, MA, 1990.

[242] Y. Fisher ed. Fractal Image Compression: Theory and Applications. Springer-Verlag,
1995.

[243] D. Saupe, M. Ruhl, R. Hamzaoui, L. Grandi, and D. Marini. Optimal Hierarchical
Partitions for Fractal Image Compression. In Proc. IEEE International Conference on
Image Processing. IEEE, 1998.

[244] J. Makhoul. Linear Prediction: A Tutorial Review. Proceedings of the IEEE, 63:
561–580, April 1975.

[245] T. Adamson. Electronic Communications. Delmar, 1988.

[246] C.S. Choi, K. Aizawa, H. Harashima, and T. Takebe. Analysis and synthesis of facial
image sequences in model-based image coding. IEEE Transactions on Circuits and
Systems for Video Technology, 4:257–275, June 1994.

[247] H. Li and R. Forchheimer. Two-view facial movement estimation. IEEE Transactions
on Circuits and Systems for Video Technology, 4:276–287, June 1994.

[248] G. Bozdaǧi, A.M. Tekalp, and L. Onural. 3-D motion estimation and wireframe
adaptation including photometric effects for model-based coding of facial image
sequences. IEEE Transactions on Circuits and Systems for Video Technology, 4:246–
256, June 1994.

[249] P. Ekman and W.V. Friesen. Facial Action Coding System. Consulting Psychologists
Press, 1977.

[250] K. Aizawa and T.S. Huang. Model-based image coding: Advanced video coding
techniques for very low bit-rate applications. Proceedings of the IEEE, 83: 259–271,
February 1995.

[251] L. Chiariglione. The development of an integrated audiovisual coding standard:
MPEG. Proceedings of the IEEE, 83:151–157, February 1995.

[252] ISO/IEC IS 11172. Information Technology—Coding of Moving Pictures and Asso-
ciated Audio for Digital Storage Media up to about 1.5 Mbits/s.

[253] ISO/IEC IS 13818. Information Technology—Generic Coding of Moving Pictures
and Associated Audio Information.

[254] ITU-T Recomendation H.263. Video Coding for Low Bit Rate Communication,
1998.

654 B I B L I O G R A P H Y

[255] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE Transaction on Circuits and Systems for
Video Technology, 13:560–576, 2003.

[256] D. Marpe, H. Schwarz, and T. Wiegand. Context based adaptive binary arithmetic
coding in the H.264/AVC video coding standard. IEEE Transaction on Circuits and
Systems for Video Technology, 13:620–636, 2003.

[257] G. Karlsson and M. Vetterli. Packet video and its integration into the network archi-
tecture. IEEE Journal on Selected Areas in Communications, 7:739–751, June 1989.

[258] Y.-C. Chen, K. Sayood, and D.J. Nelson. A robust coding scheme for packet video.
IEEE Transactions on Communications, 40:1491–1501, September 1992.

[259] M.C. Rost and K. Sayood. A Progressive Data Compression Scheme Based on Adap-
tive Transform Coding. In Proceedings 31st Midwest Symposium on Circuits and
Systems, pages 912–915. Elsevier, 1988.

[260] J. Watkinson. The Art of Digital Video. Focal Press, 1990.

[261] J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. LeGall. MPEG Video Compres-
sion Standard. Chapman and Hall, 1997.

[262] M.V. Eyuboglu and G.D. Forney, Jr. Lattice and Trellis Quantization with Lattice
and Trellis Bounded Codebooks—High Rate Theory for Memoryless Sources. IEEE
Transactions on Information Theory, IT-39, January 1993.

Index

Abramson, N., 83
Absolute difference measure, 198
AC coefficient of transforms, 400, 413–414
Action units (AUs), 590
Adaptive arithmetic coding, 112
Adaptive codebook, FS 1016 standard, 551
Adaptive dictionary techniques

LZ77 approach, 121–125
LZ78 approach, 125–127
LZW algorithm, 127–133

Adaptive DPCM, 337
G.722 standard, 461–462
ITU and ITU-T standards, 345, 347–349,

461–462
prediction, 339–342
quantization, 338–339

Adaptive Huffman coding, 58
decoding procedure, 63–65
encoding procedure, 62–63
update procedure, 59–61

Adaptive model, 17
Adaptive scalar quantization

backward/on-line, 246–248
forward/off-line, 244–246
Jayant, 249–253

Adaptive spectral enhancement filter, 557
Adaptive TRansform Acoustic Coding

(ATRAC) algorithm, 535
Adaptive vector quantization, 315–316
Addition, vector, 358
Additive noise model of a quantizer, 231
Adjoint matrix, 635–636
Adler, Mark, 133
Admissibility condition, 479
ADPCM. See Adaptive DPCM

Advanced audio coding (AAC), MPEG,
527–533

Advanced prediction mode,
H.263 standard, 600

Advanced Television Systems Committee
(ATSC), 533

AEP. See Asymptotic equipartition
property

Affine wavelets, 480
A lattices, 309
Algorithmic information theory, 35–36
Algorithms

adaptive Huffman, 58–65
Adaptive TRansform Acoustic Coding

(ATRAC), 535
arithmetic coding, 92, 107
Burrows-Wheeler Transform (BWT),

152–157
cluster compression, 284
dictionary techniques, 121–133
CALIC (Context Adaptive Lossless

Image Compression), 166–170
compression versus reconstruction, 3–4
deflate, 133
differential encoding, 328–332
dynamic Markov compression, 158–160
embedded zerotree coder, 497–505
FS 1016, 550–551
generalized BFOS, 303
H.261 standard, 582–588
H.263 standard, 598–603
Huffman coding, 41–54
Jayant, 247, 249–253
JBIG, 183–188
JBIG2, 189–190

656 I N D E X

Algorithms (Continued)
JPEG lossless old standard, 164–166
JPEG-LS, 170–172
least mean squared (LMS), 342
Levinson-Durbin, 530, 547
Linde-Buzo-Gray (LBG), 282–299
Lloyd, 283–284
Lloyd-Max, 254–257
LPC-10, 544–545
LZ77, 121–125
LZ78, 125–127
LZW, 127–133
MH (Modified Huffman), 180, 187–188
mixed excitation linear prediction,

555–557
model-based coding, 588–590
MPEG-1 algorithm, 580
origin of term, 3
packet video, 610, 612–613
pairwise nearest neighbor (PNN),

292–294
ppma, 144, 149–150
ppmz, 151
prediction with partial match (ppm), 26,

143–149
set partitioning in hierarchical trees,

505–512
subband, 436–438
trellis-coded, 316–321
Tunstall, 69–71
videoconferencing and videophones,

582–590
Viterbi, 317

Aliasing, 376
filters, 429, 443
time domain, 417

Al-Khwarizmi, 3
All pole filter, 218
Alphabet

defined, 16, 27
extended, 52

AMDF. See Average magnitude difference
function

Analog-to-digital (A/D) converter, 228
Analysis filter bank, 436–437

Analysis filters, 539–540
Analysis/synthesis schemes

background of, 537–538
image compression, 559–568
speech compression, 539–559

Anchor frames, 592
APCO. See Association of Police

Communications Officers
Arimoto, S., 212
Arithmetic coding, 54

adaptive, 112
algorithm implementation, 96–102
applications, 112–113
binary code, generating, 92–109
bit sliced, 533
decoding, 106–109
defined, 81
encoding, 102–106
floating-point implementation, 102–109
Graphics Interchange Format (GIF),

133–134
Huffman coding compared with, 81–83,

109–112
JBIG, 183–188
JBIG2, 189–190
sequences, 83–92
syntax-based and H.263 standard, 600
tags, deciphering, 91–93
tags, generating, 84–91, 97–99
uniqueness and efficiency of, 93–96

ARJ, 125
ARMA (moving average model, 218, 223
AR(N) model, 219–222
Association of Police Communications

Officers (APCO), 555
Associative coder of Buyanovsky (ACB),

157–158
Associativity axiom, 358
Asymmetric applications, 590–591
Asymptotic equipartition property (AEP),

305–306
Atal, B. S., 550
ATM (asynchronous transfer mode)

networks, 610–611
Atomic blocks, 566

Index 657

ATRAC. See Adaptive TRansform
Acoustic Coding

ATSC. See Advanced Television Systems
Committee

AU. See Action units
Audio coding

See also MPEG audio coding
Dolby AC3, 533–534
hearing principles, 516
psychoacoustic model, 518–519
spectral masking, 517
temporal masking, 517–518

Audio compression
Huffman coding and, 75–77
masking, 201
subband coding and, 462–463
transform coding and, 416–419

Auditory perception, 200–201
Autocorrelation approach, 546
Autocorrelation function

AR(N) model, 219–222
differential pulse code modulation, 333,

334
differential pulse code modulation,

adaptive, 339–340
of a random process, 628

Autocovariance approach, 546
Autoregressive model

AR(N) model, 219–222
moving average model (ARMA),

218, 223
speech compression algorithms, 223

Average information
derivation of, 18–22
mutual, 204–205

Average magnitude difference function
(AMDF), 544–545

Axiomatic approach, 618–620
Axioms, probability, 618

Backward adaptive prediction in DPCM
(DPCM-APB), 340–342

Backward/on-line adaptive scalar
quantization, 246–248

Band-pass filters, 371, 428

Bandwidth, 371
Barnsley, Michael, 561
Barnwell, T. P., III, 449
Basis matrices, 400
Basis vectors, 356–357
Basis vector spaces, 360–361
Bayes’ rule, 616–617
Bell Laboratories, 3
Bennett, W. R., 263
Bennett integral, 263, 267
Bidirectionally predictive coded (B)

frames, 592–594
BIFS. See Binary Format for Scenes
Binary code, generating

in arithmetic coding, 92–109
in transform coding, 396

Binary codewords, pruned tree-structure
and, 303

Binary entropy function, 212
Binary Format for Scenes (BIFS), 609
Binary images

coding schemes, comparing, 188
facsimile encoding, 178–190
JBIG, 183–188
JBIG2, 189–190
Markov model and, 24–25

Binary sources, rate distortion function
and, 212–214

Binary symmetric channel, 617
Binary trees

adaptive Huffman coding and, 58
external (leaves), 31
Huffman coding and, 45–46
internal nodes, 31
prefix code, 31
sibling property, 58

Bit allocation
Dolby AC3, 534–535
subband coding, 437, 438, 459–461
threshold coding, 409–410
transform coefficients, 399, 407–410
zonal sampling, 408–409

Bit reservoir, 526
Bits, 14
Bit sliced arithmetic coding (BSAC), 533

658 I N D E X

Bitstreams, 519–521
constrained parameter, 594
order, 593

Black-and-white television, 576–578
Blahut, R. E., 212
Block, 59
Block-based motion compensation, 574
Block diagrams

channel vocoder, 539
companded scalar quantization, 258–259
delta modulation, 343
differential encoding, 331
Dolby AC3, 534
generic compression, 197
G.728, 553
H.261 standard, 583
H.263 standard, 599
linear predictive coder, 543
mixed excitation linear prediction,

555–557
MPEG audio coding, 519
subband coding system, 436

Block switching, MPEG-2 AAC, 528–529
Bloom, Charles, 151
Boundary gain, 304, 307
Braille code, 2
Breiman, L., 303
BSAC. See

Bit sliced arithmetic coding
Burrows-Wheeler Transform (BWT),

152–157
Buyanovsky, George, 157–158
Buzo, A., 283, 284

CALIC. See Context Adaptive Lossless
Image Compression

Canadian Space Agency (CSA), 2
Capon model, 179
CBP. See Coded block pattern
CCIR (International Consultative

Committee on Radio), 601–2
standard, 579–582

CCITT (Consultative Committee on
International Telephone and
Telegraph)

See also International
Telecommunications Union (ITU-T)

Recommendation V.42, 136
CCSDS. See

Consultative Committee on Space Data
Standards

CD-audio. See Audio compression
cdf. See Cumulative distribution function
CELP. See Code excited linear prediction
CFDM. See Constant factor adaptive delta

modulation
Chaitin, G., 35
Channel vocoder, 538, 539–542
Characteristic equation, 636
Chen, O.T.-C., 612
Chen, W.-H., 409, 410, 413, 414
Cholesky decomposition, 548
Chou, P. A., 303
Chrominance components, 578–579
CIF. See Common Interchange Format
Classified vector quantization, 313
Clear code, 134
Cleary, J. G., 143, 144, 149
Cloning, dynamic Markov compression

(DMC), 158–160
Cluster compression algorithm, 284
Codebook design

defined, 282
Hilbert approach, 284, 291
image compression and, 294–299
initializing Linde-Buzo-Gray algorithm,

287–294
pairwise nearest neighbor (PNN)

algorithm, 292–294
splitting technique, 288–291
two-dimensional vector quantization,

284–287
Codebooks

bits per sample, 275
bits per vector, 275
defined, 274, 282
FS 1016, 551
vector, 274

Coded block pattern (CBP), 587
Code excited linear prediction (CELP),

539, 549–552

Index 659

Codes (coding)
See also Arithmetic coding; Audio

coding; Subband coding; Transforms
and transform coding

clear, 134
comparison of binary, 188
defined, 6, 27
delay, 551
dictionary, 9–10
digram, 119–121
embedded, 505
fixed-length, 27
Golomb, 65–67
H.261 standard, 586–587
H.264 standard, 608
Huffman, 41–77
instantaneous, 29
JPEG, 413–416
Kraft-McMillan inequality, 32–35
make-up, 180
model-based, 588–590
modified Huffman (MH), 180
move-to-front (mtf), 153, 156–157
predictive, 7–9
prefix, 31–32
rate, 27–28
Relative Element Address Designate

(READ), 181
Rice, 67–69
run-length, 179–180
terminating, 180
threshold, 409–410
transform, 391–420
Tunstall, 69–71
unary, 65–66
uniquely decodable, 28–31

Code-vectors, 274
Codewords

dangling suffix, 30–31
defined, 27
Huffman, 41–77
Kraft-McMillan inequality, 32–35, 49–51
in optimum prefix codes, 48–49
Tunstall, 69–71
unique, 28

Coefficients
autocorrelation approach, 546
autocovariance approach, 546
Coiflet, 491, 493
covariance method, 548
Daubechies, 491, 492
discrete Fourier series, 377–378
expansion, 373
filter, 430
parcor, 339–340, 531, 547
periodic function, 377
quadrature mirror, 432, 433, 434,

447–449
reflection, 547
set partitioning in hierarchical trees,

505–512
Smith-Barnwell, 432, 434–435
transform, 399, 407–410
wavelets, 480, 488–491

Coiflet filters, 491, 493
Color television, 578
Column matrix, 632
Comfort noise, 559
Common Interchange Format (CIF), 580
Commutativity axiom, 358
Companded scalar quantization, 257–259
Compendious Book on Calculation, The

(Al-Khwarizmi), 3
Composite source model, 27
compress command, UNIX, 133
Compression

See also Audio compression; Image
compression; Speech compression;
Video compression; Wavelet-based
compression

algorithm, 3–4
ratio, 5
techniques, 3–6

Compressor function, 258
Compressor mapping, 259–260
CompuServe Information Service, 133, 134
Conditional entropy, 202–204
Conditional probabilities, 204
Constant factor adaptive delta modulation

(CFDM), 343–345

660 I N D E X

Constrained parameter bitstream
(CPB), 594

Consultative Committee on International
Telephone and Telegraph (CCITT).
See International
Telecommunications Union (ITU-T)

Consultative Committee on Space Data
Standards (CCSDS), 67–69

Context adaptive binary arithmetic code
(CABAC), 608

Context Adaptive Lossless Image
Compression (CALIC), 166–170

Context adaptive variable length code
(CAVLC), 608

Context-based compression and models
associative coder of Buyanovsky (ACB),

157–158
Burrows-Wheeler Transform (BWT),

152–157
dynamic Markov compression, 158–160
finite, 25–26
JBIG standard, 183–184
prediction with partial match (ppm),

143–152
zero frequency problem, 26

Continuously variable slope delta
modulation (CVSDM), 345

Continuous wavelet transform (CWT),
479–480

Contouring, 237
Contours of constant probability, 304
Convolution

filter, 431
Z-transform discrete, 387–389

Convolution theorem, 367
Conway, J. H., 638
Cormack, G. V., 158
Covariance method, 548
CPB. See Constrained parameter bitstream
CRC bit, 520–521
Critical band frequencies, 201
Critically decimated filter bank, 454
Crochiere, 448
Croisier, A., 432

Cross product, matrix, 634
CSA. See Canadian Space Agency
Cumulative distribution function (cdf)

defined, 83
joint, 627
overview of, 621–622
sequences, 83–92
tag generating, 84–91, 97–99

Cutoff frequency, 428
Cutoffs, filter, 371–372
CVSDM. See Continuously variable slope

delta modulation
CWT. See Continuous wavelet transform

Dadson, ?FIRST NAME, 516
Dangling suffix, 30–31
Data compression

applications, 1–2
packages, 125
techniques, 3–6

Data-dependent transforms,
Karhunen-Loéve transform, 401–402

Data-independent transforms
discrete cosine transform, 402–404,

410–411, 416–419, 580
discrete sine transform, 404
discrete Walsh-Hadamard transform,

404, 406
Daubechies filters, 491, 492
DC coefficient of transforms, 400, 414–415
DCT. See Discrete cosine transform
DDVPC. See Defense Department Voice

Processing Consortium
Deblocking filter mode, 601
Decibels, 198
Decimation, 436, 438
Deciphering tags, 91–93
Decision boundaries

defined, 231
Lloyd algorithm, 283
mean squared quantization error,

231–233
pdf-optimized, 254–257
quantizer rate, 232–233

Decision tree, vector quantization, 302

Index 661

Decoding procedures
adaptive Huffman coding and, 63–65
arithmetic coding and, 106–109
Burrows-Wheeler Transform (BWT),

155–156
generic, 189–190
G.728 standard, 551–552
halftone region, 190
instantaneous, 29
JBIG, 183–188
JBIG2, 189–190
JPEG standard, 413–416
LZ77 approach, 121–125
LZ78 approach, 125–127
LZW algorithm, 130–133
symbol region, 190
vector quantization, 274–275

Decomposition
Cholesky, 548
of images, 465–467
model-based coding, 588–590
polyphase, 454–459

Defense Department Voice Processing
Consortium (DDVPC), 555

Deflate algorithm, 133
Delivery Multimedia Integration

Framework (DMIF), 609
Delta function

dirac, 370–371
discrete, 387

Delta modulation (DM), 342
block diagram, 343
constant factor adaptive, 343–345
continuously variable slope, 345
granular regions, 343
slope overload regions, 343
syllabically companded, 345

Deprettere, E. F., 550
Derivation of average information, 18–22
Determinant, matrix, 635
DFS. See Discrete Fourier series
DFT. See Discrete Fourier transform
Dictionary compression, 9–10
Dictionary ordering, 87

Dictionary techniques
adaptive, 121–133
applications, 133–138
digram coding, 119–121
LZ77 approach, 121–125
LZ78 approach, 125–127
LZW algorithm, 127–133
purpose of, 117–118
static, 118–121

Difference distortion measures, 198
Difference equation, 24
Differential encoding

adaptive DPCM, 337–342
basic algorithm, 328–332
block diagram, 331
defined, 325–326
delta modulation, 342–345
dynamic range, 326
image coding, 349–351
ITU and ITU-T standards, 345, 347–349
performance, 336
prediction in DPCM, 332–337
quantization error accumulation, 329–330
sinusoidal example, 326, 330–331
speech coding, 334–337, 345–349

Differential entropy, 205–208
Differential pulse code modulation

(DPCM)
adaptive, 337–342
backward adaptive prediction with,

340–343
basic algorithm, 328–332
block diagram, 331
defined, 325–326
delta modulation, 342–345
development of, 331
forward adaptive prediction and, 339–340
noise feedback coding, 346
prediction in, 332–337
speech coding, 345–349

Digital Theater Systems (DTS), 535
Digital-to-analog (D/A) converter, 229
Digram coding, 119–121
Dirac delta function, 370–371
Direct Broadcast Satellites (DBS), 533

662 I N D E X

Discrete convolution, Z-transform,
387–389

Discrete cosine transform (DCT), 402–404,
410–411

modified, 416–419
video compression and, 580

Discrete delta function, 387
Discrete Fourier series (DFS), 377–378
Discrete Fourier transform (DFT),

376–378, 402–403
Discrete sine transform (DST), 404
Discrete time Markov chain, 24
Discrete time wavelet transform

(DTWT), 480
Discrete Walsh-Hadamard transform

(DWHT), 404, 406
Discrete wavelet transform (DWT), 480
Display order, 593
Distortion

aliasing, 376
auditory perception, 200–201
Bennett integral, 263, 267
control loop, 526
criteria, 197–201
defined, 6, 196
difference distortion measures, 198
high-rate entropy-coded quantization,

266–269
human visual system, 199–200
Linde-Buzo-Gray (LBG), 282–299
Lloyd, 283–284
mean squared quantization error,

231–233
quantizer, 231
rate distortion theory, 196, 208–215
scalar versus vector quantization,

276–282
trellis-coded quantization, 316–321
uniform quantization for uniformly

distributed sources, 234–236
vector versus scalar quantization,

276–282
Distribution functions

cumulative distribution function (cdf),
83–92, 97–99, 621–622, 627

probability density function (pdf), 205,
622–23

Distributivity axiom, 358
Dithering, 237
D lattices, 309
DM. See Delta modulation
DMIF. See Delivery Multimedia

Integration Framework
Dolby AC3, 533–534
Domain blocks, 561
Dot product, 357, 634
Downsampling, 436, 438, 440–442
DPCM. See Differential pulse code

modulation
DST. See Discrete sine transform
DTWT. See Discrete time wavelet

transform
Dudley, Homer, 3, 538
DVDs, 533
DWHT. See Discrete Walsh-Hadamard

transform
DWT. See Discrete wavelet transform
Dynamic Markov compression (DMC),

158–160
Dynamic range, differential encoding, 326

EBCOT (embedded block coding with
optimized truncation), 512

Edge blocks, 563
Eigenvalues, 636
Elias, Peter, 83
Embedded block coding with optimized

truncation (EBCOT), 512
Embedded coding, 505
Embedded zerotree wavelet (EZW),

497–505, 610
Empty cell problem, 294
Encoding procedures

See also Differential encoding
adaptive Huffman coding and, 62–63
arithmetic coding and, 102–106
associative coder of Buyanovsky (ACB),

157–158
Burrows-Wheeler Transform (BWT),

152–157

Index 663

digram coding, 119–121
facsimile, 178–190
G.728 standard, 551–552
H.261 standard, 586–587
Huffman coding and, 62–63
JBIG, 183–188
JBIG2, 189–190
JPEG, 164–166, 413–416
LZ77 approach, 121–125
LZ78 approach, 125–127
LZW algorithm, 127–133
minimum variance Huffman codes,

46–48
vector quantization, 274–275

End-of-block (EOB) symbol, 410, 414, 415
Ensemble, stochastic process, 627
Entropy

average mutual information, 204–205
binary entropy function, 212
conditional, 202–204
defined, 16
differential, 205–208
estimating, 16–17
extended Huffman codes, 51–54
first-order, 16
Markov model, 24–25
rate distortion theory, 196, 208–215
reducing, 17
run-length coding, 179–180
of the source, 16

Entropy-coded scalar quantization,
264–269

Entropy-constrained quantization, 265–266
EOB. See End-of-block symbol
Equitz, W. H., 292
Error magnitude, maximum value of the,

199
Escape symbol, 149–150
Esteban, D., 432
Euler’s identity, 363
European Space Agency (ESA), 2
Exception handler, LZW algorithm, 132
Excitation signal

channel vocoder synthesis, 541–542
sinusoidal coders, 552–554

Exclusion principle, 151–152
Expander function, 258–259
Expectation operator, 623
Extended alphabet, 52
Extended Huffman codes, 51–54
External nodes, 31
EZW. See Embedded zerotree wavelet

Facsimile encoding
binary coding schemes, comparing, 188
groups, 178–179
Group 3 and 4 (recommendations T.4

and T.6), 180–183
JBIG, 183–188
JBIG2, 189–190
MH (Modified Huffman), 180, 187–188
modified modified READ (MMR) code,

187–188
modified READ (MR) code, 181,

187–188
Relative Element Address Designate

(READ) code, 181
run-length coding, 179–180

Faller, N., 58
Families of wavelets, 491–493
Fano, Robert, 41, 83
Fast Fourier transform (FFT), 378
FBI fingerprint image compression, 512
FCC (Federal Communications

Commission), 597–598
Federal standards. See standards
Fenwick, P., 157
FFT. See Fast Fourier transform
Fidelity

See also Distortion
defined, 6

Fields, television, 577–578
File compression,

UNIX compress command, 133
Filter banks

analysis, 436–437
design of, 438–444
M-band QMF, 451–454
perfect reconstruction using two-channel,

444–451

664 I N D E X

Filters
adaptive spectral enhancement, 557
all pole, 218
analysis filter bank, 436–437
anti-aliasing, 429, 443
band-pass, 371, 428
bandwidth, 371
coefficients, 430
Coiflet, 491, 493
convolution, 431
cutoffs, 371–372
Daubechies, 491, 492
defined, 371, 428
finite impulse response, 430, 449–451
high-pass, 371, 428
H.261 loop, 584–586
impulse response, 430–431
infinite impulse response, 430
interpolation, 443
linear systems and, 371–372
low-pass, 371, 428
magnitude transfer function, 428–429
mechanical, 428
passband, 371
quadrature mirror, 432, 433, 434,

447–449
Smith-Barnwell, 432, 434–435
stopband, 371
subband, 428–435
synthesis, 443
taps, 430
vocal tract filter, 545–548
wavelet, 486–493

Fine quantization assumption, 332, 333
Finite context models, 25–26
Finite impulse response (FIR) filters

defined, 430
power symmetric and perfect

reconstruction, 449–451
FIR. See Finite impulse response filters
First-order entropy, 16
First-order Markov model, 24
Fischer, T. R., 306
Fixed-length code

defined, 27

LZ77 approach, 121–125
quantizer output, 231
uniform quantization, 236

Fletcher, H., 516
Fletcher-Munson curves, 201
Floating-point implementation, arithmetic

coding and, 102–109
Format frequencies, 540
Format vocoders, 541
FORTRAN, 74
Forward adaptive prediction in DPCM

(DPCM-APF), 339–340
Forward/off-line adaptive scalar

quantization, 244–246
Forward transform, 396
Fourier, Jean Baptiste Joseph, 362
Fourier series, 362–364

discrete, 377
Fourier transform

average analysis, 474
convolution theorem, 367
defined, 365–366
discrete, 376–378, 402–403
fast, 378
inverse, 366
modulation property, 366–367
Parseval’s theorem, 366
periodic extension, 365
short-term, 474–476
time and, 474

Fractal compression, 560–568
Fractional pitch refinement, 556
Frames

anchor, 592
bidirectionally predictive coded (B),

592–594
H.263 standard and improved, 600
I, 591–593
MPEG, 591–594
predictive coded (P), 592, 593
television, 577–578

Freidman, J. H., 303
Frequencies

formats, 540
short-term Fourier transform and, 474

Index 665

Frequency domain view, sampling,
373–374

Frequency of occurrence, description of,
615–616

FS 1016 standard, 550–551
Fundamental theorem of expectation, 624

Gabor transform, 474
Gailly, Jean-loup, 133
Gain-shape vector quantization, 306, 311
Galand, C., 432
Gallagher, R. G., 58
Gamma distribution, 217

mismatch effect, 244
overview, 626

Gaussian distribution, 216
contours of constant probability, 306
Gabor transform, 474
Laplacian distribution model versus,

242–243
mismatch effect, 244
output entropies, 265
overview, 626
pdf-optimized quantization, 257
polar and spherical vector quantization,

306–307
uniform quantization of nonuniform

source, 239–240
Gaussian sources

differential entropy, 206–208
rate distortion function and, 214–215

Generalized BFOS algorithm, 303
Generalized Lloyd algorithm (GLA). See

Linde-Buzo-Gray (LBG) algorithm
Generic decoding, 189–190
Geometric transformation, 562
Gersho, Allen, 254, 275, 459
GIF. See Graphics Interchange Format
Gish, H., 266
Global motion, 590
GOBs. See Groups of blocks
Golomb, Solomon, 66
Golomb codes, 65–67, 608
GOPs. See Group of pictures
Government standards. See Standards

Grand Alliance HDTV, 597–598
Granular error/noise, 240, 307
Granular regions, 343
Graphics Interchange Format (GIF),

133–134
Gray, R. M., 275, 283, 284, 303
Gray-scale images,

CALIC (Context Adaptive Lossless
Image Compression), 166–170

Groups of blocks (GOBs), 587, 598
Groups of pictures (GOPs), 592
G.722 standard, 461–462
G.722.2 standard, 558–559
G.726 standard, 347–349
G.728 standard, 551–552
gzip, 125, 133

Haar scaling function, 481–485
Hadamard matrices, 406
Halftone region decoding, 190
Hartleys, 14
HDTV, 533, 597–598
High-pass coefficients of transforms, 399
High-pass filters, 371, 428
High profile, 594
High-rate quantizers

entropy-coded quantization, 266–269
properties of, 261–264

Hilbert, E. E., 284
Hilbert approach, 284, 291
HINT (Hierarchical INTerpolation), 173
Homogeneity, linear systems and, 368
Horizontal mode, 182
Horspool, R.N.S., 158
Hotelling, H., 395
Hotelling transform, 401–402
H.261 standard, 582

block diagram, 583
coded block pattern, 587
coding, 586–587
group of blocks, 587
loop filter, 584–586
motion compensation, 583–584
MPEG-1 video standard compared to,

591–594

666 I N D E X

H.261 standard (Continued)
quantization, 586–588
rate control, 588
transform, 586

H.263 standard, 598–603
H.264 standard, 603–608
Huang, J.-Y., 395
Huffman, David, 41
Huffman coding, 2

adaptive, 58–65
algorithm, 41–54
arithmetic coding compared with, 81–83,

109–112
applications, 72–77
decoding procedure, 63–65
design of, 42–46
encoding procedure, 62–63
extended, 51–54
Golomb codes, 65–67
length of codes, 49–51
minimum variance, 46–48
modified, 180, 187–188
nonbinary, 55–57
optimality of, 48–49
redundancy, 45
Rice codes, 67–69
Tunstall codes, 69–71
update procedure, 59–61

Human visual system, 199–200
HV partitioning, 567

Identity matrix, 631
IEC. See International Electrotechnical

Commission
IEEE Transactions on Information

Theory, 254
I frames, 591–593
Ignorance model, 23
iid (independent, identically

distributed), 627
IIR. See Infinite impulse response filters
Image compression, lossless

CALIC (Context Adaptive Lossless
Image Compression), 166–170

dynamic Markov compression (DMC),
158–160

facsimile encoding, 178–190
Graphics Interchange Format (GIF),

133–134
Huffman coding and, 72–74
JPEG-LS, 170–172
JPEG old standard, 164–166
MRC-T.44, 190–193
multiresolution models, 172–178
Portable Network Graphics (PNG),

134–136
Image compression, lossy

analysis/synthesis schemes, 559–568
differential encoding, 349–351
fractal compression, 560–568
JBIG2, 189–190
JPEG, 410–416
Linde-Buzo-Gray (LBG) algorithm and,

294–299
subband coding and, 463–470
uniform quantization and, 236–237
wavelet, 494–496

Imaging, 443
Improved MBE (IMBE), 555
Impulse function, 370
Impulse response

of filters, 430–431
linear systems and, 369–370

Independent, identically distributed
(iid), 627

Independent events, 617
Inequalities

Jensen’s, 50
Kraft-McMillan, 32–35, 49–51

Infinite impulse response (IIR) filters,
430–432

Information theory
algorithmic, 35–36
average mutual information, 204–205
conditional entropy, 202–204
derivation of average information, 18–22
differential entropy, 205–208
lossless compression and overview of,

13–22, 35–36

Index 667

lossy compression and, 201–208
self-information, 13–14

Inner product, 357, 361, 634
Instantaneous codes, 29
Integer implementation, arithmetic coding

and, 102–109
Inter mode, 586
Internal nodes, 31
International Consultative Committee on

Radio. See CCIR
International Electrotechnical Commission

(IEC), 112, 590
International Standards Organization (ISO),

112, 410, 590
International Telecommunications Union

(ITU-T), 112
differential encoding standards, 345,

347–349
facsimile encoding, 178–190
G.722 standard, 461–462
G.722.2 standard, 558–559
G.726 standard, 347–349
G.728 standard, 551–552
H.261 standard, 582–588
H.263 standard, 598–603
H.264 standard, 603–608
T.4 and T.6 standards, 180–183
T.44, 190–193
V.42 bis standard, 136–138
Video Coding Experts Group

(VCEG), 603
Interpolation filters, 443
Intra mode, 586

H.263 standard, 600–601
H.264 standard, 605–606

Inverse, matrix, 635
Inverse Fourier transform, 366
Inverse transform, 396–397
Inverse Z-transform

defined, 381
long division, 386–387
partial fraction expansion, 382–386
tabular method, 381–382

ISO. See International Standards
Organization

Isometries, fractal compression, 562
ITU-R recommendation BT.601-2,

569–582
ITU-T. See International

Telecommunications Union

Jacquin, Arnaud, 561
Jain, A. K., 448
Japanese Space Agency (STA), 2
Jayant, Nuggehally S., 247
Jayant quantizer, 247, 249–253
JBIG, 183–188
JBIG2, 189–190
Jelinek, F., 83
Jensen’s inequality, 50
Johnston, J. D., 432

quadrature mirror filters, 432, 433,
434, 448

Joint cumulative distribution function, 627
Joint probability density function, 627
Joint Video Team (JVT), 603
Journal of Educational Psychology, 395
JPEG (Joint Photographic Experts Group)

coding, 413–416
differential encoding versus, 349–351
discrete cosine transform, 410, 411
image compression and, 410–416
JPEG 2000 standard, 494, 512
lossless standard, 1, 164–166
quantization, 411–413
transform, 410–411

JPEG-LS, 170–172
JPEG 2000 standard, 494, 512
Just noticeable difference (jnd), 200

Karhunen, H., 395
Karhunen-Loéve transform, 401–402
Karlsson, G., 612
Katz, Phil, 133
Knuth, D. E., 58
Kolmogorov, A. N., 35
Kolmogorov complexity, 35
Kraft-McMillan inequality, 32–35, 49–51

668 I N D E X

Kramer, H. P., 395
Kroon, P., 550

Lagrange multipliers, 407
Lane, Thomas G., 416
Langdon, G. G., 84
Laplacian distribution, 216–217

contours of constant probability, 306
discrete processes, 231
Gaussian distribution model versus,

242–243
mismatch effects, 244
pdf-optimized quantization, 257
output entropies, 265

Lapped orthogonal transform (LOT), 424
Lattices

A and D, 309
defined, 308
root, 310, 637–638
spherical, 309–310

Lattice vector quantization, 307–311
LBG. See Linde-Buzo-Gray (LBG)

algorithm
Least mean squared (LMS), 342
Least significant bit (LSB)

integer implementation, 103–104,
105, 107

predictive coding, 146–147
Leaves, 31
Lempel, Abraham, 121
Length of Huffman codes, 49–51
Less Probable Symbol (LPS), 185–186
Letters

defined, 16, 27
digram coding, 119–121
optimality of Huffman codes and, 48–49
probabilities of occurrence in English

alphabet, 75
Levels

MPEG-2 video standard (H.262),
594–599

vector quantization, 276
Levinson-Durbin algorithm, 530, 547
Lexicographic ordering, 87
LHarc, 125

Lie algebras, 310
Linde, Y., 284, 302
Linde-Buzo-Gray (LBG) algorithm

empty cell problem, 294
Hilbert approach, 284, 291
image compression and, 294–299
initializing, 287–294
known distribution, 283
Lloyd algorithm, 283–284
pairwise nearest neighbor (PNN)

algorithm, 292–294
splitting technique, 288–291
training set, 283
two-dimensional codebook design,

284–287
Linearly independent vectors, 360
Linear prediction

code excited, 539, 549–552
mixed excitation, 555–557
multipulse, 550

Linear predictive coder, 539
multipulse, 550
pitch period estimation, 543–545
synthesis, 549
transmitting parameters, 549
vocal tract filter, 545–548
voiced/unvoiced decision, 542–543

Linear system models, 218–223
Linear systems

filter, 371–372
impulse response, 369–371
properties, 368
time invariance, 368
transfer function, 368–369

List of insignificant pixels (LIP), 507
List of insignificant sets (LIS), 507
List of significant pixels (LSP), 507
Lloyd, Stuart O., 254, 283
Lloyd algorithm, 283–284
Lloyd-Max algorithm, 254–257
Lloyd-Max quantizer, 254–257

entropy coding of, 265
LMS. See Least mean squared
Loading factors, 241
Local motion, 590

Index 669

LOCO-I, 170
Loéve, M., 395

Karhunen-Loéve transform, 401–402
Logarithms

overview of, 14–15
self-information, 14

Long division, Z-transform, 386–387
Long term prediction (LTP), 532
Lookabaugh, T., 303
Look-ahead buffer, 121–122
Loop filter, H.261 standard, 584–586
Lossless compression

See also Image compression, lossless
arithmetic coding and, 112–113
coding, 27–35
Consultative Committee on Space Data

Standards recommendations for,
67–69

defined, 4–5, 13
derivation of average information, 18–22
information theory, 13–22, 35–36
JBIG, 183–188
JBIG2, 189–190
JPEG-LS, 170–172
minimum description length principle,

36–37
models, 23–27

Lossy compression
defined, 5, 13
differential encoding, 325–351
distortion, 197–201
information theory, 201–208
JBIG2, 189–190
mathematical preliminaries, 195–224
models, 215–223
performance measures, 6
rate distortion theory, 196, 208–215
scalar quantization, 228–264
subband coding, 405–470
transform coding, 392–419
vector quantization, 273–321
video compression, 571–614
wavelet-based compression, 455–513

LOT. See Lapped orthogonal transform
Lovag, Kempelen Farkas, 538

Low-pass coefficients of transforms, 399
Low-pass filters

Choiflet, 491, 493
Daubechies, 491, 492
defined, 371, 428
finite impulse response, 430, 449–451
magnitude transfer function, 428–429
quadrature mirror, 432, 433, 434, 448
Smith-Barnwell, 432, 434–435

LPC. See Linear predictive coder
LPC-10 algorithm, 544–545
LPS (Less Probable Symbol), 185–186
Lukaszewicz, J., 254
Luminance components, 578
LZ77 approach, 121–125
LZ78 approach, 125–127
LZSS, 125
LZW algorithm, 127–133

Macroblocks, H.261 standard, 584
Magnitude transfer function, 428–429
Main profile, 594
Make-up codes, 180
Markov, Andre Andrevich, 24
Markov models

binary images and, 24–25
composite source, 27
discrete cosine transform and, 403
discrete time Markov chain, 24
first-order, 24
overview of, 24–27
text compression and, 25–27
two-state, 179

Masking, 201
spectral, 517
temporal, 517–518

Massic transformation, 562
Mathews, M. V., 395
Matrices

adjoint, 635–636
column, 632
defined, 631
determinant, 635
eigenvalues, 636
identity, 631, 634
minor, 635

670 I N D E X

Matrices (Continued)
operations, 632–636
row, 632
square, 631
Toeplitz, 547
transpose, 632

Matrices, transform
basis, 400
discrete cosine, 404
discrete sine, 404
discrete Walsh-Hadamard, 4044, 406
forward, 397
inverse, 397
Karhunen-Loéve, 402
orthonormal, 397
separable, 397

Max, Joel, 254
Maximally decimated filter bank, 454
Maximum value of the error

magnitude, 199
M-band QMF filter banks, 451–454
MBE. See Multiband excitation coder
MDCT. See Modified discrete cosine

transform
Mean, 624–625
Mean-removed vector quantization, 312
Mean squared error (mse), 198, 275
Mean squared quantization error

companded scalar quantization, 263–264
defined, 231
pdf-optimized quantization, 257
quantizer design, 231–233
uniform quantization, 234
variance mismatch, 242–243

Measure of belief, 616–618
Mechanical filters, 428
Median Adaptive Prediction, 171
MELP. See Mixed excitation linear

prediction
Method of principal components, 395
MH. See Modified Huffman
Midrange blocks, 563
Midrise quantizers, 233–234, 253, 254
Midtread quantizer, 233–234
Miller, Warner, 67

Minimum description length (MDL)
principle, 36–37

Minimum variance Huffman codes, 46–48
Minor, matrix, 635
Mintzer, F., 449
Mismatch effects

pdf-optimized, 257
uniform quantization and, 242–244

Mixed excitation linear prediction (MELP),
555–557

Mixed Raster Content (MRC)-T.44,
190–193

MMR. See Modified modified READ
Model-based coding, 588–590
Modeling,

defined, 6
Models

See also Context-based compression and
models

adaptive, 17
-based coding, 588–590
composite source, 27
finite context, 25–26
ignorance, 23
linear system, 218–223
lossy coding, 215–223
Markov, 24–27
physical, 23, 223
probability, 23–24, 216–218
sequence and entropy, 17
speech production, 223
static, 17

Modified discrete cosine transform
(MDCT), 416–419, 523

MPEG-2 AAC, 528–529
Modified Huffman (MH), 180, 187–188
Modified modified READ (MMR) code,

187–188
Modified READ (MR) code, 181, 187–188
Modulation property, 366–367
Moffat, A., 150
More Probable Symbol (MPS), 185–186
Morse, Samuel, 2
Morse code, 2
Most significant bit (MSB)

Index 671

integer implementation, 103–104,
105, 107

predictive coding, 146–147
Mother wavelet, 476, 478
Motion compensation, 573–576

block-based, 574
global, 590
H.261 standard, 583–584
H.264 standard, 604
local, 590

Motion vectors, 574–575
unrestricted and H.263 standard, 600

Move-to-front (mtf) coding, 153, 156–157
Moving Picture Experts Group. See MPEG
MPEG (Moving Picture Experts Group), 1

advanced audio coding, 527–533
bit reservoir, 526
bit sliced arithmetic coding, 533
bitstream order, 593
bitstreams, 519–521
block switching, 528–529
constrained parameter bitstream, 594
display order, 593
frames, 591–594
groups of pictures, 592
H.261 compared to, 591–592
Layer 1, 520–521
Layer II, 521–522
Layer III (mp3), 522–527
layers, overview of, 519
long term prediction, 532
perceptual noise substitution, 532
profiles, 531–532, 594–597
quantization and coding, 531
spectral processing, 529–531
stereo coding, 531
subband coding 462–463
TwinVQ, 532–533

MPEG-1 algorithm, 580
MPEG-1 video standard, 591–594
MPEG-2 AAC, 527–532
MPEG-2 video standard (H.262), 594–598
MPEG-3 video standard, 590
MPEG-4 AAC, 532–533
MPEG-4 video standard, 603–610

MPEG-7 video standard, 591, 610
MPEG-SIF, 580
MPS. See More Probable Symbol
MR. See Modified READ
MRA. See Multiresolution analysis
MRC (Mixed Raster Content)-T.44,

190–193
mse. See Mean squared error
Multiband excitation coder (MBE),

554, 555
Multiplication, scalar, 358–359
Multipulse linear predictive coding

(MP-LPC), 550
Multiresolution analysis (MRA), 480–486
Multiresolution models, 172–178
Multistage vector quantization, 313–315
Munson, W. A., 516

Fletcher-Munson curves, 201
Mutual information

average, 204–205
defined, 204

National Aeronautics and Space Agency
(NASA), 2

National Television Systems Committee
(NTSC), 578–579

Nats, 14
Nelson, D. J., 612
Network video. See Packet video
Never Twice the Same Color, 578
Node number, adaptive Huffman coding

and, 58
Noise

See also Distortion; Signal-to-noise ratio
(SNR)

boundary gain, 304, 307
comfort, 559
differential encoding and accumulation

of, 329–330
feedback coding (NFC), 346
granular, 240, 307
overload, 240, 307
pdf-optimized, 253–257
peak-signal-to-noise-ratio (PSNR), 198
quantization, 231

672 I N D E X

Nonbinary Huffman codes, 55–57
Nonuniform scalar quantization

companded, 257–264
defined, 253
midrise, 253, 254
mismatch effects, 257
pdf-optimized, 253–257

Nonuniform sources,
uniform quantization and, 238–242

NTSC. See National Television Systems
Committee

Nyquist, Harry, 372, 429
Nyquist theorem/rule, 429, 436, 483
NYT (not yet transmitted) node, 59–65
OBMC. See Overlapped Block Motion

Compensation
Off-line adaptive scalar quantization,

244–246
Offset, 122
Olshen, R. A., 303
On-line adaptive scalar quantization,

246–248
Operational rate distortion, 460
Optimality

of Huffman codes, 48–49
of prefix codes, 41–42

Orthogonal random variables, 628
Orthogonal sets, 361–362
Orthogonal transform, lapped, 424
Orthonormal sets, 361–362
Orthonormal transforms, 397–398
Outer product, matrix, 634
Overdecimated filter bank, 454
Overlapped Block Motion Compensation

(OBMC), 600
Overload error/noise, 240, 307
Overload probability, 240
Packet video, 610, 612–613
Pairwise nearest neighbor (PNN)

algorithm, 292–294
PAL (Phase Alternating Lines), 578, 579
Parcor coefficients

DPCM -APF, 339–340
linear predictive coder and, 547
MPEG-2 AAC, 531

Parkinson’s First Law, 2
Parseval’s theorem, 366, 479
Partial fraction expansion, Z-transform,

382–386
Pasco, R., 83
Passband, 371
Pass mode, 181
pdf. See Probability density function
pdf-optimized, 253–257
Peakiness, 557
Peak-signal-to-noise-ratio (PSNR), 198
Pearlman, William, 505
Perceptual noise substitution (PNS), 532
Perfect reconstruction

power symmetric FIR filters, 449–451
two-channel filter banks, 444–451
two-channel PR quadrature mirror filters,

447–449
Performance

differential encoding, 336
measures of, 5–6

Periodic extension, Fourier transform
and, 365

Periodic signals, Fourier series and, 364
P frames (predictive coded), 592, 593
Phase Alternating Lines (PAL), 578, 579
Physical models

applications, 23
speech production, 223

Picture resampling, H.263 standard, 601
Picture selection mode, H.263

standard, 601
enhanced, 603

Pierce, J. N., 266
Pierce, J. R., 588–589
Pitch period

differential encoding, 345
estimating, 543–545
fractional pitch refinement, 556
FS 1016 standard, 551

PKZip, 125
PNG (Portable Network Graphics), 125,

134–136
PNN. See Pairwise nearest neighbor
Polar vector quantization, 306–307

Index 673

Polyphase decomposition, 454–459
Portable Network Graphics. See PNG
ppm. See Prediction with partial match
ppma algorithm, 144, 149–150
ppmz algorithm, 151
Pratt, W. K., 409, 410, 413, 414
Prediction in DPCM, 332–337
Prediction with partial match (ppm)

algorithm, 26, 143–149
escape symbol, 149–150
exclusion principle, 151–152
length of context, 150–151

Predictive coded (P) frames, 592, 593
Predictive coding

Burrows-Wheeler Transform (BWT),
152–157

CALIC (Context Adaptive Lossless
Image Compression), 166–170

code excited linear prediction, 539,
549–552

dynamic Markov compression (DMC),
158–160

example of, 7–9
facsimile encoding, 178–190
HINT (Hierarchical INTerpolation), 173
JPEG-LS, 170–172
linear predictive coder, 539, 542–549
mixed excitation linear prediction,

555–557
multipulse linear, 550
multiresolution models, 172–178
regular pulse excitation with long-term

prediction (RPE-LTP), 550
typical, 189

Prefix codes, 31–32
optimality of, 41–42

Probabilities
axiomatic approach, 618–620
Bayes’ rule, 616–617
conditional, 204
contours of constant, 304
frequency of occurrence, 615–616
measure of belief, 616–618
overload, 240

Probability density function (pdf), 205,
622–23

Probability models
Gamma distribution, 216, 217, 244
Gaussian distribution, 216, 217
Laplacian distribution, 216–217
lossless compression, 23–24
lossy, 216–218

Product code vector quantizers, 306
Profiles

MPEG-2 AAC, 531–532
MPEG-2 video standard (H.262),

594–597
Progressive image transmission, 173–178
Pruned tree-structured vector

quantization, 303
Psychoacoustic model, 518–519
Pyramid schemes, 177
Pyramid vector quantization, 305–306

QCIF (Quarter Common Interchange
Format), 580

Q coder, 184
QM coder, 184–186
Quadrature mirror filters (QMF), 432, 433,

434, 447–449
Quadtree partitioning, 566–568
Quality, defined, 6
Quantization

See also Scalar quantization; Vector
quantization coefficients, transform,
399, 407–410

H.261 standard, 586–587
H.263 standard, 602
H.264 standard, 606–608
JPEG, 411–413
MPEG-2 AAC, 531
noise, 231
subband coding, 437
table, 411

Quantization error
accumulation in differential encoding,

329–330
companded scalar quantization, 260

674 I N D E X

Quantization error (Continued)
granular, 240
overload, 240

Quantizer distortion, 231
Quantizers. See Scalar quantization; Vector

quantization
Quarter Common Interchange Format. See

QCIF

Random variables
defined, 620
distribution functions, 621–623
expectation, 623–624
independent, identically distributed, 627
mean, 624–625
orthogonal, 628
realization, 620
second moment, 625
variance, 625

Range blocks, 561
Rate

code, 27–28
control, 588
control loop, 526
defined, 6
dimension product, 298
H.261 standard, 588
sequence coding, 273
vector quantization, 275
video data, 571

Rate distortion function
binary sources and, 212–214
defined, 208
Gaussian source and, 214–215
operational, 460
Shannon lower bound, 215

Rate distortion theory, 196, 208–215
READ (Relative Element Address

Designate) code, 181
Reconstruction, perfect. See Perfect

reconstruction
Reconstruction

algorithm, 3–4
Reconstruction alphabet, 202–203

Reconstruction levels (values)
defined, 231
Linde-Buzo-Gray (LBG) algorithm,

283–284
Lloyd algorithm, 283–284
pdf-optimized, 255–257
trellis-coded quantization, 316–321

Rectangular vector quantization, 293
Recursive indexing

CALIC (Context Adaptive Lossless
Image Compression), 170

entropy-coded quantization, 268
Recursively indexed vector quantizers

(RIVQ), 314–315
Redundancy, Huffman coding and, 45
Reference picture resampling, 601
Reference picture selection mode, 601

enhanced, 603
Reflection coefficients, 547
Region of convergence, Z-transform, 379,

380
Regular pulse excitation (RPE), 550
Regular pulse excitation with long-term

prediction (RPE-LTP), 550
Relative Element Address Designate

(READ) code, 181
Remde, J. R., 550
Rescaling

QM coder, 186
tags, 97–102

Residual
defined, 6, 313
sequence and entropy, 17

Residual vector quantization, 313
Resolution update mode, reduced, 602
Rice, Robert F., 67
Rice codes, 67–69
Ripple, 429
Rissanen, J. J., 36, 83, 84
RIVQ. See Recursively indexed vector

quantizers
Robinson, D. W., 516
Root lattices, 310, 637–638
Row matrix, 632
RPE. See Regular pulse excitation

Index 675

RPE-LTP. See Regular pulse excitation
with long-term prediction

Run-length coding, 179–180

Said, Amir, 505
Sakrison, D. J., 306
Samet, H., 566
Sample, use of term, 276
Sample average, 624
Sampling

aliasing, 376
development of, 372–373
frequency domain view, 373–374
theorem, 429
time domain view, 375–376
zonal, 408–409

Sayood, K., 612
Scalable Sampling Rate, 532
Scalar multiplication, 358–359
Scalar quantization

adaptive, 244–253
companded, 257–259
defined, 228
design of quantizers, 228–233
entropy-coded, 264–269
high-rate optimum, 266–269
Jayant, 249–251
mean squared quantization error,

231–233
nonuniform, 253–264
pdf-optimized, 253–257
uniform, 233–244
vector quantization versus, 276–282

Scalefactor, 520
Scaling

Haar, 481–485
linear systems and, 368
wavelets, 476–478, 480–486, 488–491

Schroeder, M. R., 550
Schultheiss, P. M., 395
Search buffer, 121
SECAM (Séquential Coleur avec

Mémoire), 578
Second extension option, 68
Second moment, 625

Self-information
conditional entropy, 202–203
defined, 13–14
differential entropy, 205–206

Separable transforms, 397
Sequences, 83–92
Séquential Coleur avec Mémoire

(SECAM), 578
Set partitioning in hierarchical trees

(SPIHT), 505–512
Shade blocks, 563
Shannon, Claude Elwood, 13, 16, 19, 25,

26, 83, 141–142, 273, 305
Shannon-Fano code, 83
Shannon lower bound, 215
Shapiro, J. M., 497
Shifting property, delta function and, 371
Shifting theorem, 388–389
Shoham, Y., 459
Short-term Fourier transform (STFT),

474–476
Sibling property, 58
Side information, 244
SIF, MPEG-, 580
Signal representation, video. See Video

signal representation
Signals, Systems, and Noise-The nature

and Process of Communications
(Pierce), 588–589

Signal-to-noise ratio (SNR)
companded quantization, 258
defined, 198
differential encoding, 336
pdf-optimized, 256–257
peak-signal-to-noise-ratio (PSNR), 198
profile, 594
Pyramid vector quantization, 306
scalar versus vector quantization,

280–282
uniformquantization, 236

Signal-to-prediction-error ratio (SPER),
336

Significance map encoding, 498, 500
Simple profile, 594
Sinusoidal coders, 552–555

676 I N D E X

Sinusoidal example, 326, 330–331
Sinusoidal transform coder (STC), 554–555
Sloan, Alan, 561
Slope overload regions, 343
Sluyter, R. J., 550
Smith, M. J. T., 449
Smith-Barnwell filters, 432, 434–435
SNR. See Signal-to-noise ratio (SNR)
Snr-scalable profile, 594, 596, 601
Society of Motion Picture and television

Engineers, 579
Solomonoff, Ray, 35, 36
Sony Dynamic Digital Sound (SDDS), 535
Sound Pressure Level (SPL), 518
Source coder, 196–197
Span, 481
Spatially scalable profile, 594, 596, 601
Spatial orientation trees, 505
Spectral masking, 517
Spectral processing, MPEG-2 AAC,

529–531
Speech compression

channel vocoder, 538, 539–542
code excited linear prediction, 539,

549–552
differential encoding, 334–337, 345–349
FS 1016, 550–551
G.722 standard, 461–462
G.722.2 standard, 558–559
G.726 standard, 347–349
G.728 standard, 551–552
linear predictive coder, 539, 542–549
mixed excitation linear prediction,

555–557
sinusoidal coders, 552–555
subband coding, 461–462
voiced/unvoiced decision, 542–543
wideband, 558–559

Speech production, 223
SPER. See Signal-to-prediction-error ratio
Spherical lattices, 309–310
Spherical vector quantization, 306–307
SPIHT. See Set partitioning in hierarchical

trees
Split sample options, 68

Splitting technique, 288–291
Squared error measure, 198
Square matrix, 631
STA. See Japanese Space Agency
Standard deviation, 625
Standards

CCIR (International Consultative
Committee on Radio), 601-2
standard, 579–582

Common Interchange Format (CIF), 580
FBI fingerprint image compression, 512
FS 1016, 550–551
G.722, 461–462
G.722.2, 558–559
G.726, 347–349
G.728, 551–552
HDTV, 597–598
ITU-R recommendation BT.601–2,

569–582
ITU-T H.261, 582–588
ITU-T H.263, 598–603
ITU-T H.264, 603–608
JBIG, 183–188
JBIG2, 189–190
JPEG, 410–416
JPEG 2000, 494, 512
linear predictive coder (LPC-10), 539,

542–549
MPEG-1 video, 591–594
MPEG-2 video (H.262), 594–598
MPEG-3 video, 590
MPEG-4 video, 603–610
MPEG-7 video, 591, 610
MPEG-SIF, 580
Quarter Common Interchange Format

(QCIF), 580
T.4 and T.6, 180–183
T.44, 190–193
V.42 bis, 136–138
video signal representation, 579–580

Static dictionary techniques, 118–121
Static model, 17
Stationarity, weak and wide sense, 628
Statistical average, 624

Index 677

Statistically independent, 617
STC. See Sinusoidal transform coder
Steinhaus, H., 254
Stero coding, MPEG-2 AAC, 531
STFT. See Short-term Fourier transform
Stochastic codebook, FS 1016 standard,

551
Stochastic process, 626–628
Stone, C. J., 303
Stopband, 371
Structured vector quantization, 303–311

contours of constant probability, 304
lattice, 307–311
polar and spherical, 306–307
pyramid, 305–306

Subband coding
algorithm, 436–438
analysis, 436, 438
analysis filter bank, 436–437
audio coding and, 462–463
basic description, 423–428
bit allocation, 437, 438, 459–461
decimation, 436, 438
downsampling, 436, 438, 440–442
encoding, 438
filter banks, design of, 438–444
filter banks, M-band QMF, 451–454
filter banks, reconstruction using

two-channel, 444–451
filters, types of, 428–435
image compression and, 463–470
polyphase decomposition,

454–459
quantization, 437
speech coding and, 461–462
synthesis, 437–438
upsampling, 439, 443–444

Subspace, 359
Superposition, 368
Symbol region decoding, 190
Synthesis filters, 443, 540
Synthesis schemes. See Analysis/synthesis

schemes
Systéme Essentiallement Contre les

Américains, 578

Tabular method, Z-transform, 381–382
Tags

algorithm for deciphering, 92
binary code, generating, 92–109
deciphering, 91–93
defined, 83
dictionary ordering, 87
generating, 84–91, 97–99
lexicographic ordering, 87
partitioning, using cumulative

distribution function, 83–86
rescaling, 97–102

Taps, in filters, 430
Taubman, D., 512
TCM. See Trellis-coded modulation
TCQ. See Trellis-coded quantization
Television

black-and-white, 576–578
color, 578
high definition, 533, 597–598

Temporally scalable profile, 596, 601
Temporal masking, 517–518
Temporal Noise Shaping (TNS), 530
Terminating codes, 180
Text compression

Huffman coding and, 74–75
Markov models and, 25–27
LZ77 approach, 121–125
LZ78 approach, 125–127
LZW algorithm, 127–133
prediction with partial match (ppm),

143–152
UNIX compress command, 133

T.4 and T.6 standards, 180–183
T.44 standard, 190–193
Threshold coding, 409–410
Time

domain aliasing, 417
domain view, sampling, 375–376
invariant linear systems, 368
short-term Fourier transform

and, 474
Toeplitz matrix, 547
Training set, 283–287

678 I N D E X

Transfer function
linear systems and, 368–369
speech production and, 223

Transform-Domain Weighted Interleave
Vector Quantization (TwinVQ),
532–533

Transforms and transform coding
audio compression and use of, 416–419
basis matrices, 400
bit allocation, 399, 407–410
coding gain, 398
coefficients, 399, 407–410
discrete cosine, 402–404, 410–411
discrete Fourier, 376–378, 402–403
discrete sine, 404
discrete time wavelet transform, 480
discrete Walsh-Hadamard, 404, 406
discrete wavelet transform, 480
efficacy of, 398
examples and description of, 392–400
forward, 396
Gabor, 474
H.261 standard, 586
H.264 standard, 605
image compression and use of, 410–416
inverse, 396–397
JPEG, 410–416
Karhunen-Loéve, 401–402
lapped orthogonal, 424
orthonormal, 397–398
separable, 397
short-term Fourier, 474–476

Transpose matrix, 632
Tree-structured vector quantization (TSVQ)

decision tree, 302
design of, 302–303
pruned, 303
quadrant, 299–301
splitting output points, 301

Trellis-coded modulation (TCM), 316
Trellis-coded quantization (TCQ), 316–321
Trellis diagrams, 318–321
Trigonometric Fourier series

representation, 363

TSVQ. See Tree-structured vector
quantization

Tunstall codes, 69–71
TwinVQ, 532–533
Typical prediction, 189

Unary code, 65–66
Uncertainty principle, 475
Uncorrelated random variables, 628
Underdecimated filter bank, 454
Uniform distribution, 216, 625–626
Uniformly distributed sources, uniform

quantization and, 234–236
Uniform scalar quantization, 233–244

image compression and, 236–237
midrise versus midtread, 233–234
mismatch effects, 242–244
nonuniform sources and, 238–242
scalar versus vector quantization,

276–282
uniformly distributed sources and,

234–236
Uniquely decodable codes, 28–31
Unisys, 134
U.S. government standards. See Standards
Units of information, 14
UNIX compress command, 133
Unvoiced decision, 542–543
Update procedure, adaptive Huffman

coding and, 59–61
Upsampling, 439, 443–444

Vaidyanathan, P. P., 438
Variable-length coding

arithmetic, 54, 81–113
Golomb, 65–67
H.263 standard and inter, 602
Huffman, 41–77
LZ77 approach, 121–125
of quantizer outputs, 264–265
Rice, 67–69
Tunstall, 69–71
unary, 65–66

Variables, random. See Random variables
Variance, 625

Index 679

Vector quantization
adaptive, 315–316
bits per sample, 275
classified, 313
decoding, 274–275
defined, 228, 273–276
encoding, 274–275
gain-shape, 306, 311
lattice, 307–311
Linde-Buzo-Gray (LBG) algorithm,

282–299
mean removed, 312
mean squared error, 275
multistage, 313–315
polar, 306–307
product code, 306
pyramid, 305–306
rate, 275
scalar quantization versus, 276–282
spherical, 305–307
structured, 303–311
tree structured, 299–303
trellis coded, 316–321

Vectors
addition, 358
basis, 356–357
linearly independent, 360
motion, 374–375
scalar multiplication, 358–359

Vector spaces
basis, 360–361
dot or inner product, 357, 361
defined, 357–359
orthogonal and orthonormal sets,

361–362
subspace, 359

Vertical mode, 192
Vetterli, M., 612
V.42 bis standard, 136–138
Video compression

asymmetric applications, 590–591
ATM networks, 610–612
background information, 573–572

CCIR (International Consultative
Committee on Radio), 601-2
standard, 579–582

data rates, 571
discrete cosine transform, 580
ITU-T H.261 standard, 582–588
ITU-T H.263 standard, 598–603
ITU-T H.264, 603–608
motion compensation, 573–576
MPEG-1 algorithm, 580
MPEG-1 video standard, 591–594
MPEG-2 video standard (H.262),

594–598
MPEG-3 video standard, 590
MPEG-4 video standard, 603–610
MPEG-7 video standard, 591, 610
MPEG-SIF, 580
packet video, 610, 612–613
still images versus, 571–572
YUV data, 580

Videoconferencing and videophones
ITU-T H.261 standard, 582–588
model-based coding, 588–590

Video signal representation
black-and-white television, 576–578
chrominance components, 578–579
color television, 578
Common Interchange Format (CIF), 580
frames and fields, 577–578
luminance component, 578
MPEG-1 algorithm, 580
MPEG-SIF, 580
National Television Systems Committee

(NTSC), 578–579
Quarter Common Interchange Format

(QCIF), 580
standards, 579–582

Virtual Reality Modeling Language
(VRML), 609

Viterbi algorithm, 317
Vitter, J. S., 58
Vocal tract filter, 545–548
Vocoders (voice coder)

channel, 539–542
development of, 3

680 I N D E X

Vocoders (voice coder) (Continued)
format, 541
linear predictive coder, 539, 542–549

Voice compression/synthesis. See Speech
compression

Vorbis, 535
Wavelet-based compression

admissibility condition, 479
affine wavelets, 480
coefficients, 480, 488–491
continuous wavelet transform, 479–480
discrete time wavelet transform, 480
discrete wavelet transform, 480
embedded zerotree coder, 497–505
families of wavelets, 491–493
functions, 476–480
Haar scaling function, 481–485
image compression, 494–496
implementation using filters, 486–493
JPEG 2000 standard, 494, 512
mother wavelets, 476, 478
multiresolution analysis, 480–486
scaling, 476–478, 480–486, 488–491
set partitioning in hierarchical trees,

505–512
Weak sense stationarity, 628
Weber fraction/ratio, 200
Weight (leaf), adaptive Huffman coding

and, 58

Welch, Terry, 127–128, 133
Wheeler, D. J., 153
Wide sense stationarity, 628
Wiener-Hopf equations, 334
Witten, I. H., 143, 144, 149
Yeh, Pen-Shu, 67
YUV data, 580

Zahkor, A., 493
Zero block option, 68, 69
Zero frequency problem, 26
Zeros of F(z), 381
Zerotree toot, 497
ZIP, 125
Ziv, Jacob, 121
zlib library, 133
Zonal sampling, 408–409
ZRL code, 414
Z-transform, 378

discrete convolution, 387–389
downsampling, 440–442
inverse, 381
long division, 386–387
partial fraction expansion, 382–386
properties, 387
region of convergence, 379, 380
tabular method, 381–382

	Title page
	Copyright page
	Contents
	Preface
	Audience
	Course Use
	Approach
	Learning from This Book
	Content and Organization
	A Personal View
	Acknowledgments

	1 Introduction
	1.1 Compression Techniques
	1.1.1 Lossless Compression
	1.1.2 Lossy Compression
	1.1.3 Measures of Performance

	1.2 Modeling and Coding
	1.3 Summary
	1.4 Projects and Problems

	2 Mathematical Preliminaries for Lossless Compression
	2.1 Overview
	2.2 A Brief Introduction to Information Theory
	2.2.1 Derivation of Average Information

	2.3 Models
	2.3.1 Physical Models
	2.3.2 Probability Models
	2.3.3 Markov Models
	2.3.4 Composite Source Model

	2.4 Coding
	2.4.1 Uniquely Decodable Codes
	2.4.2 Prefix Codes
	2.4.3 The Kraft-McMillan Inequality

	2.5 Algorithmic Information Theory
	2.6 Minimum Description Length Principle
	2.7 Summary
	2.8 Projects and Problems

	3 Huffman Coding
	3.1 Overview
	3.2 The Huffman Coding Algorithm
	3.2.1 Minimum Variance Huffman Codes
	3.2.2 Optimality of Huffman Codes
	3.2.3 Length of Huffman Codes
	3.2.4 Extended Huffman Codes

	3.3 Nonbinary Huffman Codes
	3.4 Adaptive Huffman Coding
	3.4.1 Update Procedure
	3.4.2 Encoding Procedure
	3.4.3 Decoding Procedure

	3.5 Golomb Codes
	3.6 Rice Codes
	3.6.1 CCSDS Recommendation for Lossless Compression

	3.7 Tunstall Codes
	3.8 Applications of Huffman Coding
	3.8.1 Lossless Image Compression
	3.8.2 Text Compression
	3.8.3 Audio Compression

	3.9 Summary
	3.10 Projects and Problems

	4 Arithmetic Coding
	4.1 Overview
	4.2 Introduction
	4.3 Coding a Sequence
	4.3.1 Generating a Tag
	4.3.2 Deciphering the Tag

	4.4 Generating a Binary Code
	4.4.1 Uniqueness and Ef f iciency of the Arithmetic Code
	4.4.2 Algorithm Implementation
	4.4.3 Integer Implementation

	4.5 Comparison of Huffman and Arithmetic Coding
	4.6 Adaptive Arithmetic Coding
	4.7 Applications
	4.8 Summary
	4.9 Projects and Problems

	5 Dictionary Techniques
	5.1 Overview
	5.2 Introduction
	5.3 Static Dictionary
	5.3.1 Digram Coding

	5.4 Adaptive Dictionary
	5.4.1 The LZ77 Approach
	5.4.2 The LZ78 Approach

	5.5 Applications
	5.5.1 File Compression—UNIX
	5.5.2 Image Compression—The Graphics Interchange Format (GIF)
	5.5.3 Image Compression—Portable Network Graphics (PNG)
	5.5.4 Compression over Modems—V.42 bis

	5.6 Summary
	5.7 Projects and Problems

	6 Context-Based Compression
	6.1 Overview
	6.2 Introduction
	6.3 Prediction with Partial Match (ppm)
	6.3.1 The Basic Algorithm
	6.3.2 The Escape Symbol
	6.3.3 Length of Context
	6.3.4 The Exclusion Principle

	6.4 The Burrows-Wheeler Transform
	6.4.1 Move-to-Front Coding

	6.5 Associative Coder of Buyanovsky (ACB)
	6.6 Dynamic Markov Compression
	6.7 Summary
	6.8 Projects and Problems

	7 Lossless Image Compression
	7.1 Overview
	7.2 Introduction
	7.2.1 The Old JPEG Standard

	7.3 CALIC
	7.4 JPEG-LS
	7.5 Multiresolution Approaches
	7.5.1 Progressive Image Transmission

	7.6 Facsimile Encoding
	7.6.1 Run-Length Coding
	7.6.2 CCITT Group 3 and 4—Recommendations T.4 and T.6
	7.6.3 JBIG
	7.6.4 JBIG2—T.88

	7.7 MRC—T.44
	7.8 Summary
	7.9 Projects and Problems

	8 Mathematical Preliminaries for Lossy Coding
	8.1 Overview
	8.2 Introduction
	8.3 Distortion Criteria
	8.3.1 The Human Visual System
	8.3.2 Auditory Perception

	8.4 Information Theory Revisited
	8.4.1 Conditional Entropy
	8.4.2 Average Mutual Information
	8.4.3 Differential Entropy

	8.5 Rate Distortion Theory
	8.6 Models
	8.6.1 Probability Models
	8.6.2 Linear System Models
	8.6.3 Physical Models

	8.7 Summary
	8.8 Projects and Problems

	9 Scalar Quantization
	9.1 Overview
	9.2 Introduction
	9.3 The Quantization Problem
	9.4 Uniform Quantizer
	9.5 Adaptive Quantization
	9.5.1 Forward Adaptive Quantization
	9.5.2 Backward Adaptive Quantization

	9.6 Nonuniform Quantization
	9.6.1 pdf-Optimized Quantization
	9.6.2 Companded Quantization

	9.7 Entropy-Coded Quantization
	9.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs
	9.7.2 Entropy-Constrained Quantization
	9.7.3 High-Rate Optimum Quantization

	9.8 Summary
	9.9 Projects and Problems

	10 Vector Quantization
	10.1 Overview
	10.2 Introduction
	10.3 Advantages of Vector Quantization over Scalar Quantization
	10.4 The Linde-Buzo-Gray Algorithm
	10.4.1 Initializing the LBG Algorithm
	10.4.2 The Empty Cell Problem
	10.4.3 Use of LBG for Image Compression

	10.5 Tree-Structured Vector Quantizers
	10.5.1 Design of Tree-Structured Vector Quantizers
	10.5.2 Pruned Tree-Structured Vector Quantizers

	10.6 Structured Vector Quantizers
	10.6.1 Pyramid Vector Quantization
	10.6.2 Polar and Spherical Vector Quantizers
	10.6.3 Lattice Vector Quantizers

	10.7 Variations on the Theme
	10.7.1 Gain-Shape Vector Quantization
	10.7.2 Mean-Removed Vector Quantization
	10.7.3 Classified Vector Quantization
	10.7.4 Multistage Vector Quantization
	10.7.5 Adaptive Vector Quantization

	10.8 Trellis-Coded Quantization
	10.9 Summary
	10.10 Projects and Problems

	11 Differential Encoding
	11.1 Overview
	11.2 Introduction
	11.3 The Basic Algorithm
	11.4 Prediction in DPCM
	11.5 Adaptive DPCM
	11.5.1 Adaptive Quantization in DPCM
	11.5.2 Adaptive Prediction in DPCM

	11.6 Delta Modulation
	11.6.1 Constant Factor Adaptive Delta Modulation (CFDM)
	11.6.2 Continuously Variable Slope Delta Modulation

	11.7 Speech Coding
	11.7.1 G.726

	11.8 Image Coding
	11.9 Summary
	11.10 Projects and Problems

	12 Mathematical Preliminaries for Transforms, Subbands, and Wavelets
	12.1 Overview
	12.2 Introduction
	12.3 Vector Spaces
	12.3.1 Dot or Inner Product
	12.3.2 Vector Space
	12.3.3 Subspace
	12.3.4 Basis
	12.3.5 Inner Product—Formal Definition
	12.3.6 Orthogonal and Orthonormal Sets

	12.4 Fourier Series
	12.5 Fourier Transform
	12.5.1 Parseval’s Theorem
	12.5.2 Modulation Property
	12.5.3 Convolution Theorem

	12.6 Linear Systems
	12.6.1 Time Invariance
	12.6.2 Transfer Function
	12.6.3 Impulse Response
	12.6.4 Filter

	12.7 Sampling
	12.7.1 Ideal Sampling—Frequency Domain View
	12.7.2 Ideal Sampling—Time Domain View

	12.8 Discrete Fourier Transform
	12.9 Z-Transform
	12.9.1 Tabular Method
	12.9.2 Partial Fraction Expansion
	12.9.3 Long Division
	12.9.4 Z-Transform Properties
	12.9.5 Discrete Convolution

	12.10 Summary
	12.11 Projects and Problems

	13 Transform Coding
	13.1 Overview
	13.2 Introduction
	13.3 The Transform
	13.4 Transforms of Interest
	13.4.1 Karhunen-Loéve Transform
	13.4.2 Discrete Cosine Transform
	13.4.3 Discrete Sine Transform
	13.4.4 Discrete Walsh-Hadamard Transform

	13.5 Quantization and Coding of Transform Coefficients
	13.6 Application to Image Compression—JPEG
	13.6.1 The Transform
	13.6.2 Quantization
	13.6.3 Coding

	13.7 Application to Audio Compression—The MDCT
	13.8 Summary
	13.9 Projects and Problems

	14 Subband Coding
	14.1 Overview
	14.2 Introduction
	14.3 Filters
	14.3.1 Some Filters Used in Subband Coding

	14.4 The Basic Subband Coding Algorithm
	14.4.1 Analysis
	14.4.2 Quantization and Coding
	14.4.3 Synthesis

	14.5 Design of Filter Banks
	14.5.1 Downsampling
	14.5.2 Upsampling

	14.6 Perfect Reconstruction Using Two-Channel Filter Banks
	14.6.1 Two-Channel PR Quadrature Mirror Filters
	14.6.2 Power Symmetric FIR Filters

	14.7 M-Band QMF Filter Banks
	14.8 The Polyphase Decomposition
	14.9 Bit Allocation
	14.10 Application to Speech Coding—G.722
	14.11 Application to Audio Coding—MPEG Audio
	14.12 Application to Image Compression
	14.12.1 Decomposing an Image
	14.12.2 Coding the Subbands

	14.13 Summary
	14.14 Projects and Problems

	15 Wavelet-Based Compression
	15.1 Overview
	15.2 Introduction
	15.3 Wavelets
	15.4 Multiresolution Analysis and the Scaling Function
	15.5 Implementation Using Filters
	15.5.1 Scaling and Wavelet Coefficients
	15.5.2 Families of Wavelets

	15.6 Image Compression
	15.7 Embedded Zerotree Coder
	15.8 Set Partitioning in Hierarchical Trees
	15.9 JPEG 2000
	15.10 Summary
	15.11 Projects and Problems

	16 Audio Coding
	16.1 Overview
	16.2 Introduction
	16.2.1 Spectral Masking
	16.2.2 Temporal Masking
	16.2.3 Psychoacoustic Model

	16.3 MPEG Audio Coding
	16.3.1 Layer I Coding
	16.3.2 Layer II Coding
	16.3.3 Layer III Coding—mp3

	16.4 MPEG Advanced Audio Coding
	16.4.1 MPEG-2 AAC
	16.4.2 MPEG-4 AAC

	16.5 Dolby AC3 (Dolby Digital)
	16.5.1 Bit Allocation

	16.6 Other Standards
	16.7 Summary

	17 Analysis/Synthesis and Analysis by Synthesis Schemes
	17.1 Overview
	17.2 Introduction
	17.3 Speech Compression
	17.3.1 The Channel Vocoder
	17.3.2 The Linear Predictive Coder (Government Standard LPC-10)
	17.3.3 Code Excited Linear Predicton (CELP)
	17.3.4 Sinusoidal Coders
	17.3.5 Mixed Excitation Linear Prediction (MELP)

	17.4 Wideband Speech Compression—ITU-T G.722.2
	17.5 Image Compression
	17.5.1 Fractal Compression

	17.6 Summary
	17.7 Projects and Problems

	18 Video Compression
	18.1 Overview
	18.2 Introduction
	18.3 Motion Compensation
	18.4 Video Signal Representation
	18.5 ITU-T Recommendation H.261
	18.5.1 Motion Compensation
	18.5.2 The Loop Filter
	18.5.3 The Transform
	18.5.4 Quantization and Coding
	18.5.5 Rate Control

	18.6 Model-Based Coding
	18.7 Asymmetric Applications
	18.8 The MPEG-1 Video Standard
	18.9 The MPEG-2 Video Standard—H.262
	18.9.1 The Grand Alliance HDTV Proposal

	18.10 ITU-T Recommendation H.263
	18.10.1 Unrestricted Motion Vector Mode
	18.10.2 Syntax-Based Arithmetic Coding Mode
	18.10.3 Advanced Prediction Mode
	18.10.4 PB-frames and Improved PB- frames Mode
	18.10.5 Advanced Intra Coding Mode
	18.10.6 Deblocking Filter Mode
	18.10.7 Reference Picture Selection Mode
	18.10.8 Temporal, SNR, and Spatial Scalability Mode
	18.10.9 Reference Picture Resampling
	18.10.10 Reduced-Resolution Update Mode
	18.10.11 Alternative Inter VLC Mode
	18.10.12 Modified Quantization Mode
	18.10.13 Enhanced Reference Picture Selection Mode

	18.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding
	18.11.1 Motion-Compensated Prediction
	18.11.2 The Transform
	18.11.3 Intra Prediction
	18.11.4 Quantization
	18.11.5 Coding

	18.12 MPEG-4 Part 2
	18.13 Packet Video
	18.14 ATM Networks
	18.14.1 Compression Issues in ATM Networks
	18.14.2 Compression Algorithms for Packet Video

	18.15 Summary
	18.16 Projects and Problems

	A Probability and Random Processes
	A.1 Probability
	A.1.1 Frequency of Occurrence
	A.1.2 A Measure of Belief
	A.1.3 The Axiomatic Approach

	A.2 Random Variables
	A.3 Distribution Functions
	A.4 Expectation
	A.4.1 Mean
	A.4.2 Second Moment
	A.4.3 Variance

	A.5 Types of Distribution
	A.5.1 Uniform Distribution
	A.5.2 Gaussian Distribution
	A.5.3 Laplacian Distribution
	A.5.4 Gamma Distribution

	A.6 Stochastic Process
	A.7 Projects and Problems

	B A Brief Review of Matrix Concepts
	B.1 A Matrix
	B.2 Matrix Operations

	C The Root Lattices
	Bibliography
	Index

